Browse Topic: Wear
Earthmoving machines are equipped with a variety of ground-engaging tools that are joined by bolted connections to improve serviceability. These tools are made from heat-treated materials to enhance their wear resistance. Attachments on earthmoving machines, including buckets, blades, rippers, augers, and grapples, are specifically designed for tasks such as digging, grading, lifting, and breaking. These attachments feature ground-engaging tools (GET), such as cutting bits or teeth, to protect the shovel and other earthmoving implements from wear. Torquing hardened plates of bolted joint components is essential to ensure uniform load distribution and prevent premature failure. Therefore, selecting the proper torque is an important parameter. This study focuses on analyzing various parameters that impact the final torque on the hardened surface, which will help to understand the torque required for specific joints. Several other parameters considered in this study include hardware
The height valve adjusting rod is an important part of the suspension system, used to adjust the height of the train to adapt to the train through the curve, slope or uneven track when the height valve adjusting rod fracture failure, the train’s suspension system can not be adjusted normally, may lead to the height of the train is too high or too low, affecting the stability of the train and the driving safety. In this paper, an underground vehicle height valve adjusting rod fracture failure of the problem was studied and analysed, the specific conclusions are as follows: height valve adjusting rod there are two main vibration frequency, 60Hz and 340Hz, 60Hz main frequency has always existed, and 340Hz vibration frequency are present in part of the interval, but also caused by the vehicle vibration of the main reason for the local larger; height valve adjusting rod stress there is also a significant vibration The main frequency of 340Hz, similar to the vibration characteristics of the
The effective reduction of particulate emissions from modern vehicles has shifted the focus toward emissions from tire wear, brake wear, road surface wear, and re-suspended particulate emissions. To meet future EU air quality standards and even stricter WHO targets for PM2.5, a reduction in non-exhaust particulate (NEP) emissions seems to be essential. For this reason, the EURO 7 emissions regulation contains limits for PM and PN emissions from brakes and tire abrasion. Graz University of Technology develops test methods, simulation tools and evaluates technologies for the reduction of brake wear particles and is involved in and leads several international research projects on this topic. The results are applied in emission models such as HBEFA (Handbook on Emission Factors). In this paper, we present our brake emission simulation approach, which calculates the power at the wheels and mechanical brakes, as well as corresponding rotational speeds for vehicles using longitudinal dynamics
As Lowmet pad porosity increases, pad hardness decreases; pad ISO compressibility increases; the nominal friction coefficient increases (SAE J2522); and the disc wear/pad wear decreases. Brake squeal occurrence is affected by the total wear of disc and pads; the wear differential between the inboard pad and outboard pad; pad tangential taper; and pad hardness/material damping. Also, pad chamfer shape has a strong influence on brake squeal occurrence.
This SAE Recommended Practice is intended to give information to engineers and designers in order that access to a passenger handgrip, when used, is easily obtained, and that such handgrips offer maximum safety for a person at least as large as a 95th percentile adult male during snowmobile operation.
What if the clothes you wear could care for your health? MIT researchers have developed an autonomous programmable computer in the form of an elastic fiber, which could monitor health conditions and physical activity, alerting the wearer to potential health risks in real time. Clothing containing the fiber computer was comfortable and machine washable, and the fibers were nearly imperceptible to the wearer, the researchers report.
Artemis III will mark humanity’s first return to the lunar surface since 1972. Astronauts returning to the Moon as part of the Artemis III mission, currently planned for 2027, will wear a next-generation spacesuit that will allow astronauts to walk on the Moon for the first time in over 50 years.
What if the clothes you wear could care for your health?
The experimental investigation analyzed the performance of three machining conditions: dry machining, cryogenic machining, and cryogenic machining with minimum quantity lubrication (MQL) on tool wear, cutting forces, material removal rate, and microhardness. The outcome of this study presents valuable knowledge regarding optimizing conditions of turning operations for Ti6Al4V and understanding the machinability under cryogenic-based cooling strategies. Based on the experimentation, cryogenic machining with MQL is the most beneficial approach, as it reduces cutting force and flank wear with a required material removal rate. This strategy significantly enhances the machining efficiency and quality of Ti6Al4V under variable feed rates (0.05 mm/rev, 0.1 mm/rev, 0.15 mm/rev, 0.2 mm/rev, 0.25 mm/rev) where cutting velocity (120 m/min) and depth of cut (1 mm) are constant. The effects of the main cutting force, feed force, thrust force, material removal mechanism, flank wear, and
Disc brakes play a vital role in automotive braking systems, offering a dependable and effective means of decelerating or halting a vehicle. The disc brake assembly functions by converting the vehicle's kinetic energy into thermal energy through friction. The performances of the brake assembly and user experience are significantly impacted by squeal noise and wear behaviour. This paper delves into the fundamental mechanisms behind squeal noise and assesses the wear performance of the disc brake assembly. Functionally graded materials (FGMs) are an innovative type of composite material, characterized by gradual variations in composition and structure throughout their volume, leading to changes in properties such as mechanical strength, thermal conductivity, and corrosion resistance. FGMs have emerged as a groundbreaking solution in the design and manufacturing of brake rotors, addressing significant challenges related to thermal stress, wear resistance, and overall performance. These
Researchers in the emerging field of spatial computing have developed a prototype augmented reality headset that uses holographic imaging to overlay full-color, 3D moving images on the lenses of what would appear to be an ordinary pair of glasses. Unlike the bulky headsets of present-day augmented reality systems, the new approach delivers a visually satisfying 3D viewing experience in a compact, comfortable, and attractive form factor suitable for all-day wear.
Fused deposition modeling (FDM) is a rapidly growing additive manufacturing method employed for printing fiber-reinforced polymer composites. Nonetheless, the performance of printed parts is often constrained by inherent defects. This study investigates how the varying annealing parameter affects the tribological properties of FDM-produced polypropylene carbon fiber composites. The composite pin specimens were created in a standard size of 35 mm height and 12 mm diameter, based on the specifications of the tribometer pin holder. The impact of high-temperature annealing process parameters are explored, specifically annealing temperature and duration, while maintaining a fixed cooling rate. Two set of printed samples were taken for post-annealing at temperature of 85°C for 60 and 90 min, respectively. The tribological properties were evaluated using a dry pin-on-disc setup and examined both pre- (as-built) and post-annealing at temperature of 85°C for 60 and 90 min printed samples
Items per page:
50
1 – 50 of 3013