Browse Topic: Air conditioning

Items (1,310)
ABSTRACT Based on the foundation of thermal management system developed by Rocky Research and working closely with TARDEC personnel, this paper addresses design, development, and testing of two delivered environmental control prototypes to TARDEC. The delivered prototypes are electrically driven vapor compression systems enhanced with Rocky Research vector drive for speed control, use of Pulsing Thermal Expansion Valve (PTXV) for precise refrigerant control, and power electronic package capable of running efficiently from both AC and DC power sources seamlessly. These prototypes were fully tested at different ambient temperature conditions at Rocky Research environmental chamber and their performance were logged and documented. The cooling capacity was measured to be in range of 6,000 to 12,000 Btu/hr and the Coefficient of Performance (COP) was measured to be above 1.5 at high ambient temperature conditions. This reflects close to 50% improvement in efficiency, when compared to
Khalili, KavehSpangler, ChrisSchultz, Andrew
ABSTRACT This paper describes a work in progress on the development of general, Open Architecture multi-resolution software for rapid prototyping and analysis of complex systems using a Co-simulation approach. Although the approach can be used for rapid analysis of a wide class of complex physical systems, the current focus of this work is on the modeling of the engine cooling system in the Ford Escape Hybrid SUV vehicle. The paper discusses two aspects of this work: development of the co-simulation environment, development of models of the cooling system components with focus on the A/C system using the R134a refrigerant. The major component models are based on dimensional reduction of the 3D Navier-Stokes equations. The resulting 1D equations are subsequently partitioned along the axial direction resulting in systems of 0D non-linear ordinary differential equations. The equations are then solved using a very efficient approach using Chebyshev polynomials. We also present preliminary
Malosse, Jean-JacquesPindera, Maciej Z.Sun, YuzhiVosen, Steven R.
ABSTRACT A coupled thermal and computational fluid dynamics (CFD) full-vehicle model of a protected combat ground vehicle was developed and validated against measured test data. The measurement dataset was collected under thermally extreme conditions. Air temperatures were sampled inside the crew compartment of the vehicle under tactical idle operating conditions with space heaters substituted for on-board electronics. The results generated from the coupled thermal model correlated with the measured test data with an average absolute error of less than 2 °F for both simulated-electronics on and off conditions. The model was used to analyze thermal sensitivity to armor, insulation, and other factors affecting the efficiency of the HVAC system
Pryor, JoshDitty, AaronMao, JuliaRynes, PeteSmith, Rob
In the context of Battery Electric Vehicles (BEVs), airborne noise from Heating, Ventilation and Air Conditioning (HVAC) ducts becomes a prominent concern in the view of passenger comfort. The automotive industry traditionally leverages Computational Fluid Dynamic (CFD) simulation to refine HVAC duct design and physical testing to validate acoustic performance. Optimization of the duct geometry using CFD simulation is a time-consuming process as various design configurations of the duct have to be studied for best acoustic performance. To address this issue effectively, the proposed a novel methodology uses Gaussian Process Regression (GPR) to minimize duct noise. Present solution demonstrates the power of machine learning (ML) algorithms in selecting the optimal duct configuration to minimize noise. Utilizing both real test data and CFD results, GPR achieves remarkable accuracy in design validation, especially for HVAC air ducts. The adoption of GPR-based ML algorithms significantly
Althi, Tirupathi RaoManuel, NaveenK, Manu
This SAE Aerospace Recommended Practice (ARP) contains guidelines and recommendations for subsonic airplane air conditioning systems and components, including requirements, design philosophy, testing, and ambient conditions. The airplane air conditioning system comprises that arrangement of equipment, controls, and indicators that supply and distribute air to the occupied compartments for ventilation, pressurization, and temperature and moisture control. The principal features of the system are: a A supply of outside air with independent control valve(s). b A means for heating. c A means for cooling (air or vapor cycle units and heat exchangers). d A means for removing excess moisture from the air supply. e A ventilation subsystem. f A temperature control subsystem. g A pressure control subsystem. Other system components for treating cabin air, such as filtration and humidification, are included, as are the ancillary functions of equipment cooling and cargo compartment conditioning
AC-9 Aircraft Environmental Systems Committee
This ARP provides the definition of terms commonly used in aircraft environmental control system (ECS) design and analysis. Many of the terms may be used as guidelines for establishing standard ECS nomenclature. Some general thermodynamic terms are included that are frequently used in ECS analysis, but this document is not meant to be an inclusive list of such terms
AC-9 Aircraft Environmental Systems Committee
This Aerospace Information Report (AIR) outlines the design considerations and criteria for the control of water carryover from the environmental control system (ECS) with respect to causes and indicated corrective or preventative action. In addition, condensation on structure will be reviewed with possible preventative action described
AC-9 Aircraft Environmental Systems Committee
