Browse Topic: Technical review

Items (7,570)
The automotive industry is facing unprecedented pressure to reduce costs without compromising on quality and performance, particularly in the design and manufacturing. This paper provides a technical review of the multifaceted challenges involved in achieving cost efficiency while maintaining financial viability, functional integrity, and market competitiveness. Financial viability stands as a primary obstacle in cost reduction projects. The demand for innovative products needs to be balanced with the need for affordable materials while maintaining structural integrity. Suppliers’ cost structures, raw material fluctuations, and production volumes must be considered on the way to obtain optimal costs. Functional aspects lead to another layer of complexity, once changes in design or materials should not compromise safety, durability, or performance. Rigorous testing and simulation tools are indispensable to validate changes in the manufacturing process. Marketing considerations are also
Oliveira Neto, Raimundo ArraisSouza, Camila Gomes PeçanhaBrito, Luis Roberto BonfimGuimarães, Georges Louis Nogueira
This AIR describes the current scientific and engineering principles of gas turbine lubricant performance testing per AS5780 and identifies gaps in our understanding of the technology to help the continuous improvement of this specification. Test methodologies under development will also be described for consideration during future revisions of AS5780
E-34 Propulsion Lubricants Committee
To address the issue of PID control for automotive vibration, this paper supplements and develops the evaluation of automotive vibration characteristics, and proposes a vibration response quantity for evaluating the energy dissipation characteristics of automotive vibration. A two-degree-of-freedom single wheel model for automotive vibration control is established, and the conventional vibration response variables for ride comfort evaluation and the energy consumption vibration response variables for energy dissipation characteristics evaluation are determined. This paper uses the Adaptive Differential Evolution (ADE) algorithm to tune the PID control parameters and introduces an adaptive mutation factor to improve the algorithm's adaptability. Several commonly used adaptive mutation factors are summarized in this paper, and their effects on algorithm improvement are compared. Design a simulation test plan for commonly used B-class road surfaces and a common speed of 60 km/h under
Jie, LiDou, LeiZhao, QiQiao, BinLiu, JiayongZhang, Wei
Symbolic code execution is a powerful cybersecurity testing approach that facilitates the systematic exploration of all paths within a program to uncover previously unknown cybersecurity vulnerabilities. This is achieved through a Satisfiability Modulo Theory (SMT) solver, which operates on symbolic values for program inputs instead of using their concrete counterparts. However, in complex code bases, this approach faces significant limitations, such as program path explosions or unavailable dependencies, which can result in conditions that the SMT solver cannot reason about. Consequently, SMT solvers are often considered as too costly to implement for automotive testing use cases and are rarely employed within this domain. In contrast, fuzz testing has recently gained traction in the automotive industry as an invaluable testing technique for identifying previously unknown vulnerabilities. Its initial setup is straightforward and typically yields useful findings. However, achieving
Vinzenz, NicoOka, Dennis Kengo
Recently, with the advancement of autonomous driving technology, the function of external lamps has been changed. Previously, the focus was on the visibility of drivers, but with the advancement of autonomous driving technology, the concept of autonomous driving systems has been developed. Accordingly, the trend of automotive lamp lighting systems has been developed in terms of design, e-HMI (exterior-human machine interface), It is developing in accordance with three major fields such as sensor connection. Therefore, this paper will cover the prior development of road content projection headlamps that enable e-HMI implementation to reflect these new trends. Since the technology is mass-produced and sold by several manufacturers, our company also needs to quickly develop and apply the technology in advance. Only four types of symbols are allowed in European law. Although it is still impossible for the symbols to be guided in the direction of progress, it is expected that they will be
Kim, Hyeong Seon
