Browse Topic: Driver behavior
In the Indian context, introduction of ADAS can play a positive role in improving road safety by assisting the driver and preventing unsafe driver behaviour. Technologies like Automated Emergency Braking (AEB), Lane Keep System, Adaptive Cruise Control, Driver Drowsiness Detection, Driver Alcohol detection etc., if deployed safely and used in a safe manner can help prevent many of the current road deaths in India. Safe deployment and safe use of such ADAS technologies require the systems to operate without failure within their operational design domains (ODD) and not surprise the drivers with sudden or unpredictable failures, to help develop their trust in the technology. As a result, identifying test scenarios remain a key step in the development of Advanced Driver Assistance Systems (ADAS). This remains a challenge due to the large test space especially for the Indian context due to the unpredictable traffic behaviour and occasional road infrastructure. In this paper, we introduce a
In automotive engineering, understanding driving behavior is crucial for decision on specifications of future system designs. This study introduces an innovative approach to modeling driving behavior using Graph Attention Networks (GATs). By leveraging spatial relationships encoded in H3 indices, a graph-based model constructed, which captures dependencies between various vehicle operational parameters and their operational regions using H3 indices. The model utilizes CAN signal features such as speed, fuel efficiency, engine temperature, and categorical identifiers of vehicle type and sub-type. Additionally, regional indices are incorporated to enrich the contextual information. The GAT model processes these heterogeneous features, learning to identify patterns indicative of driving behavior. This approach offers several significant advantages. Firstly, it enhances the accuracy of driving behavior modeling by effectively capturing the complex spatial and operational dependencies
The rapid evolution of intelligent transportation systems has made drivers’ attentiveness and adherence to safety protocols more critical than ever. Traditional monitoring solutions often lack the adaptability to detect subtle behavioral changes in real time. This paper presents an advanced AI-powered Driver Monitoring System designed to continuously assess driver behavior, fatigue, distractions, and emotional state across various driving conditions. By providing real-time alerts and insights to vehicle owners, fleet operators, and safety personnel, the system significantly enhances road safety. The system integrates lightweight AI/ML algorithms, image processing techniques, perception models, and rule-based engines to deliver a comprehensive monitoring solution for multiple transportation modes, including automotive, rail, aerospace, and off-highway vehicles. Optimized for edge devices, the models ensure real-time processing with minimal computational overhead. Alerts are communicated
In-vehicle communication among different vehicle electronic controller units (ECU) to run several applications (I.e. to propel the vehicle or In-vehicle Infotainment), CAN (Controller Area Network) is most frequently used. Given the proprietary nature and lack of standardization in CAN configurations, which are often not disclosed by manufacturers, the process of CAN reverse engineering becomes highly complex and cumbersome. Additionally, the scarcity of publicly accessible data on electric vehicles, coupled with the rapid technological advancements in this domain, has resulted in the absence of a standardized and automated methodology for reverse engineering the CAN. This process is further complicated by the diverse CAN configurations implemented by various Original Equipment Manufacturers (OEMs). This paper presents a manual approach to reverse engineer the series CAN configuration of an electric vehicle, considering no vehicle information is available to testing engineers. To
In recent times, a standard driving cycle is an excellent way to measure the electric range of EVs. This process is standardized and repeatable; however, it has some drawbacks, such as low active functions being tested in a controlled environment. This sometimes causes huge variations in the range between driving cycles and actual on-road tests. This problem of variation can be solved by on-road testing and testing a vehicle for customer-based velocity cycles. On-road measurement may be high on active functions while testing, which may give an exact idea of real-world consumption, but the repeatability of these test procedures is low due to excessive randomness. The repeatability of these cycles is low due to external factors acting on the vehicle during on-road testing, such as ambient temperature, driver behavior, traffic, terrain, altitude, and load conditions. No two measurements can have the same consumption, even if they are done on the same road with the same vehicle, due to the
222
Tillage, a fundamental agricultural practice involving soil preparation for planting, has traditionally relied on mechanical implements with limited real-time data collection or adjustment capabilities. The lack of real-time data and implement statistics results in fleet managers struggling to track performance, driver behavior, and operational efficiency of the implements. Lack of data on vehicle performance can result in unexpected breakdowns and higher maintenance costs, ensuring compliance with regulations is challenging without proper data tracking, potentially leading to fines and legal issues. Bluetooth-enabled mechanical implements for tillage operations represent an emerging frontier in precision agriculture, combining traditional soil preparation techniques with modern wireless technology. Implement mounted battery powered BLE (Bluetooth Low Energy) modules operated by solar panel based rechargeable batteries to power microcontroller. When Implement is operational turns
In the next years, the global hydrogen vehicle market is expected to grow at a very high rate. Consequently, it is necessary for scholars and professionals to study and test specific components in order to rise motor efficiency leveraging the new features of connectivity available in smart roads. In particular, our research is focused on the developement of an engine control module driven by evaluation of usage characteristics (e.g., driving style) and "connected-to-x" scenarios using the standard engine control approach. Moreover, the module proposed enables the implementation of "fast running" models to improve the response of vehicles and make the best possible use of H2-powered engine characteristics. That said, in this paper is proposed a new approach to implement the control module, using Support Vector Machine (SVM) as the machine learning algorithm to detect driving style, and consequently modify the parameters of the engine. We choose SVM because i) it is less prone to
Brake failures in the vehicles can cause hazardous accidents so having a better monitoring and emergency braking system is very important. So, this project consists of an autonomous brake failure detector integrated with Automatic Braking using Electromagnetic coil braking which detects the braking failure at the time and applied the combinations of the brakes, to overcome this kind of accidents. So, here the system comprises of IR sensor circuit, control unit and electromagnetic braking system. How it works: The IR sensor monitors the brake wire, and if the wire is broken, the control unit activates the electromagnetic brakes, stopping the vehicle in a safe manner. This system enhances vehicle safety by ensuring immediate braking action without driver intervention. Key advantages include real-time brake monitoring, reduced mechanical wear, quick response time, and an automatic failsafe mechanism. The system’s minimal reliance on hydraulic components also makes it suitable for harsh or
To address the growing concern of increasing noise levels in urban areas, modern automotive vehicles need improved engineering solutions. The need for automotive vehicles to have a low acoustic signature is further emphasized by local regulatory requirements, such as the EU's regulation 540/2014, which sets sound level limits for commercial vehicles at 82 dB(A). Moreover, external noise can propagate inside the cabin, reducing the overall comfort of the driver, which can have adverse impact on the driving behavior, making it imperative to mitigate the high noise levels. This study explores the phenomenon of change in acoustic behavior of external tonal noise with minor geometrical changes to the A-pillar turning vane (APTV), identified as the source for the tonal noise generation. An incompressible transient approach with one way coupled Acoustics Wave solver was evaluated, for both the baseline and variant geometries. Comparison of CFD results between baseline and variant showed
Items per page:
50
1 – 50 of 747