Energy efficiency in both internal combustion engine (ICE) and electric vehicles (EV) is a strategic advantage of automotive companies. It provides a better user experience that emanates amongst others from the reduction in operation expenses, particularly critical for fleets, and the increase in range. This is especially important in EVs where customers may experience range anxiety. The energetical impact of using the air conditioning system in vehicles is not negligible with power consumptions in the range of kilowatts, even with a stopped vehicle. This becomes particularly important in areas with high temperature and humidity levels where the usage of the air conditioning systems becomes safety factor. In such areas, drivers are effectively forced to use the air conditioning system continuously. Hence, the air conditioning system becomes an ideal choice to deploy control strategies for optimized energy usage. In this paper, we propose and implement a control strategy that allows a
Jaybhay, SambhajiKapoor, SangeetKulkarni, Shridhar DilipraoPalacio Torralba, JavierLocks, Olaf
In automotive air conditioning systems, compressor is used to convert low pressure low temperature refrigerant into high pressure high temperature refrigerant. Various types of compressors like swash plate, rotary vane, scroll etc. are widely used in the automotive industry for air conditioning applications. In rotary vane compressors, thermal protector is used as a safety device, designed to prevent the compressor from overheating during refrigerant compression process. When the discharge temperature exceeds the preset limit of thermal protector, the thermal protector will activate and stop the electrical supply to compressor clutch to stop the compressor operation thereby preventing potential damage to air conditioning system, engine, and other nearby parts of the vehicle. This technical paper explores the various real-world scenarios for a hot country like India, which may result into higher discharge temperatures of compressor resulting into activation of thermal protector. The
Mittal, SachinSaha, AniketKumar, MukeshUmbarkar, Shriganesh
Electric Vehicles (EVs) have rapidly grown as a means for clean mobility, as they zero down tail pipe emission of greenhouse gases. Additionally, greenhouse gases such as Hydro-Fluoro-Carbon (HFCs) based refrigerants used in Mobile Air-Conditioning (MAC) are under global scrutiny for their high Global Warming Potential (GWP). To prevent earth environment to pass the climate tipping point that will be irreversible within human capacity, actions such as rapid phase down of high GWP rated HFCs under Kigali Amendment to Montreal Protocol are enacted. India being amongst signatory nations is now working to fast track phase-down use of high GWP refrigerant and transit to low GWP refrigerant options. Nearly half of national HFCs use and emissions are for manufacture and service MAC. Vehicle OEMs supplying to markets in developing countries (e.g. European nation and non-Article 5 Parties) have already phased out HFC-134a (GWP=1400) through alternate refrigerant solutions. The work presented
Maurya, AnuragVenu, SantoshKapoor, SangeetKhan, Farhan
The proposed smart, efficient eco-cooling strategy leverages the AC system's efficiency sensitivity to the vehicle speed and the thermal storage of the cabin to coordinate the AC operation with the vehicle speed profile by actively shifting the AC thermal load toward the more efficient region at higher vehicle speeds. An investigation is now being conducted on vehicle cabin climate control systems to lower energy consumption and enhance battery electric vehicle range when in pure electric mode. OEMs of electric vehicles are always searching for novel concepts that will extend the driving range of their vehicles. Basically, an air conditioning system needs high-voltage power from high-voltage battery packs to keep the interior of the cabin in a comfortable temperature range during the summer. In order to meet these demands, the AC system in electric vehicles becomes an additional power consumer. This smart ECO AC system consists of the importance and impact of the various components of
Agalawe, KIRAN R.Nagarhalli, Prasanna VHAJGUDE, NIKHIL
Over the past few decades, there has been a notable increase in stakeholder’s attention on Earth's climate. The automotive industry, being a major contributor to this phenomenon, has been endeavoring to mitigate its impact through various measures. These efforts include reducing emissions in existing internal combustion engine (ICE) vehicles and promoting electric vehicles (EVs) as a feasible alternative for consumers. Despite these initiatives, there remains a persistent challenge in improving the fuel economy and driving range of vehicles. India, located along the Tropic of Cancer, experiences both tropical and subtropical climates. As a result, a substantial portion of the total heat absorbed is from solar radiation. The higher heat load necessitates extensive use of air conditioning (AC) systems, which significantly contributes to the overall power consumption of vehicles. Various measures are being implemented to mitigate this heat load and enhance the efficiency of AC operations
Kumar, SunnyVenu, SantoshRaj, ShivamKandekar, Ambadas
In today's fast-paced lifestyle, people spend a maximum amount of time for traveling, leading to a heightened demand for thermal comfort. Automotive HVAC play a crucial role in providing conditioned air to ensure comfort while traveling. Evaluating HVAC systems performance including delivery systems, heat exchanger efficiency, air thermal mixing zones, and temperature distribution are essential to maintain fuel economy and modern vehicle styling. However, accurately predicting cooling/heating performance using CFD simulations poses challenges due to the complex nature of heat exchanger modeling, which demands substantial computational resources and time. This paper presents the development of CFD modeling capabilities for predicting temperature distribution at duct outlet grills for defrost mode. Additionally, it assesses heater performance under maximum hot conditions. STAR-CCM+ software is employed to model the entire system, with the heater and evaporator core represented as porous
Ahmad, TaufeeqParayil, PaulsonSharma, NishantKame, ShubhamJaiswal, AnkitGoel, Arunkumar