Autonomous driving technology is more and more important nowadays, it has been changing the living style of our society. As for autonomous driving planning and control, vehicle dynamics has strong nonlinearity and uncertainty, so vehicle dynamics and control is one of the most challenging parts. At present, many kinds of specific vehicle dynamics models have been proposed, this review attempts to give an overview of the state of the art of vehicle dynamics models for autonomous driving. Firstly, this review starts from the simple geometric model, vehicle kinematics model, dynamic bicycle model, double-track vehicle model and multi degree of freedom (DOF) dynamics model, and discusses the specific use of these classical models for autonomous driving state estimation, trajectory prediction, motion planning, motion control and so on. Secondly, data driven or AI based vehicle models have been reviewed, and their specific applications in automatic driving and their modeling and training
Jin, LinggeZhao, ShengxuanXu, Nan
Over the past decade, significant progress has been made in developing algorithms and improving hardware for automated driving. However, conducting research and deploying advanced algorithms on automated vehicles for testing and validation remains costly, especially for academia. This paper presents the efforts of our research team to integrate the newest version of the open-source Autoware software with the commercially available DataSpeed Drive-by-Wire (DBW) system, resulting in the creation of a versatile and robust automated vehicle research platform. Autoware, an open-source software stack based on the 2nd generation Robot Operating System (ROS2), has gained prominence in the automated vehicle research community for its comprehensive suite of perception, planning, and control modules. The DataSpeed DBW system directly communicates with the vehicle's CAN bus and provides precise vehicle control capabilities. However, there was no existing software package to make the ROS2-based
Guo, HengcongLi, JiangtaoSaravanan, Nithish KumarWishart, JeffreyZhao, Junfeng
The use of hydrogen in internal combustion engines is an effective approach to significantly support the reduction of CO2 emissions from the transportation sector using technically affordable solutions. The use of direct injection is the most promising approach to fully exploit hydrogen potential as a clean fuel, while preserving targets in terms of power density and emissions. In this frame, the development of an effective combustion system largely relies on the hydrogen-air mixture formation process, so to adequately control the charge stratification to mitigate pre-ignitions and knock and to minimize NOx formation. Hence, improving capabilities of designing a correct gas jet-air interaction is of paramount importance. In this paper the analysis of the evolution of a high-pressure gas jet produced by a single-hole prototype injector operated with different pressure ratios is presented. The experimental analysis is carried out using global momentum flux measurement with the support of
Postrioti, LucioMartino, ManuelFontanesi, StefanoBreda, SebastianoMagnani, Mauro
Considering the current trend towards the electrification of commercial vehicles, the development of Beam eAxle solutions has become necessary. The utilization of an electric drive unit in heavy-duty solid axle-based commercial vehicles presents unique and demanding challenges. These include the necessity for elevated peak and continuous torque while meeting packaging constraints, structural integrity requirements, and extended service life. One such solution was developed by BorgWarner to address these challenges. This paper offers a comprehensive overview of the design and development process undertaken for this Dual Motor Beam eAxle system. This includes the initial comparison of various eAxle solutions, the specifications of components selected for this design, and the initial results from dyno and vehicle development
Guo, ChengyunVan Maanen, KeithLiu, Xiaobing
To ensure adequate visibility without excessive glare, vehicle headlights are designed to use a specific source of illumination. The optical designs of headlights gather the luminous flux produced by the light source to produce a useful beam pattern that meets the relevant requirements and standards for vehicle forward lighting. With the advent of solid state, light emitting diode sources for general illumination, an increasing number of LED replacement headlight bulb products has emerged over the past decade. In most cases, these LED replacement bulbs are not permitted for legal use on public roadways, but some countries have begun to permit specific LED replacement bulbs to be used legally on the road for specific makes, models and production years of certain vehicles. If they can be demonstrated to produce a beam pattern that meets the photometric requirements for a legal headlight, they are permitted to be used legally for on-road use. In the present paper we present photometric
Bullough, John D.Skinner, Nicholas P.
