Browse Topic: Terminology
This SAE Recommended Practice covers transfer cases used in passenger car and light truck applications. Transfer cases are of the chain, geared, manually and electronically shifted types although other configurations are possible. The operating points (speeds, temperatures, etc.) were chosen to mirror those of the United States Environmental Protection Agency Vehicle Chassis Dynamometer Driving Schedules (DDS
This SAE Standard applies to horizontal earthboring machines of the following types: a Auger boring machines b Rod pushers c Rotary rod machines d Impact machines e Horizontal directional drilling (HDD) machines (tools only) The illustrations used are for classification and are not intended to resemble a particular machine. Only basic working dimensions are given. They may be supplemented by the machine manufacturer. This document is based on existing commercial horizontal earthboring machines. This document does not apply to HDD machines as defined in ISO 21467. It only covers tools used with HDD machines. It also does not apply to specialized mining machinery covered in SAE J1116, Table 1, nor does it apply to conveyors, tunnel boring machines, pipe jacking systems, microtunnelers, or well-drilling machines
This SAE Recommended Practice is applicable to all E/E systems on MD and HD vehicles. The terms defined are largely focused on compression-ignited and spark-ignited engines. Specific applications of this document include diagnostic, service and repair manuals, bulletins and updates, training manuals, repair data bases, under-hood emission labels, and emission certification applications. This document focuses on diagnostic terms, definitions, abbreviations, and acronyms applicable to E/E systems. It also covers mechanical systems which require definition. Nothing in this document should be construed as prohibiting the introduction of a term, abbreviation, or acronym not covered by this document. The use and appropriate updating of this document is strongly encouraged. Certain terms have already been in common use and are readily understood by manufacturers and technicians, but do not follow the methodology of this document. These terms fall into three categories: a Acronyms that do not
ABSTRACT Geotechnical site characterization is the process of collecting geophysical and geospatial characteristics about the surface and subsurface to create a 3-dimensional (3D) model. Current Robot Operating System (ROS) world models are designed primarily for navigation in unknown environments; however, they do not store the geotechnical characteristics requisite for environmental assessment, archaeology, construction engineering, or disaster response. The automotive industry is researching High Definition (HD) Maps, which contain more information and are currently being used by autonomous vehicles for ground truth localization, but they are static and primarily used for navigation in highly regulated infrastructure. Modern site characterization and HD mapping methods involve survey engineers working on-site followed by lengthy post processing. This research addresses the shortcomings for current world models and site characterization by introducing Site Model Geospatial System
This SAE Standard specifies a message set, and its data frames and data elements, for use by applications that use vehicle-to-everything (V2X) communications systems
This SAE Recommended Practice supersedes SAE J1930 MAR2017 and is technically equivalent to ISO 15031-2. This document is applicable to all light-duty gasoline and diesel passenger vehicles and trucks, and to heavy-duty gasoline vehicles. Specific applications of this document include diagnostic, service and repair manuals, bulletins and updates, training manuals, repair databases, underhood emission labels, and emission certification applications. This document should be used in conjunction with SAE J1930DA Digital Annexes, which contain all of the information previously contained within the SAE J1930 tables. These documents focus on diagnostic terms applicable to electrical/electronic systems, and therefore also contain related mechanical terms, definitions, abbreviations, and acronyms. Even though the use and appropriate updating of these documents is strongly encouraged, nothing in these documents should be construed as prohibiting the introduction of a term, abbreviation, or
The definitions and illustrations in this SAE Recommended Practice are intended to establish common nomenclature and terminology for automotive transmission one-way clutches
This specification covers a carbon steel in the form of wire supplied as coils, spools, or cut lengths (see 8.2
The following terminology has been generated by the ATA/IATA/SAE Commercial Aircraft Composite Repair Committee (CACRC) and provides terminology for design, fabrication, and repair of composite and bonded metal structures
This SAE Recommended Practice provides test methods and criteria for evaluating the internal cleanliness and air leakage for engine charge air coolers. This SAE Recommended Practice also provides nomenclature and terminology in common use for engine charge air coolers, related charge air cooling system components, and charge air cooling system operational performance parameters
This SAE Recommended Practice specifies graphic symbols for operator controls, gauges, tell-tales, indicators, instructions, and warning against risks in small craft and for engines and other equipment intended to be used in small craft
This SAE Aerospace Standard (AS) defines the nomenclature for surface finishes commonly used for sheet and strip in aerospace material specifications. It is applicable to steel and to iron, nickel, cobalt, and titanium base alloys
This SAE Standard characterizes grapple skidders and identifies the major components and parts most commonly associated therewith. Illustrations used herein are not intended to include all existing commercial machines or to be exactly descriptive of any particular machine. They have been included to facilitate application of this document