Today, almost all passenger vehicles are equipped with Mobile Air Conditioning (MAC) systems to provide thermal comfort to occupants. To enhance cabin cooling down rate, two approaches are possible viz. increasing the MAC system capacity or reducing heat ingress into the vehicle cabin. The first approach is likely to have a negative impact on energy efficiency. The latter approach considers the deployment of alternate passive cabin cooling technologies. Among these, the deployment of uniquely developed coatings on metal, plastic and glass surfaces of the cabin is one option. The assessment of such coatings is usually done only at severe ambient conditions (>40°C), which may not be sufficient. These coatings need to be validated across all climatic seasons of the year, for assessing their effectiveness on passenger thermal comfort. The current work along with simulation studies, takes into account additional parameters such as the ‘feeling of hotness’ when one enters a hot-soaked cabin
Deshmukh, GaneshKulkarni, Shridhar DilipraoVarma, MohitJaybhay, SambhajiKapoor, SangeetTilekar, Pravin
Climate across India varies from extreme Cold to extreme hot. As an objective to improve comfort to drivers during summer, it is mandate by Indian Government to introduce Air Conditioning in Trucks from June 2025. Air Conditioning system includes Evaporator, compressor, Condenser and expansion units. Condenser needs continuous air flow to reject the absorbed heat from driver cabin to surrounding air. This is possible by directing air through condenser by an external fan. For this condenser is remotely mounted with an electric driven fan or directly to the radiator-fan system. In this paper a case study is presented where Cooling system of a Non AC Intermediate Commercial Truck is modified for Air Conditioning application. Condenser is mounted on the radiator and the additional heat load is managed by a minor change in the system. Fan is operated based on coolant temperature and with additional controls for Air Conditioning. Simulations are done in a Thermal management software “KULI
Kiran, NalavadathM S, Vignesh
The purpose of air conditioning (AC) duct packing is multifaceted, serving to prevent condensation, eliminate rattle noise, and provide thermal insulation. A critical aspect of duct packing is its adhesive quality, which is essential for maintaining the longevity and effectiveness of the packing's functions. Indeed, the challenge of achieving adequate adhesivity on AC ducting parts is significant due to the harsh operating conditions to which these components are subjected. The high temperatures and presence of condensation within the AC system can severely compromise the adhesive's ability to maintain a strong bond. Moreover, the materials used for these parts, such as HDPE, often have low surface energy, which further hinders the formation of a durable adhesive bond. The failure of the adhesive under these conditions can lead to delamination of the duct packing, which can result in customer inconvenience due to rattling noises, potential electrical failures if condensed water
M, Amala RajeshSonkar, SurabhiKumar, Mukesh
SAE J3291 covers hoses and coupled hose assemblies intended for containing and circulating lubricant, liquid, and gaseous refrigerant in automotive air-conditioning systems. This recommended practice will be used to establish requirements for the validation of hoses, hose assemblies, or nonmetallic line assemblies with any new refrigerant or refrigerant blend being considered for use in automotive air-conditioning systems. The new refrigerants and blends covered by this document do not include current refrigerants R134a, R1234yf, and R152a. This document does not cover previously used refrigerant R12 nor refrigerants used in transcritical systems, such as R744. It is the system manufacturer’s responsibility to ensure that adequate compatibility testing is completed with new refrigerants, blends, and lubricant combinations together with intended hose materials. The recommended tests include, but are not limited to, volume swell, delamination, and rapid decompression. These tests are not
Interior Climate Control MAC Supplier Committee
While cooling comfort is important in city buses compared to other vehicles, it is also difficult to keep the cooling performance at a high level. Roof AC units used in commercial vehicles may vary in performance depending on many factors. Therefore, while the design works are in progress, there are some points to be considered while the units are in the packaging phase. These points are that the air used for condenser cooling in the air conditioner suction zone is at low temperature with high flow rate. In this study, it is aimed that the air conditioner and battery cooling unit placed on the roof of a bus developed by ANADOLU ISUZU are not adversely affected by each other. For this reason, in the related study, design and analysis studies were carried out to reduce the negative effects of the hot air coming out of the battery thermal management system (BTMS) in the cooling circuit when the air conditioner is activated. The aim of the study is to ensure that the air-conditioning unit
Küçükbayram, Hamdi
The structure-, fluid- and air-borne excitation generated by heating, ventilation and air conditioning (HVAC) compressors can lead to annoying noise and low frequency vibrations in the passenger compartment. These noise and vibration phenomena are of great interest to ensure a high passenger comfort of electric vehicles (EV). This publication describes the development of a numerical finite element (FE) model of the HVAC system and the simulation results of structure-borne sound transmission from the compressor via the HVAC hoses to the vehicle body in a frequency range up to 1 kHz. The simulation results were validated with measurements. An existing automotive HVAC system was fully replicated in the laboratory. Vibration levels were measured on the compressor and on the car body side of the hoses under different operational conditions. Additional measurements were carried out using external excitation of the compressor in order to distinguish between structure- and fluid-borne