The world is on a “take-make-waste,” linear-growth economic trajectory where products are bought, used, and then discarded in direct progression with little to no consideration for recycling or reuse. This unsustainable path now requires an urgent call to action for all sectors in the global society: circularity is a must to restore the health of the planet and people. However, carbon-rich textile waste could potentially become a next-generation feedstock, and the mobility sector has the capacity to mobilize ecologically minded designs, supply chains, financing mechanisms, consumer education, cross-sector activation, and more to capitalize on this “new source of carbon.” Activating textile circularity will be one of the biggest business opportunities to drive top- and bottom-line growth for the mobility industry. Textile Circularity and the Sustainability Model of New Mobility provides context and insights on why textiles—a term that not only includes plant-based and animal-based
Lee-Jeffs, AnnSafi, Joanna
After a severe lane change, a wind gust, or another disturbance, the driver might be unable to recover the intended motion. Even though this fact is known by any driver, the scientific investigation and testing on this phenomenon is just at its very beginning, as a literature review, focusing on SAE Mobilus® database, reveals. We have used different mathematical models of car and driver for the basic description of car motion after a disturbance. Theoretical topics such as nonlinear dynamics, bifurcations, and global stability analysis had to be tackled. Since accurate mathematical models of drivers are still unavailable, a couple of driving simulators have been used to assess human driving action. Classic unstable motions such as Hopf bifurcations were found. Such bifurcations seem almost disregarded by automotive engineers, but they are very well-known by mathematicians. Other classic unstable motions that have been found are “unstable limit cycles.” The driving simulator results
Mastinu, Giampiero R. M.Previati, GiorgioDella Rossa, FabioGobbi, MassimilianoFainello, Marco
In numerous industries such as aerospace and energy, components must perform under significant extreme environments. This imposes stringent requirements on the accuracy with which these components are manufactured and assembled. One such example is the positional tolerance of drilled holes for close clearance applications, as seen in the “EN3201:2008 Aerospace Series – Holes for metric fasteners” standard. In such applications, the drilled holes must be accurate to within ±0.1 mm. Traditionally, this required the use of Computerised Numerical Control (CNC) systems to achieve such tight tolerances. However, with the increasing popularity of robotic arms in machining applications, as well as their relatively lower cost compared to CNC systems, it becomes necessary to assess the ability of robotic arms to achieve such tolerances. This review paper discusses the sources of errors in robotic arm drilling and reviews the current techniques for improving its accuracy. The main sources of
Cho, Yun HangSawyer, DanielaBurkinshaw, ChristopherScraggs, Chris
A time domain analysis method of ride comfort and energy dissipation characteristics is proposed for automotive vibration proportional–integral–derivative (PID) control. A two-degrees-of-freedom single wheel model for automotive vibration control is established, and the conventional vibration response variables for ride comfort evaluation and the energy consumption vibration response variables for energy dissipation characteristics evaluation are determined, and the Routh stability criterion method was introduced to assess the impact of PID control on vehicle stability. The PID control parameters are tuned using the differential evolution algorithm, and to improve the algorithm’s adaptive ability, an adaptive operator is introduced, so that the mutation factor of differential evolution algorithm can change with the number of iterations. The PID control parameter optimization method presented in this article is versatile and can be used to optimize PID control parameters under different
Li, JieDou, LeiZhao, QiQiao, BinLiu, JiayongZhang, Wei
Automotive crash data analysis and reconstruction is vital for ensuring automotive safety. The objective of vehicle crash reconstruction is to determine the vehicle’s motion before, during, and after the crash, as well as the impact on occupants in terms of injuries. Simulation approaches, such as PC CrashTM, have been developed to understand pre-crash and post-crash vehicle motion, rather than the crash phase behavior. Over the past few decades, crash phase simulations have utilized vehicle finite element models. While multibody simulation tools are suitable for crash simulations, they often require detailed crash test data to accurately capture vehicle behavior, which is not always readily available. This paper proposes a solution to this limitation by incorporating crash test data from databases, such as NHTSA, Global NCAP, consumer rating reports, and videos, along with a multibody-based approach, to conduct crash phase simulations. In this study, multibody vehicle models were
Sharma, SanyamChawla, AnoopMukherjee, Sudipto
The advent of autonomous vehicles promises to revolutionize the transportation sector globally, and India, as one of the world's fastest-growing economies, stands at the forefront of this transformative technology. This paper presents a brief overview of the current state and potential implications of autonomous vehicles in the Indian context. With its densely populated cities, diverse traffic conditions, and complex road infrastructure, India presents unique challenges and opportunities for the deployment of autonomous vehicles. This technology has the potential to address critical issues such as road safety, congestion, and pollution while transforming the mobility experience for millions of people. However, several hurdles must be overcome to fully harness its benefits. The paper explores key considerations for the implementation of autonomous vehicles in India. These include adapting the technology to navigate chaotic traffic scenarios, addressing infrastructure limitations, and
Shetty, Sharan Harish
The transport sector in all domains like personal vehicles, public transport and logistics has seen a tremendous growth over the past decade, more so in the last 5 years. The main reasons for this rapid growth is the development of new energy storage systems in battery technology (Lithiumion, sodium ion, aluminum air etc.), hydrogen fuel cells, super capacitors etc. On the other hand there has been tremendous development in the motor drive technology with the availability of brushless dc motors (BLDC Motors), induction motors, Permanent magnet synchronous motors (PMSM, IPMSM). Each motor having its own special characteristics and usage suited for a very specific application in terms of torque and load bearing capacities. In this paper we describe a unique platform with twin motor drive system electric vehicle which is powered by an artificial intelligence (AI) enabled electronic module DuoPackR. The basic platform is described with the help of a bicycle which has two BLDC motors on the
Pratiwadibhayankaram, Ashwini Kumar KrishnaswamyK A, RakeshSangam, Manjunath
This paper discusses automotive electrical harnesses, emphasizing their applicability and considering crucial aspects such as reliability, safety, innovation, simulation, and manufacturing. This text proposes to explore an introduction and addresses the importance of ensuring the reliability of harnesses. Highlighting the Electrified vehicle development importance and the harness applicability in both high-voltage and low-voltage systems, as well as the need for safe practices during design. Featuring innovation in the area, mentioning the evolution of materials and technologies used in modern wiring harnesses. Simulation is presented as an essential tool in the development process, allowing performance analysis prior to physical production. Finally, manufacturing is discussed, highlighting the importance of efficient processes and quality control
Reis, B.Cella, H. DellaFerreira, M.Vaz, S.Cossolino, G.Montes, R.Ferreira, F.F.V.M.
