Browse Topic: Wear

Items (3,028)
Compared to manual driving, autonomous driving is more prone to the rapid development and deterioration of pavement distress due to the concentration of driving paths. Therefore, a reasonable and efficient maintenance strategy is required. To address the challenges posed by the numerous constraints and objectives in the maintenance strategy generation process, this paper proposes a multi-objective optimization-based method for generating pavement maintenance strategies. The approach leverages advanced pavement distress detection technologies to establish an initial maintenance program, incorporating a range of constraints and maintenance objectives, such as cost-efficiency, performance longevity, and environmental impact. The method applies a genetic algorithm (GA) to iteratively refine and optimize the maintenance strategy, ensuring that the solutions align with both immediate and long-term performance goals for autonomous vehicle operations. A case study utilizing real-world road
Yang, LiwenyunLi, WeiChen, Leilei
The search for environmentally friendly and sustainable lubricants for automotive and industrial applications has led to extensive research on bio lubricants as a viable alternative to conventional engine oils and mineral oils. The biodegradable and ecofriendly nature of vegetable oil, makes it an excellent replacement for the depleting mineral oils. Still, a good number of modifications must be brought in, to overcome the drawbacks of vegetable oils. In this work, the preparation and evaluation of lubricating properties like tribological, rheological, thermal etc. of Neem seed oil (NSO) with and without additives were carried out and effectively compared with the lubricating properties of synthetic oil, Polyalphaolefin 6 (PAO 6) and with a commercial engine oil, SAE20W40. The copper oxide nanoparticles were dispersed in neem seed oil as additive in various proportions (0.1, 0.2, 0.3 and 0.4 wt.%) to enhance the tribological properties. The tribological analysis were carried out to
Menon, Krishnaprasad SR, Ambigai
The advancement of wire-arc additive manufacturing (WAAM) presents a significant opportunity to revolutionize the production of automotive components through the fabrication of complex, high-performance structures. This study specifically investigates the metallurgical, mechanical, and corrosion properties of WAAM-fabricated ER 2209 duplex stainless steel structures, known for their superior mechanical properties, excellent corrosion resistance, and favorable tribological behavior. The research aims to optimize WAAM process parameters to achieve high-quality deposition of ER 2209, ensuring structural integrity and performance suitable for both marine and various automotive applications. Microstructural analysis of the produced samples revealed the alloy’s dual-phase nature, with roughly equal amounts of ferrite and austenite phases uniformly mixed across the layers of deposition. This balanced microstructure contributes to the alloy’s excellent mechanical properties. Yield strength
A, AravindS, JeromeKumar, Ravi
The incorporation of natural available material into synthetic materials to form a fiber within a single polymer matrix has been ignited since environment concerns become crucial nowadays. Composite materials embedded with two or more types of fibers makes a composite as hybrid. The study of hybridization of natural and synthetic fibers brings out superior mechanical and tribological properties. In our present studies, fabrication of jute & glass fiber reinforced epoxy-based polymer hybrid composites were carried out using resin infusion technique. For comparing the various properties, the composite made of pure jute fiber i.e 100% jute, pure glass fiber i.e 100% glass, the hybrid composite containing 75% jute and 25% glass fiber, 50% jute and 50% glass fiber, and 25% jute and 75% glass fiber were made and its functional behaviors were studied. The results revealed the hybrid composite containing 25% jute and 75% glass fiber possessed maximum tensile strength of 292±5.8 MPa, flexural
J, ChandradassT, ThirugnanasambandhamM, Amutha SurabiP, Baskara SethupathiRajendran, RMurugadoss, Palanivendhan
Disc brakes play a vital role in automotive braking systems, offering a dependable and effective means of decelerating or halting a vehicle. The disc brake assembly functions by converting the vehicle's kinetic energy into thermal energy through friction. The performances of the brake assembly and user experience are significantly impacted by squeal noise and wear behaviour. This paper delves into the fundamental mechanisms behind squeal noise and assesses the wear performance of the disc brake assembly. Functionally graded materials (FGMs) are an innovative type of composite material, characterized by gradual variations in composition and structure throughout their volume, leading to changes in properties such as mechanical strength, thermal conductivity, and corrosion resistance. FGMs have emerged as a groundbreaking solution in the design and manufacturing of brake rotors, addressing significant challenges related to thermal stress, wear resistance, and overall performance. These
C V, PrasshanthS, GurumoorthyBhaskara Rao, LokavarapuS, SridharS, Badri NarayananKumar, AjayBiswas, Sayan
The industrial world focuses on developing eco-friendly, natural fibres such as reinforcing lightweight, inexpensive compounds in modern days. Basalt, a rare phenomenon, derives its origins from molten volcanic rocks, which is essential for their cost-effectiveness and offers different glass fibre properties. High mechanical strength, outstanding wear resistance, and exceptional durability in a variety of environmental conditions are all displayed by basalt fibres. These fibres are ideal for reinforcing polymer composites because of their mechanical properties at high temperatures. Furthermore, basalt fibres are appropriate for long-term applications because they resist corrosion and degradation while maintaining structural integrity over time. This article provides a brief overview of basalt fibres as a substitute for glass fibres and as composite materials. Additionally, attempts are being made to draw attention to the expanding field of basalt fibre research. In the review, studies
Chidambaranathan, BibinRaghavan, SheejaSoundararajan, GopinathArunkumar, S.Ashok Kumar, R.Rajesh, K.