Buchegger, BlasiusSonnberger, PiusBöhler, ElmarNijman, EugeneRejlek, JanBillermann, RobertKrüger, Yannik
During design development phases, automotive components undergo a strict validation process aiming to demonstrate requested levels of performance and durability. In some cases, specific developments encounter a major blocking point : decoupling systems responsible for optimal acoustic comfort performances. On the one hand, damping rubbers need to be soft to comply with noise, vibration & harshness criteria. However, softness would provoke such high amplitudes during vibration endurance tests that components would suffer from failures. On the other hand, stiffer rubbers, designed for durability purposes, would fail to meet noise compliance. The rubber design development goes through a double-faced dilemma : design with acceptable trade-off between NVH and durability, and efficient ways to develop compliant designs. This paper illustrates two case studies where different methodologies are applied to validate decoupling systems from both acoustic and reliability perspectives. The goal was
Bonato, MarcoBennouna, SaadRavineala, Tudor
In an ever-transforming sector such as that of private road transport, major changes in the propulsion systems entail a change in the perception of the noise sources and the annoyance they cause. As compared to the scenario encountered in vehicles equipped with an internal combustion engine (ICE), in electrically propelled vehicles the heating, ventilation, and air conditioning (HVAC) system represents a more prominent source of noise affecting a car’s passenger cabin. By virtue of the quick turnaround, steady state Reynolds-averaged Navier Stokes (RANS)- based noise source models are a handy tool to predict the acoustic power generated by passenger car HVAC blowers. The study shows that the most eminent noise source type is the dipole source associated with fluctuating pressures on solid surfaces. A noise map is generated from the noise source models data, giving indications of how changes in operating conditions affect the acoustic output of the machine throughout its operating range
Pietroniro, Asuka GabrieleKabral, RaimoHuang, ZhongjieBackman, JoakimKnutsson, MagnusAbom, Mats
The difficulties of testing a bluff automotive body of sufficient scale to match the on-road vehicle Reynolds number in a closed wall wind tunnel has led to many approaches being taken to adjust the resulting data for the inherent interference effects. But it has been impractical if not impossible to experimentally analyze the effects that are occurring on and around the vehicle when these blockage interferences are taking place. The present study is an extension of earlier work by the author and similarly to that study uses the CFD (computational fluid dynamics) analysis of several bodies of differing configurations to examine the interference phenomena in solid wall wind tunnels and the effects that they have on the pressures, forces and force increments experienced by the vehicle model. This is accomplished by executing a series of CFD configurations with varying sized cross sections from 0.2% to 16% blockage enabling an approximation of free air conditions as a reference. The
Gleason, MarkRiegel, Eugen
The discussed invention is centered on the evaporative cooling of a vehicle cabin, introducing a novel concept of humidity control. Unlike conventional Air Conditioning (AC) systems that operate on the Vapor Compression Refrigeration Cycle (VCRC), which tend to be costly and contribute to higher fuel consumption due to the engine-driven compressor in automobiles, there is currently no other Original Equipment Manufacturer (OEM) fitted cabin cooling option available to address this issue. This paper introduces the idea of a humidity-controlled evaporative cooler. The objective of humidity control is achieved through a controller unit that receives feedback from a humidity sensor, subsequently regulating the operation of the water pump. The ambient air is passed through a humidified honeycomb pad, cooling through the principle of evaporation. To prevent any leftover water droplets from entering the cabin, a polyester nonwoven filter has been integrated into the system. This invention not
Dube, DevashishUpkare, Piyush Pradip
Rubber isolators are widely used under random vibrations. In order to predict their fatigue life, a study on the fatigue analysis methodology for rubber isolators is carried out in this paper. Firstly, taking a mount used for isolating air conditioning compressor vibrations as studying example, accelerations versus time of rubber isolator at both sides are acquired for a car under different running conditions. The acceleration in time domain is transformed to frequency domain using the Fourier transform, and the acceleration power spectral density (PSD) is the obtained. Using the PSD as input, fatigue test is carried for the rubber isolator in different temperature and constant humidity conditions. A finite element model of the rubber isolator using ABAQUS is established for estimating fatigue life, and model validity is verified through static characteristic testing. Dynamic responses of the rubber isolator at frequency domain are calculated if a unit load is applied. The estimated
Yao, QishuiLi, MinZhang, LichengYue, ZaiqinShangguan, Wen-Bin
To reduce the heating energy consumption of electric vehicles in winter, a switching control strategy for multiple heating modes formed by three heat sources, including air, motor waste heat, and positive temperature coefficient (PTC) heaters, is designed. Firstly, an integrated thermal management system (ITMS) simulation model for the heat pump air conditioning system, battery thermal management system, and motor thermal management system is established based on the AMESim software. Secondly, the influence of ambient temperature and motor outlet coolant temperature on the heating performance of three cabin heating modes is studied. Specifically, the three cabin heating modes include the pure motor waste heat source heat pump mode, the pure air-source heat pump mode, and the dual heat source heat pump mode with waste heat source and air source. Based on the analysis results, the opening and closing strategies for the three cabin heating modes are discussed. The optimum mode of using