As we stand on the evolution of a new era in urban development, the concept of smart cities emerges as an embodiment of innovation and progress. A smart city uses cutting-edge technologies to improve the quality, performance and interactivity of urban services, optimize resources, and foster sustainable and well-connected societies. A critical component within this paradigm is the domain of transportation, where the application of artificial intelligence is fundamentally transforming how we navigate our cities. In this paper, we conduct a comprehensive exploration of the evolving landscape of AI within the context of intelligent mobility and smart cities, with a specific focus on our contributions in this field. This investigation not only highlights the advances in this field but also focuses specifically on the significant contributions of Autonomous Mobility and Perception Lab (AMPL) to deploying AI in developing intelligent mobility solutions. As urban areas worldwide grapple with
Al-Kaff, Abdulla
SAE International announced in late June 2023 that it intended to standardize the Tesla-developed North American Charging Standard (NACS) EV charging connector for North America. SAE then created the J3400 NACS Task Force to expedite creation of the J3400 NACS Electric Vehicle Coupler standard
SAE's Automotive Engineering magazine is not immune to the constant beat of changes happening across the automotive industry. In case you're curious what that means, the byline and picture accompanying this editorial should provide the clues you need: it's time for a new editor-in-chief. We'll start with a short introduction. I've been a reporter for 30 years, and my history covering the automotive industry, especially EVs, effectively started with my first bit of on-location event coverage in 2006. I had recently started as the editor of AutoblogGreen, and a new EV startup named Tesla was about to unveil its first product
Blanco, Sebastian
In 2014, Airbus made history when it introduced a small metal bracket through additive manufacturing (AM) to secure an engine on one of its commercial jetliners. This milestone marked the beginning of an era of innovation in aerospace, pushing the boundaries of technology. The journey from that first AM experiment to today's transformative landscape in the aerospace and defense industries has been nothing short of remarkable. The capabilities of AM have redefined the sector, offering unprecedented efficiencies and reshaping how we understand and approach manufacturing. Aerospace and defense has emerged as a trailblazer in the adoption of AM. While aerospace and defense AM demand was negatively impacted during the COVID-19 pandemic, the global aerospace and defense additive manufacturing market is projected to grow from $3.73 billion in 2021 to $13.01 billion in 2028
The exponentially growing electrification market is driving demand for lithium-ion batteries (LIBs) with high performance. However, LIB thermal runaway events are one of the unresolved safety concerns. Thermal runaway of an individual LIB can cause a chain reaction of runaway events in nearby cells, or thermal propagation, potentially causing significant battery fires and explosions. Such a safety issue of LIBs raises a huge concern for a variety of applications including electric vehicles (EVs). With increasingly higher energy-density battery technologies being implemented in EVs to enable a longer driving mileage per charge, LIB safety enhancement is becoming critical for customers. This comprehensive review offers an encompassing overview of prevalent abuse conditions, the thermal event processes and mechanisms associated with LIBs, and various strategies for suppression, prevention, and mitigation. Importantly, the report presents a unique vantage point, amalgamating insights
Chang, Chi-HaoGorin, CraigZhu, BizhongBeaucarne, GuyJi, GuoYoshida, Shin
Traditional physical infrastructure increasingly relies upon software. Yet, 75% of software projects fail in budget by 46% and schedule by 82%. While other systems generally have a “responsible-in-charge” (RIC) professional, the implementation of a similar system of accountability in software is not settled. This is a major concern, as the consequences of software failure can be a matter of life-or-death. Further, there has been a 742% average annual increase in software supply chain attacks on increasingly used open-source software over the past three years, which can cost up to millions of dollars per incident. Developing the Role of the System Software Integrator to Mitigate Digital Infrastructure Vulnerabilities discusses the verification, validation, and uncertainty quantification needed to vet systems before implementation and the continued maintenance measures required over the lifespan of software-integrated assets. It also proposes a certified System Software Integrator role
Kemper, Bart