Aluminum Matrix Composites (AMCs) are gaining traction in aerospace, automotive, and marine industries due to their superior mechanical properties. By integrating hard ceramic particles such as silicon carbide (SiC) and aluminum oxide (Al₂O₃) into aluminum matrices, these composites exhibit enhanced wear resistance and strength-to-weight ratios. This study explores the fabrication and characterization of 6061-T6 aluminum alloy matrix composites, reinforced individually with SiC and Al₂O₃ particles through the squeeze casting technique. The research includes a comprehensive analysis of microstructures and mechanical properties, focusing on compressive strength, Brinell hardness, and tribological behavior. Findings reveal that SiC and Al₂O₃ reinforcements boost compressive strength by up to 27% and 47%, respectively, and increase hardness by up to 29% and 20%, respectively, compared to unreinforced aluminum.
Thirumavalavan, R.Santhosh, V.Sugunarani, S.Regupathi, S.Sundaravignesh, S.
The objective of this study is to optimize and characterize an Al6061/Al2O3/MWCNT nanocomposite produced through stir casting. The investigation focused on various concentrations of 2%, 3%, and 5% by weight of Al2O3/MWCNT nanoparticles, with an average Al2O3 particle size of 40 nm. The Al6061 matrix exhibited a uniform distribution of these nanoparticles. Microstructural analysis of the nanocomposite was conducted using scanning electron microscopy. The study examined the tribological properties, including wear and coefficient of friction, as well as the tensile strength and hardness of the Al6061/Al2O3/MWCNT nanocomposites. The results indicated a significant enhancement in mechanical properties, with the ultimate tensile strength (UTS) increasing from 122 MPa to 157 MPa, and the yield tensile strength (YTS) rising from 52 MPa to 76 MPa. At a 5% concentration of Al2O3/MWCNT, the hardness test showed an increase from 28 BHN to 55 BHN. The improvement ratios for 2%, 3%, and 5
Haridass, R.Subramani, N.Viknesh, S.Mathan Kumar, M.Mownitharan, M. S.
This study investigates the wear and hardness properties of AA8011 hybrid metal matrix composites (MMCs) reinforced with silicon carbide (SiCp) and titanium diboride (TiB₂), addressing a significant gap in the existing literature regarding the optimization of reinforcement levels in AA8011. The goal is to enhance the material’s wear resistance and hardness for high-performance applications. While AA8011 is known for its excellent mechanical properties and corrosion resistance, limited research has focused on optimizing both wear behavior and surface hardness through the combination of TiB₂ and SiCp reinforcements. Using the pin-on-disk method, this study explores various compositions, showing that the composite containing 2% TiB₂ and 1% SiCp exhibited the best wear resistance, with a 25% improvement over the base alloy, and an increase in hardness by more than 115%. Developing AA8011-based composites with enhanced durability and hardness for use in demanding environments such as
Thirumavalavan, R.Mugendiran, V.Santhosh, V.Manoj, M.Sundaravignesh, S.
Fused deposition modeling (FDM) is a rapidly growing additive manufacturing method employed for printing fiber-reinforced polymer composites. Nonetheless, the performance of printed parts is often constrained by inherent defects. This study investigates how the varying annealing parameter affects the tribological properties of FDM-produced polypropylene carbon fiber composites. The composite pin specimens were created in a standard size of 35 mm height and 12 mm diameter, based on the specifications of the tribometer pin holder. The impact of high-temperature annealing process parameters are explored, specifically annealing temperature and duration, while maintaining a fixed cooling rate. Two set of printed samples were taken for post-annealing at temperature of 85°C for 60 and 90 min, respectively. The tribological properties were evaluated using a dry pin-on-disc setup and examined both pre- (as-built) and post-annealing at temperature of 85°C for 60 and 90 min printed samples
Nallasivam, J.D.Sundararaj, S.Kandavalli, Sumanth RatnaPradab, R.