Zhang, Feng-TingZhang, Zai-ChengLiu, XiaoangShangguan, Wen-BinHuang, YuLi, Guoqiang
Given the growing interest in improving the efficiency of the bus fleet in public transportation systems, this paper presents an analysis of the energy consumption of a battery electric bus. During the experimental campaign, a battery electric bus was loaded using sand payloads to simulate the passenger load on board and followed another bus during regular service. Data related to the energy consumed by various bus utilities were published on the vehicle’s CAN network using the FMS standard and sampled at a frequency of 1 Hz. The collected experimental data were initially analyzed on a daily basis and then on a per-route basis. The results reveal the breakdown of energy consumption among various utilities over the course of each day of the experiment, highlighting those responsible for the highest energy consumption. Subsequently, the relationship between the energy consumption of the traction motor and the climate control system was investigated concerning environmental parameters
Belloni, MattiaTarsitano, DavideSabbioni, Edoardo
The significance of thermal management performance in electric vehicles (EVs) has grown considerably, leading to increased complexity in thermal systems and a rapid rise in safety and quality-related concerns. The present real-vehicle-based development methods encounter several constraints in their approach when dealing with highly complex systems. Huge number of verification and validation work To overcome these limitations and enhance the thermal system development process, a novel virtual development environment established using the XiLS (X in the Loop Simulation) methodology. This XiLS methodology basically based on real-time coupling between physical thermal system hardware and analytical models for the other systems of vehicle. To control vehicle model and thermal system, various options were realized through hardware, software and model for VCU (Vehicle control unit) and TMS (Thermal management system) control unit. With XiLS evaluation environment as the foundation
Lim, TaewoongBaek, JunhoDongmyeong, LeeJeon, Jee HwanLee, HyeonseobPark, JunhyeongMyeong, HanseungKim, MyeongwooChoi, Seockhwan
Per - and polyfluoroalkyl substances – known as PFAS are man-made chemicals that do not occur naturally. PFAS are widely used, long lasting chemicals, components of which break down very slowly over time. Scientific studies have shown that exposure to some PFAS in the environment may be linked to harmful health effects in humans and animals. Because of their widespread use and their persistence in the environment, many PFAS are found in human and animals’ blood all over the world and are present at low levels in a variety of food products and in the environment. PFAS are found in water, air, fish, and soil at locations across the nation and the globe. Both refrigerants (HFC-134a & HFO-1234yf) that are currently used in mobile air conditioning systems (MACS) create PFAS. Hence, various countries are looking into banning chemicals that create PFAS. Natural refrigerants are being proposed as alternative refrigerants as they do not create PFAS. Hence, Propane (R290) and Carbon-Dioxide
Mathur, Gursaran
As regulations on exhaust emissions of automobiles are tightened in each country, the paradigm of the automobile industry is rapidly changing from internal combustion engine vehicles to electric vehicles, and consumers' interest in electric vehicles and sales volume are soaring. However, it is very inconvenient for consumers that electric vehicles take a considerable amount of time to charge compared to internal combustion engines, which can be refueled within minutes at gas stations. Therefore, shorter charging times are bringing electric vehicles to an inconvenience. It is the most important part in the development. The factors that determine the charging time of the electric vehicle include the capacity of the charger, the characteristics of the battery, Although many aspects such as charging control strategy are included, battery thermal management is one of the most influential factors in determining charging speed. In the case of an electric vehicle that can be charged at high
Jeong, Seong-Bin
The existing FCEV have been developed with only a few vehicle models. With the diversification of both passenger and commercial FCEV lineups, as well as the increasing demand for vehicle trailer towing, there is a growing need for high-capacity fuel cell stacks to be applied in vehicles. However, at the current level, there are limitations and issues that arise, such as insufficient power output and reduced driving speed. As a results, the importance of thermal energy management has been increasing along with the increase in required power. Traditional cooling performance enhancement methods have mainly focused on developing increased hardware specifications, but even this approach has reached its limitation due to package, cost and weight problem. Therefore, it is essential to develop a new cooling system to solve the increases in heat dissipation. This study aims to develop an evaporative cooling system using water as a by-product of the stacks, and to identify the effects of
PARK, Ui JoonKwon, Soon BeomChoi, Kyung JunLee, Gil WooOh, Dong Seok