Even if an optimal design is produced in the mid-to-late stages of development, when the maturity of development is increasing, it is already difficult to accept the proposal between the organizations and functions. In case the optimal proposal is made with a small amount of information in the preceding stage, it will be helpful for mutual decision-making. In addition, if all members have a system and development environment that enables access and utilization of necessary data in a timely manner, it is possible to produce quick results through collaboration. To implement such a system and development environment, “digital modeling" of tangible and intangible assets will be essential and to implement an "integrated IT environment" that can access and utilize digital models. Until now, Hyundai Motor Company has not yet fully established a digital development environment that all researchers can simultaneously utilize during the concept development stage. To implement such systems and
The pursuit of maintaining a zero-sideslip angle has long driven the development of four-wheel-steering (4WS) technology, enhancing vehicle directional performance, as supported by extensive studies. However, strict adherence to this principle often leads to excessive understeer characteristics before tire saturation limits are reached, resulting in counter-intuitive and uncomfortable steering maneuvers during turns with variable speeds. This research delves into the phenomenon encountered when a 4WS-equipped vehicle enters a curved path while simultaneously decelerating, necessitating a reduction in steering input to adapt to the increasing road curvature. To address this challenge, this paper presents a novel method for dynamically regulating the steady-state yaw rate of 4WS vehicles. This regulation aims to decrease the vehicle's sideslip angle and provide controlled understeer within predetermined limits. As a result, the vehicle can maintain a zero-sideslip angle during turns with
To harmonize and define terminology associated with occupant protection for children for vehicle manufacturers and child restraint manufacturers in the United States and Canada
This SAE Aerospace Standard (AS) is intended for use by those involved in the design of aircraft, missile, or space systems, and their support equipment to define the various types of fastener torque
SAE J115 specifies the relevant ISO standards for application to safety labels for use on off-road work machines as defined in SAE J1116
Range anxiety is one of the major factors to be dealt with for increasing penetration of EVs in current Automotive market. The major reasons for range anxiety for customers are sparse charging infrastructure availability, limited range of Electric vehicles and range uncertainty due to diverse real-world usage conditions. The uncertainty in real world range can be reduced by increasing the correlation between the testing condition during vehicle development and real-world customer usage condition. This paper illustrates a more accurate test methodology development to derive the real-world range in electric vehicles with experimental validation and system level analysis. A test matrix is developed considering several variables influencing vehicle range like different routes, drive modes, Regeneration levels, customer drive behavior, time of drive, locations, ambient conditions etc. Based on the real-world customer usage inputs, the route type is divided into Core city, City, 2Lane
This SAE Recommended Practice identifies major components and parts peculiar to clam bunk skidders. Illustrations used here are not intended to include all existing machines or to be exactly descriptive of any particular machine. They have been provided to illustrate the principles to be used in applying this document
Honda knows what U.S. buyers like: crossovers. So it makes perfect sense that the company chose a crossover SUV configuration for its first “mainstream” U.S.-market EV, the 2024 Prologue. The company's not postulating about how many Prologues it might sell annually once its new EV, co-developed with GM, goes on sale in early 2024. But Honda sold more than 350,000 CR-V crossovers in 2022, which left little doubt Honda wasn't going to take any chances regarding the bodystyle for its first North American mass-market EV. The Prologue's smooth and rounded sheetmetal is pleasant but cautious (Honda calls it “neo-rugged”) - and like many current EVs from volume automakers such as Hyundai (Ioniq 5) and Volkswagen (ID.4), it's lowish-roof profile stretches the definition of “SUV,” or even crossover. At an overall height of 64.7 in. (1643 mm), the 2024 Prologue seems noticeably lower, for example, than an all-wheel-drive CR-V's height of 66.5 in. (1689 mm
TE Connectivity gains critical insights using Volume Graphics software throughout design, simulation and manufacturing. As impressive as interconnected digital-platform benefits are for traditional CAD/CAE/CAM disciplines, computed tomography (CT) data analysis for quality inspection has greatly expanded its reach and purpose within today's growing digital landscape. CT data-analysis software is making the central tools of design, simulation and manufacturing - normally used well upstream of it - even better in their roles. The establishment of Model-Based Definition (MBD) is increasingly guiding engineering beyond drawings and hybrid approaches. The move away from manual readings of data to MBD creates deeper and wider information threads throughout product development, from Product Manufacturing Information (PMI) files to machines and other programs
The objective of this glossary is to establish uniform definitions of parts and terminology for engine cooling systems. Components included are all those through which engine coolant is circulated: water pump, engine oil cooler, transmission and other coolant-oil coolers, charge air coolers, core engine, thermostat, radiator, external coolant tanks, and lines connecting them
This SAE Standard specifies symbols (i.e. conventional signs) for use on controls, indicators, and tell-tales applying to passenger cars, light and heavy commercial vehicles, and buses, to ensure identification and facilitate use. It also indicates the colors of possible optical tell-tales, which inform the driver of either correct operation or malfunctioning of the related devices
Figures 1 through 6 illustrate in simplified form some of the more common planetary gears, gearsets, and geartrain arrangements in order to establish applicable terminology. Figures 7 and 8 provide additional examples that use elements of those gear arrangements
Items per page:
50
1 – 50 of 2510