Wear-resistant, die-cast B390 aluminum represents a relevant material frequently used in the automotive industry. The wear and its relation to the microstructure along with different alloying additives is studied with efforts toward improved performance. Alloying by Sr allows for a lower Fe content helps in mitigating iron needling. This paper addresses wear performance of B390 and Sr-modified B390 alloys, tested against pearlitic cast iron, used for manufacture of piston rings. The wear tests were designed by using an ASTM G99 standardized pin-on-disc protocol at “wet” (motor oil) and “dry” conditions and were performed using a UMT (Bruker) benchtop tester. The polished cross-sections and friction surfaces were studied to identify the microstructural differences and dominating wear mechanisms. Interestingly, the stronger and harder Sr-modified B390 alloys wear more at dry conditions compared to the standard die-cast B390 alloy. This was ascribed to a change in wear mechanisms of the
Kancharla, Sai KrishnaJogineedi, RohitSingireddy, Vishal ReddyMirzababaei, SaerehDierks, MikeFilip, Peter
This study focuses on machining automobile parts such as drive shafts and axles made of low alloy steel AISI 4140. The influence of cutting inserts geometrical parameters, viz., relief angle (RIA), rake angle (RAA), and nose radius (NA) are studied by designing experiments using Taguchi’s methodology. Numerical simulation is conducted using DEFORM-2D; a suitable L9 orthogonal array (OA) is considered for this work for varying combinations of inputs, and the resultant cutting force, maximum principal stress, and tool life are determined. Adopting a signal-to-noise (S/N) ratio minimizes the outputs for better machining conditions and achieves high-quality components with precision, tolerance, and accuracy. The ideal conditions obtained from the S/N ratio are RAA of 6°, RIA of 3°, and NR of 0.6 mm. Analysis of variance presents that the NR influences the resultant cutting force, wear depth, and work piece damage 73.51%, RAA following by 23.99%, and RIA by 2.03% achieved with a R2 value of
Senthilkumar, N.
The main aim of this experimental study is to investigate the wear properties of a hybrid composite material composed of a banana fibre mat, rice husk powder, and an epoxy matrix polymer filled with multi-walled carbon nanotubes (MWCNT). This research emphasizes the assessment of the composite's characteristics and behaviour. The adjustment of various ratios of fibres and fillers within polymer matrix hybrid composites finds application in numerous engineering fields, particularly in the automotive and aerospace industries. The experimental evaluation is conducted using a pin-on-disk wear tester to analyze the specimens in terms of pin wear, friction coefficient, and friction force. Experimental trials were conducted using L9 orthogonal arrays following the Taguchi design of experiments, and the output response was optimized by implementing a hybrid approach of Gray relational analysis. It depends upon the suitability of the wear performance needs of the application to obtain the
Senthilkumar, N.Ramu, S.Yuvaperiyasamy, M.Sabari, K.
Radiation has garnered the most attention in the research that has been conducted on polyethylene sheets. According to the calculations, there were 145892.35 kGy in total radiation doses administered. An ultraviolet visible spectrophotometer was used to examine the impact that electron beam irradiation had on the optical constants. Two of the most crucial variables taken into account when calculating the optical constants and the absorption coefficient are the reflectance and transmittance of polyurethane sheets. Reduced light transmission through the sheet achieves these characteristics, which are related to the transmittance and reflectance of the Fresnel interface. Cross linking makes it more challenging for the polyurethane molecular chains to become fixed. Both the refractive index and the dispersion properties have been altered as a direct result of this. Despite the fact that the doses of electron irradiation were getting lower, it eventually rose to 105 kGy. Contrary to the
Kaushik, NitishSandeep, ChSrinivasan, V. P.Prakash, B. VijayaKalaiarasan, S.Arunkumar, S.