In the automotive industry, thermal management plays a very important role to solve the problems of energy saving and emission. The under hood thermal management is one of the critical aspects in vehicle thermal management since it caters to critical aspects of engine cooling, charge air cooling, air conditioning and turbocharger cooling. The appropriate thermal management of these critical components is necessary for ensuring the appropriate performance by the vehicle. Hence, under-hood thermal management is the core of the integrated vehicle thermal management. In the thermal management analysis approaches, the numerical simulation is widely adopted as an important approach. Hence, in this paper a model is developed in MATLAB to handle 1D parametric analysis of the cooling system, while reducing the testing time and resources taken for the product development. The developed model can be used to evaluate multiple aggregate options for CAC, Radiator, Engine, Fan etc. The model predicts
P V, NavaneethPrasad, Suryanarayana A NML, Sankar
The objective of this paper is to determine and design an optimized thermal management system for a solar electric four-wheeler while considering system influence. The major systems that will be analyzed and optimized include the HVAC, solar system, and battery. The HVAC system imposes a challenge to the designers to fulfill the passenger’s comfort and to operate it efficiently under a wide range of external loads from solar radiation, ambient temperature & and humidity, human metabolic activity, and other loads like the propulsion system temperature on the cabin. From the literature, it is found that the air conditioning system reduces on average 14% of the total battery capacity whereas the heating system reduces it by 18% [1], which makes the HVAC system design a crucial aspect to consider for the system influence. The battery car voltage changes significantly to meet the power demand and because of this, the battery system produces a large amount of heat while discharging which
Karthikeyan, Vikram RajGumma, Muralidhar
Climate change and global warming are one of the major challenges faced by the world today. A significant number of Indian cities rank among the most polluted globally, with vehicular emissions being the primary contributor. To address this issue, the Government of India is actively advocating for the adoption of zero-emission vehicles such as electric vehicles through policies and initiatives like FAME II [1], PMP and the National Mission for Transformative Mobility and Storage. The acceptance of electric vehicles is growing in the Indian market seeing more than 200% increase in sales in the year 2022 compared to 2021 with a large share of 2-wheelers, 3-wheelers and compact cars getting electrified. Further adoption of electrification on a much larger scale currently faces the major challenge of high overall vehicle cost compared to conventional vehicles, with the major contribution coming from the HV battery which is the costliest system on the electric vehicles. An electric vehicle
Emran, AshrafPawar, BhushanChavan, SagarHemkemeyer, DavidSharma, VijayGarg, ShivamFranke, Kai
In developing nations, most passenger vehicles are equipped with mobile air conditioning (MAC) systems that work on Hydro Fluoro Carbons (HFC) based refrigerants. These refrigerants have a high global warming potential (GWP) and hence adversely affect the environment. According to the Kigali amendment to Montreal Protocol, Article-5 Group-2 countries including India must start phasing down HFCs from 2028 and replace them with low Global Warming Potential (GWP) refrigerants. One such class of low GWP refrigerant is Hydro Fluoro Olefins (HFO) In order to replace HFCs with HFOs in existing MAC systems, the various system performance parameters with the new refrigerant are required to be evaluated. Performance evaluation of MAC system is rendered quicker and cost-effective by deploying a digital simulation tool. There is good correlation and confidence established for MAC performance prediction with HFCs through 1D CAE. Further, to enable AC performance simulation with drop-in refrigerant
Kulkarni, ShridharShah, GeetJaybhay, SambhajiVarma, Mohit
Honda developed a new model plug-in hybrid (hereafter PHEV) system for use in new 2023 models. This system has a high degree of commonality with the 2022 model year e:HEV system. It is optimized as a PHEV system not only for long range EV Drive mode but also for Hybrid Drive mode and Engine Drive mode, and it realizes a refined, exhilarating driving experience. In terms of environmental performance, it has an all-electric range 12% higher than the previous model PHEV, and its fuel economy is improved by 14%. Its battery thermal management system that is shared with the air conditioning system provides the greatest yield of battery power and charging performance with a high market inclusion rate for driving loads and environmental conditions
Kazehare, ShigekiMiyamoto, TetsuTakuno, ShinjiYamamoto, YosukeInaba, IchiroSaito, Masatoshi
Enriched ventilation and driver assistance systems which plays vital role in human thermal comfort and safety, are now necessities for the whole automotive sector. For faster cabin thermal comfort, air circulation around occupant’s body reveals higher cabin comfort index. In India natural and forced ventilation system is predominantly used in commercial vehicles as an economical solution for achieving interim cabin comfort over air conditioning system. Presently used forced ventilation system consist of electrically driven blower motor to remove stale air around human body which is adding alternator load and thus affects fuel economy. Remarkably, 22% of such auxiliary electrical load is taken by electrical components from engine generated power. In order to enhance cabin thermal comfort and conceivably reduce power usage, an effective air flow control system is need of hour. In the proposed new technology, the ORVM (Outside Rear View Mirror) based air cooling technique is used for
Shalgar, Sandeep SubhashSorte, SwapnilNagarhalli, Prasanna V