The purposeful integration of existing and emerging technologies into CM practice will enable collaboration with supporting systems and provide stakeholders access to authoritative and trusted data in a timely fashion at their desktop to help drive educated decision making. This lays to rest the misguided myth that CM and supporting systems operate at cross-purposes. What does it mean to have CM in a world of new initiatives and 2-week sprints (i.e., time-boxed work periods), multiple increments producing Minimum Viable Products (MVP) and synchronized with Model Based Systems Engineering (MBSE) while being digitally transformed? MBSE initiatives drive the jump from “2D” data to “3D” data, thereby becoming a Model-Centric practice. Products now enable technology to push the product lifecycle management process to new levels of efficiency and confidence. This mindset is evidenced by five major functions of CM, as discussed below, and described in EIA-649C
G-33 Configuration Management
Monel 400, a type of nickel alloy which is adopted in numerous engineering fields, such as high-temperature devices. Owing to its better strength and thermal diffusion, it can be difficult to machine with conventional methods. In order to avoid the disadvantages of conventional methods, various advanced material removal techniques have been developed. One of these is Wire Electro Discharge Machining (WEDM). This process is an evolution of the electrical discharge method. In the process of WEDM, difficult materials with intricate forms are usually machined. In this study, the performance of this method on Monel 400 has been analyzed. The three independent variables that are considered when it comes to analyzing the performance of this process are the pulse on, the applied current, and the pulse off. The experiments were performed using the design approach of Taguchi, which involves using an L27 orthogonal array. The single response analysis performed by Taguchi revealed that the process
Natarajan, ManikandanPasupuleti, ThejasreeKiruthika, JothiKumar, VD, PalanisamyPolanki, Vamsinath
This paper outlines the history and background of the NLGI (formerly known as the National Lubricating Grease Institute) lubricating grease specifications, GC-LB classification of Automotive Service Greases as well as details on the development of new requirements for their High-Performance Multiuse (HPM) grease certification program. The performance of commercial lubricating grease formulations through NLGI's Certification Mark using the GC-LB Classification system and the recently introduced HPM grease certification program will be discussed. These certification programs have provided an internationally recognized specification for lubricating grease and automotive manufacturers, users and consumers since 1989. Although originally conceived as a specification for greases for the re-lubrication of automotive chassis and wheel bearings, GC-LB is today recognized as a mark of quality for a variety of different applications. The main driving force to upgrade GC-LB was that six of the 12
Kaperick, JosephFish, Dr GarethCoe, ChuckCosgrove, BradleyTurner, DavidMackwood, WayneMistry, KuldeepChichester, ChadDudley, GaryMorris, DwaineBrandon, KeythKunselman, Michael
The introduction of endoscopy in surgical practice is one of the greatest success stories in the history of medicine, and there is no end in sight in terms of the development of minimally invasive surgical procedures and instruments. Advances in material sciences, imaging, sensors, and robotics are driving a need for new innovative approaches to manufacturing the next generation of surgical instruments
The trend in the automotive industry towards e-drive results in new challenges for the lubricants and fluids used. Due to the limited amount of industry standards, many characterization methods and processes for e- fluids have been developed by OEMs, the oil and additive industry and independent laboratories during the last years. In addition, national and international committees start to implement new test standards with defined precisions for this rapidly changing application. A combination of different laboratory tests to screen a fluid regarding specific attributes can be conducted. This can reduce the number of testing candidates significantly, before committing to more expensive and time-consuming engine or field trial tests. This paper gives a brief overview over the most used tests in the industry for these purposes
Gurski, JanPelz, RicoSchäfer, DirkKirchhoff, RouvenMüller, Dr. Gunther
An optically accessible hydrogen-fueled, heavy-duty engine was used to investigate the impact of mixture formation on the early flame kernel propagation and the resulting combustion cyclic variability. Direct injection from a centrally mounted medium-pressure outward-opening hollow-cone injector created a fuel- air mixture with a global equivalence ratio of 0.33. The engine was operated at 1200 RPM with dry air at an intake pressure and temperature of 1.0 bar and 305 K, respectively. The charge was ignited at three different locations using focused-laser ignition to allow for undisturbed flame evolution, and the fuel injection timing and injection pressure were varied to influence the mixture inhomogeneity. High-speed OH* chemiluminescence imaging through a piston-crown window allowed for tracking the flame evolution while fluorescence imaging of anisole seeded into the hydrogen fuel provided two-dimensional information on the mixture distribution around the ignition location just