Hybrid reinforcement-made polypropylene (PP) composites are beneficial over monolithic PP and utilized for various engineering and non-engineering applications. The present investigation of PP hybrid composites is developed with 10 percentages of weight (wt%) of E-glass fiber embedded with 0–6 wt% of silicon carbide via compression technique associated with hot press. E-glass fiber and SiC influencing wear rate, tensile strength, and microhardness behavior of PP and its composites are experimentally investigated. The peak loading of SiC as 6 wt% into PP/10 wt% E-glass fiber is recorded as better wear resistance (0.021 mm3/m), maximum tensile strength value (54.9 MPa), and highest hardness (68 HV). Moreover, the investigation results of hybrid PP composite are better resistance to wear and hiked tensile and hardness behavior compared to monolithic PP. This PP/10 wt% E-glass fiber/6 wt% of SiC hybrid composite is adopted for high-strength to lightweight sports goods applications.
Venkatesh, R.
Gear shifting effort or force especially in manual transmission has been one of the key factors for subjective assessment in passenger vehicle segment. An optimum effort to shift into the gears creates a big difference in overall assessment of the vehicle. The gear shifting effort travels through the transmission shifting system that helps driver to shift between the different available gears as per the torque and speed demand. The shifting system is further divided into two sub-systems. 1. Peripheral system [Gear Shift Lever with knob and shift Cable Assembly] and Shift system inside the transmission [Shift Tower Assembly, Shift Forks, Hub and sleeve Assembly with keys, Gear Cones and Synchronizer Rings etc.] [1]. Both the systems have their own role in overall gear shifting effort. There has been work already done on evaluation of the transmission shifting system as whole for gear shifting effort with typical test bench layouts. Also, work has been on assessment of life of the
Singh, ParamjeetYadav, Sanjay Kumar
Clutch wear is a significant factor affecting vehicle performance and maintenance costs, and understanding its dynamics is crucial for original equipment manufacturers (OEMs) to enhance product reliability and customer satisfaction. It is important to predict clutch wear to enable customers to understand the condition of their clutch and the remaining clutch life, to avoid sudden vehicle breakdowns. This paper explains the approach of measuring the clutch wear profile on an actual vehicle and simulating the same conditions on a powertrain test bench, with the establishment of a correlation in clutch wear profiles.
Chopra, ChandanKumar, VarunMamidigumpula, Mohan Kumar Reddy
The undercarriage is a critical component in machines such as crawlers, excavators, and compact track loaders. It includes vital elements such as the track frame, chain guides, rollers, track chains, idlers, carrier rollers, final drive, and sprockets. Among all these machines, crawler dozers encounter harsh environments with various ground conditions. During operations, the chains are subjected to traverse and side loads, which cause the chains to tend to slip out of the bottom rollers. The chain guide plays a crucial role in assisting and maintaining the chain in the correct position. The forces acting on chain guides are influenced by factors such as track chain tension, roller wear, chain link wear, and counter-rotation (where one track moves forward while the other moves in reverse). Among all the load cases, there are two critical load cases which are vital to be studied in order to determine the required number of chain guides along with other attributes like profile or section
Masane, NishantBhosale, DhanajiSarma, Neelam K
This Recommended Practice is derived from OEM and tier-1 laboratory tests and applies to two-axle multipurpose passenger vehicles, or trucks with a GVWR above 4536 kg (10 000 pounds) equipped with hydraulic disc or drum service brakes. Before conducting testing for a specific brake sizes or under specific test conditions, review, agree upon, and document with the test requestor any deviations from the test procedure. Also, the applicable criteria for the final test results and wear rates deemed as significantly different require definition, assessment, and proper documentation; especially as this will determine whether or not Method B testing is needed. This Recommended Practice does not evaluate or quantify other brake system characteristics such as performance, noise, judder, ABS performance, or braking under extreme temperatures or speeds. Minimum performance requirements are not part of this recommended practice. Consistency and margin of pass/fail of the minimum requirements
Truck and Bus Hydraulic Brake Committee
In the summer of 2023, a receiving clerk in the procurement department of TAP Air Portugal, a Lisbon-based airline, made a curious discovery: A $65 engine part that should have appeared brandnew showed signs of significant wear. The clerk checked the documentation from the London-based parts supplier and noticed that the submitted documentation was also suspicious.