In modern vehicles, a significant amount of power is consumed to cool the cabin and maintain the passengers' thermal comfort, which results in energy drain from the battery, reducing the overall energy efficiency of the vehicle. Due to its numerous benefits, a solid-state Thermoelectric cooling (TEC) method has been proposed as an alternative cabin cooling system to address this issue. TEC uses the Peltier effect to create a temperature difference between two junctions of a TE device, developing a classical cold plate condition. This cold plate absorbs heat from the cabin air, which is then dissipated to the outside while cooling the interiors. This cooling method does not require refrigerant, has no moving parts, and is compact and lightweight. The present study proposes an alternative automotive air conditioning system and investigates its performance characteristics for providing better thermal comfort conditions while effectively reducing the cooling power. Numerical simulations
Kumar, AashishChaudhary, AdityaA T, Perumal
Compressor plays an important role in Automotive Air Conditioning (AC) System. It compresses the low pressure refrigerant and discharges the high pressure refrigerant vapour to condenser. Compressor performance mainly depends on two parameters, compressor oil and refrigerant gas charge quantity. Compressor oil is used to lubricate the movable parts in reciprocating compressors. Compressor oil is miscible in refrigerants in liquid state and amount of oil present in compressor increases the life of compressor. But, huge amount of oil may also reduce the thermal performance of system. Minimum gas quantity gives poor cooling performance and due to maximum quantity, increasing suction/discharge pressures, results in more compressor work and low cooling. This paper discusses the experimental analysis of refrigerant quantity, oil quantity in different ratios to improving the cooling performance of a passenger vehicle. Experimentation was conducted on 7 seater passenger car (hatchback). For
Meena, Avadhesh KumarKishore, KamalAgarwal, RoopakParayil, Paulson
In the modern era of automotive industry, occupant comfort inside the cabin is a basic need and no more a luxury feature. With increase in number of vehicles, the expectations from customers are also changing. One of the major expectations from real world customers is quick cabin cooling thru all seasons, particularly when the vehicle is hot soaked and being used in summer conditions. Occupant thermal comfort inside the vehicle cabin is provisioned by a mobile air conditioning (MAC) system, which operates on a vapor compression-based cycle using a refrigerant. The main components of a direct expansion (DX) based MAC system are, a compressor, condenser, evaporator, and expansion valve. Conditioned air is circulated inside the cabin using a blower, duct system and air vents. The AC condenser is the most critical component in AC circuit as it rejects heat, thereby providing for a cooling effect inside the cabin. Right sizing and packaging of condenser, optimizing the condenser core
Shukla, Ankit KumarTadigadapa, SureshDimble, Nilesh
Commercial electric vehicle air conditioning system keeps occupants comfortable, but at the expense of the energy used from the battery of vehicle. Passengers around the world are increasingly requesting buses with HVAC/AC capabilities. There is a need to optimise current air conditioning systems taking into account packaging, cost, and performance limits due to the rising demand for cooling and heating globally. Major elements contributing to heat ingress are traction motor, front firewall, windshield & side glasses and bus body parts. These elements contribute to the bus’s poor cooling and lack of passenger comfort. This topic refers to the reduction of the heat ingress through usage of different glass technology like IR Cut & solar green glass with different types of coating. The finding from the theoretical analysis, it indicates that overall heat load reduction of the electric buses was reduced by ~6-7% improvement with different specifications of glasses as compared to the
Ratnaparkhi, Pankaj PrabhakarFartade, SunilNagarhalli, Prasanna VTodkar, NikhilNagare Sr, Rahul
In India, around 70 million people travel by public transport buses. With rising air pollution across cities, there is a need to safeguard passengers from inhaling polluted air. Contaminants in such polluted air could be fine to coarse dust (2.5 micron to 100 micron), exhaust gases (oxide of sulphur, nitrogen and carbon), total volatile organic compounds, bacteria and viruses arising out of covid-19 pandemic. Passengers commuting in buses are continuously inhaling air that is re-circulating through the Air Conditioning system (AC) and also comes in contact with multiple co-passengers and touch points. This air potentially carries a high dose of contaminants and inhalation of such air can lead to health issues. Vehicle manufacturers intend to provide clean air inside the vehicle cabin by configuring various Air Purification systems (AP) which reduce air contaminants in the closed space of a cabin. Currently, the technology and concepts for Air Purification systems continue to be adapted
Nimsatkar, Shubham VijayTadigadapa, SureshAli, IrfanGupta, SajalKhandekar, Dhiraj
Electric vehicles (EV) have become very significant and potential way to reduce greenhouse gas emissions on a worldwide scale. EV also provides Energy security, as it reduces the dependency on petroleum producing countries of the world. Similar to the conventional Internal Combustion Engine Cars, in Electrical Vehicles also the efficient air conditioning system is very important for providing thermal comfort and for giving safe driving conditions. In Air Conditioning systems for EV, the heating option is available in the form of Electrical heaters and Heat Pump systems. The Heat pumps have become more popular compared to the electrical Positive Temperature Coefficient (PTC) heaters because of their highly efficient and energy saving designs. However, there are still some issues with using heat pumps. One of such issue is their less Coefficient of performance (COP) at low ambient conditions. Experimental results also show that the driving range decreases by using the electric heating
Dagar, AakashSharma, NishantSuman, SaurabhKushwah, Yogendra Singh
