Browse Topic: Fatigue
ABSTRACT This paper presents a modeling and simulation framework for tracked vehicles for ride comfort and load prediction analysis. The development began with the identification of the key issues such as formulations, integration schemes and contact (with friction) modeling on which the comparative studies are conducted. Based on the results of the investigations, the framework and process for the modeling and simulation of tracked vehicles are established and appropriate algorithms for contact and friction are developed. To facilitate the modeling and simulation process, a Python-based modeling environment was developed for process automation, design optimization and design of experiment. The developed framework has been successfully applied to the dynamic load predication of a M1A1 based Joint Assault Bridge (JAB). The parameter optimization enabled with the Python-based process automation tool helps improve the design and modification of vehicles for significantly improved fatigue
ABSTRACT In this study, a styrene butadiene rubber, which is similar to the rubber used in road wheel backer pads of tracked vehicles, was investigated experimentally under monotonic and fatigue loading conditions. The monotonic loading response of the material was obtained under different stress states (compression and tension), strain rates (0.001/s to 3000/s), and temperatures (-5C to 50C). The experimental data showed that the material exhibited stress state, strain rate and temperature dependence. Fatigue loading behavior of the rubber was determined using a strain-life approach for R=0.5 loading conditions with varying strain amplitudes (25 to 43.75 percent) at a frequency of 2 Hz. Microstructural analysis of specimen fracture surfaces was performed using scanning electron microscopy and energy dispersive x-ray spectroscopy to determine the failure mechanisms of the material. The primary failure mechanisms for both loading conditions were found to be the debonding of particles on
ABSTRACT Durability analysis as applied to high mobility off-road ground vehicles involves simulating the vehicle on rough terrains and cascading the loads throughout the structure to support the verification of various components. For components within the hull structure, the rigid body accelerations of the hull are transformed to the component location producing a prescribed g-load time history. This modeling method works extremely well for items which are bolted in place but is inappropriate for stowage systems such as boxes and shelves where cargo can experience intermittent contact and impacts. One solution is to create a dynamic contact nonlinear finite element model of the stowage solution with supported cargo and subject them to the same acceleration profile. This approach effectively resolves the stresses needed to perform fatigue evaluations but is a computationally and labor intensive process. The resources required for single design point verification cannot be justified
ABSTRACT The first part of this paper will outline the conception of the testing apparatus (Figure 1), along with its operation and preliminary results. The second part of the paper will discuss a new methodology used to correlate the dependence of crack growth rate for strain crystallizing natural rubbers in terms of tearing energy. The tearing energy which depends on the type of elastomer, geometry and stress strain behavior of a particular specimen demonstrates a direct correlation with the crack growth rate at different R-ratios (= min tearing energy/max tearing energy). Figure 1 Schematic of the testing apparatus
Reducing vehicle weight is a key task for automotive engineers to meet future emission, fuel consumption, and performance requirements. Weight reduction of cylinder head and crankcase can make a decisive contribution to achieving these objectives, as they are among the heaviest components of a passenger car powertrain. Modern passenger car cylinder heads and crankcases have greatly been optimized in terms of cost and weight in all-aluminum design using the latest conventional production techniques. However, it is becoming apparent that further significant weight reduction cannot be expected, as processes such as casting have reached their limits for further lightweighting due to manufacturing restrictions. Here, recent developments in the additive manufacturing (AM) of metallic structures is offering a new degree of freedom. As part of the government-funded research project LeiMot [Lightweight Engine (Eng.)] borderline lightweight design potential of a passenger car cylinder head with
This specification covers a carbon steel in the form of wire supplied as coils, spools, or cut lengths (see 8.2
Items per page:
50
1 – 50 of 3081