Laichter, J.Kaiser, S. A.Rajasegar, R.Srna, A
After-treatment sensors are used in the ECU feedback control to calibrate the engine operating parameters. Due to their contact with exhaust gases, especially NOx sensors are prone to soot deposition with a consequent decay of their performance. Several phenomena occur at the same time leading to sensor contamination: thermophoresis, unburnt hydrocarbons condensation and eddy diffusion of submicron particles. Conversely, soot combustion and shear forces may act in reducing soot deposition. This study proposes a predictive 3D-CFD model for the analysis of the development of soot deposition layer on the sensor surfaces. Alongside with the implementation of deposit and removal mechanisms, the effects on both thermal properties and shape of the surfaces are taken in account. The latter leads to obtain a more accurate and complete modelling of the phenomenon influencing the sensor overall performance. The evolution of the fouling thickness is evaluated by means of the implementation of a
D'Orrico, FabrizioCicalese, GiuseppeBreda, SebastianoFontanesi, StefanoCozza, IvanTosi, SergioGopalakrishnan, Venkatesh
Accelerating rate calorimetry (ARC) has emerged as a powerful tool for evaluating the thermal behavior of Li-ion cells and identifying potential safety hazards. In this work, a new physical thermal model has been developed based on the first law of thermodynamics for analyzing heat and mass generated by Lithium-ion battery cells under thermal abuse conditions during EV-ARC tests. The analysis is based on the experimental data gathered from an ARC, including different temperatures and pressure inside a gas-tight canister located in the calorimeter chamber, as well as the gas composition at the end of the test. The energy balance of the battery cell includes: the energy released by the cell, the internal energy of the elements inside the canister, heat transfer between elements inside the canister, as well as the mass transfer between the cell and the gases inside the canister. The model allows obtaining the total energy released during thermal runaway for any kind of cylindric Li-ion
Martin, JaimeMonsalve-Serrano, JavierMicó, CarlosElkourchi, Imad
Ultrafine particles, in particular solid sub-100 nm particles pose high risks to human health due to their high lung deposition efficiency, translocation to all organs including the brain and their harmful chemical composition; due to dense traffic, the population in urban environments is exposed to high concentrations of those toxic air contaminants, despite these facts, they are still widely neglected. Therefore, the EU-Commission set up a program for clean and competitive solutions for different problem areas which are regarded to be hotspots of such particles. HORIZON AeroSolfd is an EU project, co-funded by Switzerland that will deliver affordable, adaptable, and sustainable retrofit solutions to reduce exhaust tailpipe emissions from petrol engines, brake emissions and pollution in semi-closed environments. VERT, a Swiss based international industry organization, has a long research history in the field of nanoparticle filtration and it is in charge of reducing tailpipe emissions
Rubino, LaurettaMayer, AndreasCzerwinski, JanLutz, ThomasLarsen, LarsEngelmann, DaniloLehmann, Martin
The current political push for e-mobility marked a major decline in the R&D interest to internal combustion engine (ICE). Following this global trend, Ford is committed to going 100% electric by 2030 for passenger cars and 2035 for light commercial vehicles. At the same time, many researchers admit that, due to many objective factors, vehicles powered by ICE will remain in operation for decades to come. Development of alternative carbon-neutral fuels can bring a renaissance in the ICE development as practical limitations of electric-only approach get exposed. Since a significant part of energy losses in the ICE comes from friction, engine tribology has been an important research topic over the past two decades and a significant progress in improving the engine efficiency was achieved. On the global scale, the improved efficiency of new engines built over the past decade is contributing to curbing the greenhouse gas emissions far more than all electrical vehicles in use, though the
Zhmud, BorisBasiri, DanielMorawitz, UrbanSchulz, Daniel
Direct drive motors have a long-standing history as a technology that has continually evolved and improved over several decades. Despite the perception that it has reached its limits, innovators such as ETEL continuously evolve and improve the performance and efficiency of their direct drive products