Air-conditioning and Refrigeration systems are widely used in many industries for cooling and preservation, and the evaporator is a crucial component responsible for heat absorption. The choice of refrigerant has a significant impact on the evaporator's performance, affecting the overall efficiency of the system. This paper investigates the effect of three common refrigerants, R134a, R407c, and R1234yf, on evaporator performance. A comparative analysis was performed using the conventional air-conditioning system consisting of a compressor, condenser, expansion valve, and evaporator. The evaporator performance was evaluated based on the cooling capacity, Refrigerant Side Pressure Drop (RSPD) and Superheat (SH). The results show that evaporator has highest cooling capacity with R134a, followed by R407C and R1234yf. In comparison to R134a, R1234yf had the lowest refrigerating effect followed by R407C. However, R1234yf has the lowest Global Warming Potential (GWP) value out of all the
Suman, SaurabhKushwah, Yogendra Singh
Today, most vehicles in developing countries are equipped with air conditioning systems that work with Hydro-Fluoro-Carbons (HFC) based refrigerants. These refrigerants are potential greenhouse gases with a high global warming potential (GWP) that adversely impact the environment. Without the rapid phasedown of HFCs under the Kigali Amendment to the Montreal Protocol and other actions, Earth will soon pass climate tipping points that will be irreversible within human time dimensions. Up to half of national HFC use and emissions are for the manufacture and service of mobile air conditioning (MAC). Vehicle manufacturers supplying markets in non-Article 5 Parties have transitioned from HFC-134a (ozone-safe, GWP = 1400; TFA emissions) to Hydro-Fluoro-Olefin, HFO-1234yf (ozone-safe, GWP < 1; TFA emissions) due to comparable thermodynamic properties. However, the transition towards the phasing down of HFCs across all sectors is just beginning for Article 5 markets. Patents on R-1234yf will
Maurya, AnuragMehta, BhavikSardesai, SureshSwarnkar, SumitVenu, SantoshKapoor, Sangeet
As the automotive industry is transitioning from conventional engine driven to electric battery driven, many of the vehicle aggregates are getting re-engineered and changing accordingly. Being air-conditioning manufacturer one of the aggregates that needs attention and focused effort is the Heating Ventilation and Air Conditioning system (HVAC). Acoustic comfort of electric vehicle gets impacted due to the HVAC noise in absence of engine and hence other noise sources becomes prominent which were earlier masked by the engine noise. It is important to understand the HVAC noise sources for implementing right countermeasures for masking the noise. There are three methods of noise source identification namely acoustical duct method, cocooning or lead covering method and near field method. Out of these method, acoustical duct method and near field methods are used for minor and major noise identification in this study. The present paper describes the comparative study of HVAC noise source
Goel, ArunkumarSen, Somnath
The air conditioning systems is the second energy consumer in the vehicle behind the powertrain with global energy consumptions of a few Kilowatts. In the case of Electric vehicles (EV), its consumption becomes critical to increase the range or potentially reduce battery size, weight and cost. In areas where high temperatures, solar radiation and high humidity are common, vehicle occupants rely constantly on the performance of the air conditioning for comfort and safety. Therefore, the AC (Air Conditioning) system is an ideal target to improve efficiency without an impact on occupier wellbeing. These are competitive advantages that would increase customer satisfaction and revenue potential. In fact, research shows that customers are ready to pay a higher price for sustainable products. Furthermore it would reduce the environmental impact of both EV and Internal Combustion Engine (ICE) vehicles In this study, we present a ‘smart strategy’ to reduce energy consumption, by preemptively
Palacio Torralba, JavierKapoor, SangeetJaybhay, SambhajiKulkarni, Shridhar Diliprao
The complexities of electric-vehicle HVAC require new sensing solutions. An expert at TDK explains. A common criticism of electric vehicles (EVs) is that extremes of heat and cold adversely affect their performance, particularly range. OEMs have been aware of the issue and have innovated and iterated technologies to solve it. EVs increasingly are being engineered with sophisticated heating, cooling and ventilation (HVAC) systems based on some of the most advanced and robust sensors and actuators available. These systems mitigate against the effects of thermal extremes that, admittedly, still challenge IC-engine vehicles on an infrequent basis. But there are tradeoffs. The ICE vehicle's HVAC is a relatively simple affair involving air cooling, a coolant (water ethylene glycol, or WEG), heaters, and heat exchangers (including air conditioners). HVAC systems for EVs by necessity are far more complex. Understanding the details is important to designing an effective system
Ham, Jeroen Van
This paper investigates how different on-board energy management system (EMS) algorithms can affect the total energy consumption considering propulsion, heating, ventilation, and air conditioning (HVAC) operation and thermal comfort requirements. Firstly, an integrated plug-in hybrid electric vehicle (PHEV) powertrain and HVAC model including vehicle cabin has been developed as a demonstrator. Two different EMS algorithms - namely a rule-based and an equivalent consumption minimization strategy (ECMS) one - are applied to the integrated PHEV model and evaluated under different environmental conditions. The results showed that the HVAC system operation affects the total energy consumption benefits when ECMS algorithm is used over the rule-based. ECMS reduces the total energy consumption by 2.5% compared to rule-based without HVAC operation, while the total energy consumption reduction changes to 5.3% and 6.3% when HVAC provides heating and cooling power respectively. Furthermore, the
Aletras, NikolaosBesinas, DimitriosLivitsanos, GeorgiosKoltsakis, GrigoriosSamaras, ZissisNtziachristos, Leonidas
Items per page:
1 – 50 of 1310