Browse Topic: Fatigue
Fatigue design is invariably of prior concern for the automotive industry, no matter of the evolution of the mobility market: at first because carmakers must stay compliant with general structural integrity requirements for reliability, notably applicable to the chassis system, then due to the endless competition for lightweighting in order to mitigate product costs and/or enhance vehicle efficiency. In the past, this key performance was often tackled by basic reference load cases, making use of the simplest signal content, e.g. sinus functions, to practice constant amplitude loads on test rigs and for computations, respectively. Nowadays, full time series coming from proving ground measurements, or any corresponding virtual road load data computations, may be applied to feed complex vehicle computations for virtual assessment and complex test facilities for final approval, under variable amplitude loads. In between, the concept of load spectra (i.e. distribution of amplitudes with
Parts in automotive exhaust assembly are joined to each other using welding process. When the exhaust is subjected to dynamic loads, most of these weld joints experience high stresses. Hence it should be ensured that the exhaust assembly is designed to meet the requirements of exhaust durability for the estimated life of the vehicle. We also know that all parts used in manufacturing of exhaust system have inherent variations with respect to sheet metal thickness, dimensions and shape. Some parts like flex coupling and isolators have high variations in their stiffness based on their material and manufacturing processes. This all leads to a big challenge to ensure that the exhaust system meets the durability targets on a vehicle manufactured with all these variations. This works aims to evaluate the statistical spread in weld life of an exhaust with respect to inherent variations of its components. For the purpose of variational analysis, a Design of Experiments (DOE) is done where
The half vehicle spindle-coupled multi-axial input durability test has been broadly used in the laboratory to evaluate the fatigue performance of the vehicle chassis systems by automotive suppliers and OEMs. In the lab, the front or rear axle assembly is usually held by fixtures at the interfaces where it originally connects to the vehicle body. The fixture stiffness is vital for the laboratory test to best replicate the durability test in the field at a full vehicle level especially when the subframe of the front or rear axle is hard mounted to the vehicle body. In this work, a multi-flexible body dynamics (MFBD) model in Adams/Car was utilized to simulate a full vehicle field test over various road events (rough road, braking, steering). The wheel center loads were then used as inputs for the spindle coupled simulations of the front axle with a non-isolated subframe. Three types of fixtures including trimmed vehicle body, a rigid fixture with softer connections and a rigid fixture
This SAE Aerospace Standard (AS) establishes vibration and transmissibility test procedures which compare the relative strengths of various loop and saddle type support clamps. This procedure is intended for conducting fatigue testing which is standard throughout the aerospace industry thereby establishing a clamp strength comparison that can be used in an evaluation process. The testing required by this document ensures that clamps will meet adequate fatigue requirements only. It does not infer qualification of the clamp installation techniques or its ability to meet in-service environments or operating conditions. Separate qualification testing should be performed to ensure satisfactory service of the installed clamp.
Intelligent Structural Health Monitoring (SHM) of bridge is a technology that utilizes advanced sensor technology along with professional bridge engineering knowledge, coupled with machine vision and other intelligent methods for continuously monitoring and evaluating the status of bridge structures. One application of SHM technology for bridges by way of machine learning is in the use of damage detection and quantification. In this way, changes in bridge conditions can be analyzed efficiently and accurately, ensuring stable operational performance throughout the lifecycle of the bridge. However, in the field of damage detection, although machine vision can effectively identify and quantify existing damages, it still lacks accuracy for predicting future damage trends based on real-time data. Such shortfall l may lead to late addressing of potential safety hazards, causing accelerated damage development and threatening structural safety. To tackle this problem, this study designs a deep
Reducing vehicle weight is a key task for automotive engineers to meet future emission, fuel consumption, and performance requirements. Weight reduction of cylinder head and crankcase can make a decisive contribution to achieving these objectives, as they are among the heaviest components of a passenger car powertrain. Modern passenger car cylinder heads and crankcases have greatly been optimized in terms of cost and weight in all-aluminum design using the latest conventional production techniques. However, it is becoming apparent that further significant weight reduction cannot be expected, as processes such as casting have reached their limits for further lightweighting due to manufacturing restrictions. Here, recent developments in the additive manufacturing (AM) of metallic structures is offering a new degree of freedom. As part of the government-funded research project LeiMot [Lightweight Engine (Eng.)] borderline lightweight design potential of a passenger car cylinder head with
This specification covers a carbon steel in the form of wire supplied as coils, spools, or cut lengths (see 8.2).
The water droplet erosion (WDE) on high-speed rotating wheels appears in several engineering fields such as wind turbines, stationary steam turbines, fuel cell turbines, and turbochargers. The main reasons for this phenomenon are the high relative velocity difference between the colliding particles and the rotor, as well as the presence of inadequate material structure and surface parameters. One of the latest challenges in this area is the compressor wheels used in turbochargers, which has a speed up to 300,000 rpm and have typically been made of aluminum alloy for decades, to achieve the lowest possible rotor inertia. However, while in the past this component was only encountered with filtered air, nowadays, due to developments in compliance with tightening emission standards, various fluids also collide with the spinning blades, which can cause mechanical damage. One such fluid is the condensed water in the low-pressure exhaust gas recirculation channel (LP-EGR) formulated at cold
Items per page:
50
1 – 50 of 3080