Geometric methods based on Reeds–Shepp (RS) curves offer a practical approach for the parking path planning of unmanned mining truck, but discontinuous curvature can cause tire wear and road damage. To address this issue in mine scenario, a continuous curvature parking path planning method based on transition curve and model predictive control (MPC) is proposed for mine scenarios. Initially, according to the shovel position information issued by the cloud dispatching platform, a reference line is planned using RS curves. In order to mitigate the wear and tear of the tires and the damage to unstructured roads due to the in situ steering caused by the sudden change of the curvature, a transition curve consisting of clothoid–arc–clothoid that satisfies the kinematics of continuous vehicle steering is designed on the basis of RS curves to achieve the continuity of road curvature, which will contribute to the economy of tire and handling performance. The calculation of Fresnel integral
Zhang, HaosenChen, QiushiWu, Guangqiang
This study proposes a multi-mode switching control strategy based on electromagnetic damper suspension (EMDS) to address the different performance requirements of suspension systems on variable road surfaces. The working modes of EMDS are divided into semi-active damping mode and energy harvest mode, and the proposed mode switching threshold is the weighted root mean square value of acceleration. For the semi-active damping mode, a controller based on LQR(Linear Quadratic Regulator) was designed, and a variable resistance circuit was also designed to meet the requirements of the semi-active mode, which optimized the damping effect relative to passive suspension. For the energy harvest mode, an energy harvest circuit was designed to recover vibration energy. In order to reduce the deterioration of suspension performance caused by frequent mode switching in the mode switching strategy, as frequent system switching can lead to system disorder, deterioration of damping effect, and
Zeng, ShengZhang, BangjiTan, BohuanQin, AnLai, JiewenWang, Shichen
Recent developments in manufacturing techniques and the development of Al7075 metal matrix composites (MMCs) with reinforcements derived from industrial waste have been steadily gaining popularity for aerospace and automobile applications due to their outstanding properties. However, there are still a lot of limitations with these composite materials. A great deal of research has been done to create new Al7075 MMC materials with the use of economic fly ash (FA) that possesses superior mechanical properties, corrosion resistance, density, and cycle cost. This review outlines different synthesis techniques used in the development of Al7075 MMCs using stir casting. Effects of FA along with other reinforcements on the mechanical, wear, machining, and microstructural properties of the composite are also discussed. Finally, a summary of the application of FA-based MMCs and a recap of the previous discoveries and challenges are reported. Future scope and potential areas of application are
Kumar, RandhirMondal, Sharifuddin
Super Duplex Stainless Steels (SDSS) are attracting attentions of the manufacturing industries due to the excellent corrosion resistance to critical corrosion. But SDSS2507 is the hardest to machine with lowest machinability index among DSS family. Moreover, formation of built-up layer (BUL) and work hardening tendency makes it further difficult to machine. Researchers have the conflict in opinions on using wet machining or dry machining using tool coatings. In this investigation SDSS2507 machining is carried out using uncoated and PVD–TiAlSiN-coated tools. The wet and dry machining environment are compared for increase in cutting speed from 170 m/min to 230 m/min. Excellent properties of PVD–TiAlSiN coatings exhibited microhardness of 39 GPa and adhesion strength of 88 N, which outperformed the uncoated tools. Tool life exhibited by coated tools was four times higher than uncoated tools. Wet machining was found to be ineffective when PVD-coated tools are used, exhibiting the same
Sonawane, Gaurav DinkarBachhav, Radhey
A power steering system helps the heavy-duty operator move the vehicle easily with the hydraulic pump that provides the fluid pressure and facilitating adequate operation. Some failures in the power steering system are due to external and internal factors that can reduce its service life. The external factors could be identified by ocular inspection but normally, due to internal failures, it is necessary to use a hydraulic pressure flow meter. However, this device makes it impossible to detect failures caused by the selected lubricant. This work aims to investigate the causes of power steering system seizure by using the tribological wear examination process and the lubricant characterization under some actual operation conditions. The lubricant characterization was carried out in a four balls tester using fresh and used samples of a re-refined oil based ATF, SAE 15 W40 and synthetic SAE 5 W30 oils at two temperatures. In general, the results showed an unsteady friction profile with
García-Maldonado, MiguelGallardo, EzequielMozqueda-Flores, LuisVite-torres, Manuel
Geared automotive and aerospace transmissions are one of the most critical systems regarding wear. Limiting wear is of paramount importance to improve sustainability by reducing replacements that lead to increased waste and energy consumption for re-manufacturing. Simulation of gears including the wear effect can be very useful for the design of new more efficient and compact gears. Thermal effects may play a decisive role in the wear phenomena and should be included in the models used for simulations. In this study, some tests are conducted on a pin-on-disk apparatus under varying temperatures to assess its influence on steel-to-steel wear rate. A modified Archard law is used for wear estimation which includes the experimentally derived parameters accounting for thermal effects. This model is then coupled with a loaded tooth contact analysis (LTCA) tool to obtain accurate predictions of the contact pattern, as well as the instantaneous load shared by the mating teeth pairs during the
Grabovic, EugeniuCiulli, EnricoArtoni, AlessioGabiccini, Marco