Over the past few years, you’ve likely seen collaborative robots (cobots) doing everything from stacking pallets in a warehouse to making fries at a fast-food chain. Today’s co-bots are strong enough to handle pay-loads as heavy as 55 lbs with precision and safe enough to operate side by side with human workers. While cobots continually learn to perform more complex tasks, such as configuring applications, the human machine interface (HMI) has become much simpler. Setup can be done in a short of time, and PC-like tablets with touchscreens and intuitive programming make the system easy for employees to learn
Toyota's luxury arm concurrently introduced the all-new, three-row 2024 Lexus TX and the long-awaited redesign of the rugged Lexus GX, also a '24 model. Both were met with enthusiasm at a reveal in Austin, Texas, over what Lexus is calling the new “unified spindle,” an evolution of the spindle grille that has been divisive since it appeared on the 2012 GS sedan. In a nifty trick, engineers have figured out how to include ADAS sensors in the grille without having asymmetrical blocks interrupt the bars. Dealers and more mainstream customers will be most interested in the TX, as Lexus Group Vice President Dejuan Ross said buyers have been clamoring for a new three-row SUV. And there's good reason: 70% of all full-size SUVs sold in America have a third row. For midsize SUVs, the number jumped from 6% to 10% from 2016 to 2022, according to J.D. Power
Clonts, Chris
Numerous researchers are committed to finding solutions to the path planning problem of intelligence-based vehicles. How to select the appropriate algorithm for path planning has always been the topic of scholars. To analyze the advantages of existing path planning algorithms, the intelligence-based vehicle path planning algorithms are classified into conventional path planning methods, intelligent path planning methods, and reinforcement learning (RL) path planning methods. The currently popular RL path planning techniques are classified into two categories: model based and model free, which are more suitable for complex unknown environments. Model-based learning contains a policy iterative method and value iterative method. Model-free learning contains a time-difference algorithm, Q-learning algorithm, state-action-reward-state-action (SARSA) algorithm, and Monte Carlo (MC) algorithm. Then, the path planning method based on deep RL is introduced based on the shortcomings of RL in
Hao, BingZhao, JianShuoWang, Qi
Precise vehicle state and the surrounding traffic information are essential for decision-making and dynamic control of intelligent connected vehicles. Tremendous research efforts have been devoted to developing state estimation techniques. This work investigates the research progress in this field over recent years. To be able to describe the state of multiple traffic elements uniformly, the concept of a vehicle neighborhood system is proposed to describe the system composed of vehicles and their surrounding traffic elements and to distinguish it from the traditional macroscopic traffic research field. In this work, the vehicle neighborhood system consists of three main traffic elements: the host vehicle, the preceding vehicle, and the road. Therefore, a review of state estimation methods for the vehicle neighborhood system is presented around the three traffic objects mentioned earlier. This article performs a comprehensive analysis of these approaches and depicts their strengths and
Wang, YanWei, HenglaiYang, LieHu, BinbinLv, Chen
Micromobility is often discussed in the context of minimizing traffic congestion and transportation pollution by encouraging people to travel shorter (i.e., typically urban) distances using bicycle or scooters instead of single-occupancy vehicles. It is also frequently championed as a solution to the “first-mile/last-mile” problem. If the demographics and intended users of micromobility vary largely by community, surely that means we must identify different reasons for using micromobility. Micromobility, User Input, and Standardization considers potential options for standardization in engineering and public policy, how real people are using micromobility, and the relevant barriers that come with that usage. It examines the history of existing technologies, compares various traffic laws, and highlights barriers to micromobility standardization—particularly in low-income communities of color. Lastly, it considers how engineers and legislators can use this information to effectively
Eastman, Brittany
