Browse Topic: Vehicle drivers
A design is presented for an electro-mechanical switchgear, intended for reconfiguring the windings of an electric machine whilst in operation. Specifically, the design is developed for integration onto an in-wheel automotive motor. The motor features 6 phase fractions, which can be reconfigured by the switchgear between series-star or parallel-star arrangements, thereby doubling the torque or speed range of the electric machine. The switchgear has a mass of only 1.8kg – around one tenth of the equivalent 2-speed transmission which might otherwise be employed to achieve a similar effect. As well as the extended operating envelope, the reconfigurable winding motor offers benefits in efficiency and power density. The mechanical solution presented is expected to achieve efficiency and cost advantages over equivalent semiconductor-based solutions, which are practical barriers to adoption in automotive applications. The design uses only mechanical contacts and a single actuator, thereby
This SAE Recommended Practice is intended to establish a procedure to certify the fundamental driving skill levels of professional drivers. This certification can be used by the individual driver to qualify their skills when seeking employment or other professional activity. These certification levels may also be used by test facilities or other organizations when seeking test or professional drivers of various skills. The associated family of documents listed below establish driving skill criteria for various specific categories. SAE J3300: Driving level SAE J3300/1: Low mu/winter driving SAE J3300/2: Trailer towing SAE J3300/3: Automated driving Additional certifications to be added as appropriate. This main document provides: (1) common definitions and general guidance for using this family of documents, (2) directions for obtaining certification through Probitas Authentication®1, and (3) driving level examination requirements.
In addition to providing safety advantages, sound and vibration are being utilized to enhance the driver experience in Battery Electric Vehicles (BEVs). There's growing interest and investment in using both interior and exterior sounds for pedestrian safety, driver awareness, and unique brand recognition. Several automakers are also using audio to simulate virtual gear shifting of automatic and manual transmissions in BEVs. According to several automotive industry articles and market research, the audio enhancements alone, without the vibration that drivers are accustomed to when operating combustion engine vehicles, are not sufficient to meet the engagement, excitement, and emotion that driving enthusiasts expect. In this paper, we introduce the use of new automotive, high-force, compact, light-weight circular force generators for providing the vibration element that is lacking in BEVs. The technology was developed originally for vibration reduction/control in aerospace applications
The implementation of active sound design models in vehicles requires precise tuning of synthetic sounds to harmonize with existing interior noise, driving conditions, and driver preferences. This tuning process is often time-consuming and intricate, especially facing various driving styles and preferences of target customers. Incorporating user feedback into the tuning process of Electric Vehicle Sound Enhancement (EVSE) offers a solution. A user-focused empirical test drive approach can be assessed, providing a comprehensive understanding of the EVSE characteristics and highlighting areas for improvement. Although effective, the process includes many manual tasks, such as transcribing driver comments, classifying feedback, and identifying clusters. By integrating driving simulator technology to the test drive assessment method and employing machine learning algorithms for evaluation, the EVSE workflow can be more seamlessly integrated. But do the simulated test drive results
Sound power is a commonly used metric to quantify acoustic sources like AC motor in electrified powertrain. Testing for sound power determination is often performed in an anechoic environment to create free-field conditions around the unit. To eliminate the influence of extraneous noise sources, the anechoic facilities must be further isolated from driver and absorber dynamometers. These dynamometers are needed for running the AC motors in the desired speed and load conditions. For early detection of potential issues, it is advantageous to have the capability for engineers to conduct acoustic tests in standard laboratory environments. These may include non-acoustically treated rooms, presence of extraneous noise sources (e.g., driver and absorber dynos), etc. In such environments, sound intensity-based sound power determination methods could be utilized. The sound intensity-based approach is covered in ISO 9614 standard. The norm is to sweep an intensity probe on a sound source in
As the automotive industry moves toward electrification, new challenges emerge in keeping pleasant acoustics inside vehicles and their surroundings. This paper proposes a method for anticipating the main sound sources at driver’s ear for custom driving scenarios. Different categories of Road and Wind noise were created from a dataset of multiple vehicles. Using innovative sound synthesis techniques, it enables Valeo to make early predictions of the emergence of an electric axle powertrain (ePWT) once it is combined with this masking noise. Realistic signals could be generated and compared with actual acoustic measurements to validate the method.
These general operator precautions apply to off-road work machines as defined in SAE J1116. These should not be considered as all-inclusive for all specific uses and unique features of each particular machine. Other more specific operator precautions not mentioned herein should be covered by users of this recommended practice for each particular machine application.
This practice presents methods for establishing the driver workspace. Methods are presented for: Establishing accelerator reference points, including the equation for calculating the shoe plane angle Locating the SgRP as a function of seat height (H30) Establishing seat track dimensions using the seating accommodation model Establishing a steering wheel position Application of this document is limited to Class-A Vehicles (Passenger Cars, Multipurpose Passenger Vehicles, and Light Trucks) as defined in SAE J1100.
The study analyzed data from on-road drives with a pre-production Level 2 (L2) partial automation system using a sample of 27 drivers ranging from 21 to 75 years of age. The system provides continuous automatic lateral and longitudinal control but requires the driver to remain attentive and intervene when necessary. The L2 system was equipped with a Driving Monitoring System (DMS) that issued escalating alerts to remind the driver to pay attention or take over when needed. During the 14-month study period, drivers completed 354,768 miles of travel with the L2 system engaged, totaling 5,913 trips. The results of the study showed that drivers were highly responsive to attention reminders and takeover alerts, with high compliance rates and quick response times. Importantly, there was no evidence of habituation to these alerts over time. These findings support the effectiveness of the system's DMS and alert HMI (Human-Machine Interface) strategy in promoting the proper use of the system
Items per page:
50
1 – 50 of 5029