Vehicular emissions represent the main responsible of the deterioration of air quality in the urban area. In the attempt to reduce both gaseous emissions and particulates from internal combustion engines, increasingly stricter regulations were introduced from European Union in the last years. These limits have led to the improvement of emissions-reduction technologies as well as the vehicle hybridization and electrification. In this scenario, vehicle emissions due to other sources rather than the propulsion systems, such as brakes and tires, have taken a significant weight. In this regard, European Commission has proposed the introduction in the next EURO 7 standard of the first-ever limit on the particles emitted by vehicle brakes. This study is devoted to improving the knowledge on the particle characteristics due to the brake wear by means of laboratory experiments thus providing support to the definition of the new standards. An experimental layout was realized consisting in a box
Catapano, FrancescoDi Iorio, SilvanaMagno, AgneseVaglieco, Bianca Maria
Brake squeal is a phenomenon caused by various factors such as stiffness of brake components, mode coupling, friction coefficient, friction force variation, pressure, temperature and humidity. FEA simulation is effective at predicting and investigating the cause of brake squeal, and is widely used. However, in many FEA simulations, models of brake lining are mostly a brand-new shaper, so that the change of pressure distribution or pad shape, which can occur due to the lining wear, are not taken account. In this research, brake squeal analysis was conducted with consideration of lining wear, applying Fortran codes for Abaqus user subroutine. The brake assembly model for the analysis is created by using a 3D scanner and has a close shape to the real one. The wear patterns calculated by the analysis are similar to those of brake pads after a noise test. The complex eigenvalue analysis shows two unstable modes at the frequency of squeal occurred in the noise test. One is out-of-plane
Ikegami, TokunosukeMillsap, TomYamaguchi, Yoshiyuki
Demands for new materials with superior properties are rising as technological advancement is speeding up globally. Composite materials are gaining popularity due to their enhanced mechanical properties over metal and alloys. Aluminum metal matrix composites (MMCs) are becoming popular in several areas of application such as aerospace, automobile, armed forces, and other commercial applications due to their lightweight, increased strength, better fracture toughness, stiffness, corrosion resistance, and cost-effectiveness. The present study reviews the effects of different reinforcements on MMC materials. The main aim of the present work is to give a clear idea to the readers about the role of individual reinforcement in Al7075-based MMCs. Also, the details of weight% and size of different reinforcement are provided, which will help the readers in their future works. It has been observed that inorganic reinforcements give better mechanical and wear properties to composite materials. For
Kumar, RandhirMondal, Sharifuddin
This research examines the impact of different amounts of copper (Cu) powder on the wear characteristics of acrylonitrile butadiene styrene (ABS)–Cu composites. Various formulations of ABS–Cu composites have been produced using injection molding, with different amounts of surfactant. Wear properties were evaluated by conducting tribological testing in accordance with ASTM standards. The findings indicated a decrease in wear loss, particularly when using a mixture consisting of 23% ABS, 70% Cu, and 7% surfactant. Machine learning regression algorithms successfully forecasted wear behavior with R-squared values over 0.97. The models used in the analysis included linear, stepwise linear, tree, support vector machine (SVM), efficient linear, Gaussian progression, ensemble, and neural network regression models. This research emphasizes the significance of composite materials in fulfilling contemporary technical requirements. The acquired insights enable the development of materials with
Jatti, Vijaykumar S.Saiyathibrahim, A.Murali Krishnan, R.Balaji, K.
In the contemporary industrial landscape, machinery stands as the cornerstone of various sectors. Over time, these machines undergo wear and tear due to extensive use, leading to the introduction of subtle faults into the machine readings. Recognizing the pivotal role of machinery in diverse industries, the timely detection of these faults becomes imperative. Early fault detection is crucial for preventing costly downtimes, ensuring operational efficiency, and enhancing overall safety. This paper addresses the need for an effective condition monitoring and fault detection system, focusing specifically on the application of the Long Short-Term Memory (LSTM) deep learning model for fault detection in bearings using accelerometer data. The preprocessing phase involves extracting time domain features, encompassing normal, differentiated, integrated, and carefully selected signals, to create an informative dataset tailored for the LSTM model. This model is then meticulously trained on the
Vaishnavi, A.Sharma, AnjuNaidu, VPS
Aluminum and its alloys entered a main role in the engineering sectors because of their applicable characteristics for indispensable applications. To enhance requisite belongings for the components, the composition of variant metal/nonmetal with light metal alloys is essential in the manufacturing industries. To enhance the wear resistance with significant strength property of the aluminum alloy 2024, the reinforcement SiC and fly ash (FA) were added with the designation Al2024 + 10% SiC; Al2024 + 5% SiC + 5% FA; and Al2024 + 10% FA via stir-casting technique. The wear resistance property of the composites was tested in pin-on-disc with a dry-sliding wear test procedure. The experiment trials were designed in Box–Behnken design (BBD) by differing the wear test parameters like % of reinforcement, sliding distance (m), and load (N). The wear tests on casted samples were carried out at the constant velocity of 2 m/sec, such that the corresponding wear rate for the experiment trials was
Sivakumar, N.Sireesha, S. C.Raja, S.Ravichandran, P.Sivanesh, A. R.Aravind Kumar, R.