In the scope of development or certification processes for the flight under known icing conditions, aircraft have to be tested in icing wind tunnels under relevant conditions. The documentation of these tests has to be performed at a high level of detail. The generated data is used to prove the functionality of the systems, to develop new systems and for scientific purposes, for example the development or validation of numerical tools for ice accretion simulation. One way of documenting the resulting ice geometry is the application of an optical 3D scanning or reconstruction method. This work investigates and reviews optical methods for three-dimensional reconstructions of objects and the application of these methods in ice accretion documentation with respect to their potential of time resolved measurement. Laboratory tests are performed for time-of flight reconstruction of ice geometries and the application of optical photogrammetry with and without multi-light approach. The results
Neubauer, ThomasKozomara, DavidPuffing, ReinhardTeufl, Luca
Cold soaked fuel frost (CSFF) is frost that forms on aircraft wing surfaces following a flight because of cold excess fuel remaining in integrated fuel tanks. Previous investigations by Zhang et al. (2021a) and Zhang et al. (2021b) have focused on experimental measurements and correlation development for frost observed using a small frost wind tunnel employing a thermo-electric cooler to impose a surface temperature for a range of environmental conditions. To model the CSFF approach in more detail, an experimental facility was developed and described by McClain et al. (2020) using a thermal model of an integrated wing fuel tank placed inside of a climatic chamber. In this paper, experimental measurements of CSFF are presented using two aluminum wing skins. One of the skins was created using an aluminum rib structure, and the other skin was created without the rib. An automated, photogrammetric approach was used to characterize the roughness evolution on each surface when exposed to a
McClain, StephenO'Neal, DennisForslund, NicholasAhmed, Salah Uddin
The purpose of this paper to is to review the methodology applied by Collins Aerospace to develop, test and qualify a more robust surface ply rubber compound that has demonstrable improvements in durability and performance at sub-freezing temperatures. Using in-service products as a reference, pneumatic deicers in use on regional turboprop applications were selected as a basis for operational characteristics and observed failure modes. Custom test campaigns were developed by Collins to comparatively evaluate key characteristics of the surface ply material including low temperature elasticity, erosion durability, and fluid susceptibility. Collins’ proprietary engineered rubber formulations were individually evaluated and built into fully functional test deicers for component level testing to DO-160G environmental exposure, comparative ice shed performance in Collins’ Icing Wind Tunnel and erosion in Collins’ Rain Erosion Silo
Taylor, AndrewSlane, CaseyHu, JinBotura, Galdemir
Research institutes and companies are currently working on 3D numerical icing tools for the prediction of ice shapes on an international level. Due to the highly complex flow situation, the prediction of ice shapes on three-dimensional surfaces represents a challenge. An essential component for the development and subsequent validation of 3D ice accretion codes are detailed experimental data from ice shapes accreted on relevant geometries, like wings of a passenger aircraft for example. As part of the Republic of Austria funded research project JOICE, a mockup of a wingtip, based on the National Aeronautics and Space Administration common research model CRM65 was designed and manufactured. For further detailed investigation of electro-thermal de-icing systems, various heaters and thermocouples were included. The mockup was investigated in the Icing Wind Tunnel of Rail Tec Arsenal in Vienna, Austria under various Appendix C and Appendix O icing conditions with and without activated
Puffing, ReinhardNeubauer, ThomasMoser, RichardHassler, WolfgangSchweighart, SimonFerschitz, HermannDiebald, StefanBreitfuss, WolfgangKozomara, David
The paper describes a tools’ suite able of analyzing numerically 3D ice-accretion problems of aeronautical interest. The methodology consists of linking different modules each of them performing a specific function inside the ice-simulation chain. It has been specifically designed from the beginning with multi-step capability in mind. Such a feature plays a key role when studying the dynamic evolution of the icing process. Indeed, the latter has the character of a multi-physic and time-dependent phenomenon which foresees a strong interaction of the air- and water fields with the wall thermodynamics. Our multi-layer approach assumes that the physical problem can be discretized by a series of pseudo-steady conditions. The simulation process starts with the automatic generation of a Cartesian three-dimensional mesh which represents the input for the immersed boundary (IB) RANS solver. Once obtained, the air-phase is used by the Eulerian tool to solve the transport of the water-phase on
de Rosa, DonatoCapizzano, FrancescoCinquegrana, Davide
Items per page:
1 – 50 of 7570