This study aims to explore the wear characteristics of fused deposition modeling (FDM) printed automotive parts and techniques to improve wear performance. The surface roughness of the parts printed from this widely used additive manufacturing technology requires more attention to reduce surface roughness further and subsequently the mechanical strength of the printed geometries. The main aspect of this study is to examine the effect of process parameters and annealing on the surface roughness and the wear rate of FDM printed acrylonitrile butadiene styrene (ABS) parts to diminish the issue mentioned above. American Society for Testing and Materials (ASTM) G99 specified test specimens were fabricated for the investigations. The parameters considered in this study were nozzle temperature, infill density, printing velocity, and top/bottom pattern. The hybrid tool, i.e., GA–ANN (genetic algorithm–artificial neural network) has been opted to train, predict, and optimize the surface
Narang, RajanKaushik, AshishDhingra, Ashwani KumarChhabra, Deepak
Abrasion of the Electromechanical brake (EMB) brake pad during the braking process leads to an increase in brake gap, which adversely affects braking performance. Therefore, it is imperative to promptly detect brake pad abrasion and adjust the brake gap accordingly. However, the addition of extra gap adjustment or sensor detection devices will bring extra size and cost to the brake system. In this study, we propose an innovative EMB gap active adjustment strategy by employing modeling and analysis of the braking process. This strategy involves identifying the contact and separation points of the braking process based on the differential current signal. Theoretical analysis and simulation results demonstrate that this gap adjustment strategy can effectively regulate the brake gap, mitigate the adverse effects of brake disk abrasion, and notably reduce the response time of the braking force output. Monitoring is critical to accurately control EMB clamping force. Pressure transducers are
Zhang, YilongChen, ZixuanWu, JinglaiZhang, Yunqing
The tire cornering stiffness plays a vital role in the functionality of vehicle dynamics control systems, particularly when it comes to stability and path tracking controllers. This parameter relies on various external variables such as the tire/ambient temperature, tire wear condition, the road surface state, etc. Ensuring a reliable estimation of the cornering stiffness value is crucial for control systems. This ensures that these systems can accurately compute actuator requests in a wide range of driving conditions. In this paper, a novel estimation method is introduced that relies solely on standard vehicle sensor data, including data such as steering wheel angles, longitudinal acceleration, lateral acceleration, yaw rate, and vehicle speed, among others. Initially, the vehicle's handling characteristics are deduced by estimating the understeer gradient. Subsequently, real-time estimates of the cornering stiffness values are derived by adapting the previously obtained parameters
Balaga, Sanjay Raghavlabella, MarioSingh, Kanwar Bharat
The wear of the piston ring-cylinder liner system in gasoline engines is inevitable and significantly impacts fuel economy. Utilizing a custom-built linear reciprocating tribometer, this study assesses the wear resistance of newly developed engine cylinder coatings. The custom device offers a cost-effective means for tribological evaluation, optimizing coating process parameters with precise control over critical operational factors such as normal load and sliding frequency. Unlike conventional commercial tribometers, it ensures a more accurate simulation of the engine cylinder system. However, existing research lacks a comprehensive comparative analysis and procedure to establish precision limits for such modified devices. This study evaluates the custom tribometer's repeatability compared to a commercial wear-testing instrument, confirming its potential as a valuable tool for advanced wear testing on engine cylinder samples. The validation tests, achieved through standardized contact
Sediako, Dimitry G.Banerjee, Siddharth
The piston and piston ring are used in a severe contact environment in engine durability tests, which causes severe wear to the piston ring groove, leading to significant development costs for countermeasures. Conventionally, in order to ensure functional feasibility through wear on the piston top ring groove (hereinafter “ring groove”), only functional evaluations through actual engine durability testing were performed, and there was an issue in determining the limit value for the actual amount of wear itself. Because of this, the mechanism that may cause wear on the ring groove was clarified through past research, but this resulted in judgment criteria with some leeway from the perspective of functional assurance. To establish judgment criteria, it was necessary to understand both functional effect from ring groove wear and the mechanism behind it. For this research, the functional effect from wear on the upper surface of the ring groove and the mechanism that may cause this were
Yoshii, KentaTakahashi, KatsuyukiSato, KenjiHitosughi, HideshiNakada, Fumihiro
As part of the development of its new powertrain consisting of two electric motors, a combustion engine and a gearbox, Renault SAS followed an original approach to achieve an assembly with an optimized, robust, and reliable link between the main electric motor and the gearbox. The running operation optimization as well as the high reliability is achieved by processing the following topics: filtration of vibrations and operating jolts; solving of tribological problems specific to splined connections, such as fretting corrosion and abrasive tooth wear; avoidance of potential seizure of elements with cyclic relative slippage under load; and eventually, control of wear and tear on the sealing and damping O-rings, which must accept oscillating translational movements at the same time as torque transfer. The aim of this article is to retrace the main steps taken to achieve the desired reliability and performance targets for this type of product. The most remarkable points of this approach
Hay, MaximeDutfoy, LaurentLigier, Jean-louisMerçay, Patrice
Brake assemblies are an essential part of any vehicle, and their effective functioning is critical for the safety and comfort of passengers. The surface roughness of brake components plays a vital role in figuring out their tribological and NVH (Noise, Vibration, and Harshness) behavior. It is essential to understand the impact of surface roughness on brake performance to ensure efficient braking and it has been a topic of interest in the automotive industry. In this study, the influence of surface roughness on the wear, and noise characteristics of a brake assembly has been investigated. The study also provides insights into the relationship between surface roughness, frictional behavior, and NVH performance, which can be used to improve the design and manufacturing of brake assemblies. The brake assembly includes of a disc, caliper, and brake pads, which work together to convert the kinetic energy of the vehicle into heat energy, has been considered in this study. First, the
S, GurumoorthyBhimchand, NareshBourgeau, AlyssaBhumireddy, Yugandhar
The water droplet erosion (WDE) on high-speed rotating wheels appears in several engineering fields such as wind turbines, stationary steam turbines, fuel cell turbines, and turbochargers. The main reasons for this phenomenon are the high relative velocity difference between the colliding particles and the rotor, as well as the presence of inadequate material structure and surface parameters. One of the latest challenges in this area is the compressor wheels used in turbochargers, which has a speed up to 300,000 rpm and have typically been made of aluminum alloy for decades, to achieve the lowest possible rotor inertia. However, while in the past this component was only encountered with filtered air, nowadays, due to developments in compliance with tightening emission standards, various fluids also collide with the spinning blades, which can cause mechanical damage. One such fluid is the condensed water in the low-pressure exhaust gas recirculation channel (LP-EGR) formulated at cold
Takács, RichárdZsoldos, IbolyaSzentendrei, Dániel
The manufacturing landscape is undergoing a transformation, propelled by the need for innovative, efficient, and precise technology that can effectively replace expensive manual labor. This article examines advancements in Flexiv’s material abrasion technology, specifically focusing on sanding and polishing applications and the utility of force control technology.
Wheel hubs with drum brakes of heavy-duty vehicles rarely broke, but some suddenly cracked in the 2000s. The cause of damage was said to be a lack of hub strength. However, the case was suspicious because the hubs were produced according to the design guidelines by the JSAE. In the 1990s, brake shoe-lining materials were changed from asbestos to non-asbestos for people’s health. The brake squeal and abnormal self-lock frequently occurred because of the increased friction coefficient between drum and shoe lining in the case of the leading–trailing type. The mechanical friction coefficient changes with the material and the contact angle, which varies with the wear of shoe lining and the drum temperature. In the previous report, the deformation of the wheel hub under the abnormal self-lock was verified by observing the change of hub attitude in model test equipment. In this paper, a causality between the hub crack damage and the abnormal friction increase is clarified by predicting the
Kanairo, KazunoriSoejima, Mitsuhiro
This specification covers a corrosion-resistant steel in the form of bars, wire, forgings, extrusions, mechanical tubing, flash-welded rings, and stock for forging, extruding, or flash-welded rings.
AMS F Corrosion and Heat Resistant Alloys Committee
Items per page:
1 – 50 of 3028