Browse Topic: Torso

Items (750)
The introduction of unrestrained torso neck braces as a safety intervention for helmeted motorcycle riders has introduced a set of unsolved challenges. Understanding the injury prevention afforded by these devices depends on a reliable test methodology by which to critically evaluate their efficacy against the most common mechanisms of neck injury. An inverted pendulum test is proposed to evaluate compression flexion (CF), tension flexion (TF), and tension extension (TE) of the neck using a Hybrid III anthropomorphic test device (HIII ATD) neck and a motorcycle-specific ATD (MATD) neck. In addition to investigating methods to quantify the beneficial effects of a neck brace, potential adverse effects of such a device are evaluated by measuring and evaluating relevant neck response measures. To that end, measured data using a current neck brace were analyzed and applied to various injury criteria related to the ATD neck used to compare the injury risk predicted by each parameter. The
de Jongh, Cornelis U.Basson, Anton H.Knox, Erick H.Leatt, Christopher J.
Ongoing research in simulated vehicle crash environments utilizes postmortem human subjects (PMHS) as the closest approximation to live human response. Lumbar spine injuries are common in vehicle crashes, necessitating accurate assessment methods of lumbar loads. This study evaluates the effectiveness of lumbar intervertebral disc (IVD) pressure sensors in detecting various loading conditions on component PMHS lumbar spines, aiming to develop a reliable insertion method and assess sensor performance under different loading scenarios. The pressure sensor insertion method development involved selecting a suitable sensor, using a customized needle-insertion technique, and precisely placing sensors into the center of lumbar IVDs. Computed tomography (CT) scans were utilized to determine insertion depth and location, ensuring minimal tissue disruption during sensor insertion. Tests were conducted on PMHS lumbar spines using a robotic test system for controlled loading in flexion
Burns, Michael R.Caldwell, A. JamesShin, JeesooSochor, Sara H.Kopp, Kevin P.Shaw, GregGepner, BronislawKerrigan, Jason R.
Thorax injuries are a significant cause of mortality in automotive crashes, with varying susceptibility across sex and age demographics. Finite element (FE) human body models (HBMs) offer the potential for injury outcome analysis by incorporating anthropometric variations. Recent advancements in material constitutive models, cortical bone fracture and continuum damage mechanics model (CFraC) and an orthotropic trabecular bone model (OrthoT), offer the opportunity to further improve rib models. In this study, the CFraC and OrthoT material modes, coupled with age-specific material properties, were progressively implemented to the Global Human Body Model Consortium small female 6th rib. Four distinct 6th rib models were developed and compared against sex and age-specific experimental data. The updated material models notably refined the predictions of force–displacement responses, aligning them more closely with the experimental averages. The CFraC model significantly improved the
Corrales, Miguel A.Holcombe, SvenAgnew, Amanda M.Kang, Yun-SeokMarkusic, CraigSugaya, HisakiCronin, Duane S.
Thorax injury remains a primary contributor to mortality in car crash scenarios. Although human body models can be used to investigate thorax response to impact, isolated rib models have not been able to predict age- and sex-specific force-displacement response and fracture location simultaneously, which is a critical step towards developing human thorax models able to accurately predict injury response. Recent advancements in constitutive models and quantification of age- and sex-specific material properties, cross-sectional area, and cortical bone thickness distribution offer opportunities to improve rib computational models. In the present study, improved cortical and trabecular bone constitutive models populated with age-specific material properties, age- and sex-specific population data on rib cross-sectional area, and cortical bone thickness distribution were implemented into an isolated 6 th rib from a contemporary human body model. The enhanced rib model was simulated in
Corrales, Miguel A.Holcombe, SvenAgnew, Amanda M.Kang, Yun-SeokCronin, Duane S.
Due to the lack of biofidelity seen in GHBMC M50-O in rear-facing impact simulations involving interaction with the seat back in an OEM seat, it is important to explore how the boundary conditions might be affecting the biofidelity and potentially formulate methods to improve biofidelity of different occupant models in the future while also maintaining seat validity. This study investigated the influence of one such boundary condition, which is the seat back foam material properties, on the thorax and pelvis kinematics and injury outcomes of the GHBMC 50th M50-O model in a high-speed rear-facing frontal impact scenario, which involves severe occupant loading of the seat back. Two different seat back foam materials were used – a stiff foam with high densification and a soft foam with low densification. The peak magnitudes of the T-spine resultant accelerations of the GHBMC M50-O increased with the use of soft foam as compared to stiff foam. However, the change in the average biofidelity
Pradhan, VikramRamachandra, RakshitKang, Yun Seok
Compared to other age groups, older adults are at more significant risk of hip fracture when they fall. In addition to the higher risk of falls for the elderly, fear of falls can reduce this population’s outdoor activity. Various preventive solutions have been proposed to reduce the risk of hip fractures ranging from wearable hip protectors to indoor flooring systems. A previously developed rubberized asphalt mixture demonstrated the potential to reduce the risk of head injury. In the current study, the capability of the rubberized asphalt sample was evaluated for the risk of hip fracture for an average elderly male and an average elderly female. A previously developed human body model was positioned in a fall configuration that would give the highest impact forces toward regular asphalt. Three different rubber contents with 14, 28, 33 weight percent (% wt.) were implemented as the ground alongside one regular non-rubberized (0%) asphalt mixture, one baseline, and one extra-compliant
Sahandifar, PooyaWallqvist, VivecaKleiven, Svein
Seatback and head restraints are the primary restraining devices in rear-impact collisions. The seatback failures expose front seat occupants to dive deep into the rear compartment survival space. Furthermore, it allows the occupants to get in a position with lower spinal tolerance to the impact direction. This paper employs sled tests to demonstrate the dangers of seatback failures in severe rear impact by allowing the occupants to orient their spine in its lowest tolerance zone to the impact direction. Furthermore, the sled test shows the potential of head pocketing phenomena and torso augmentation producing compressive cervical spine loading enough to cause first-order neck buckling. Finally, the results of collapsing seatback dynamics are compared to the strong seatback performance by conducting a similar test with a strong ABTS seatback. The study demonstrates that the strong seatbacks in severe rear impacts produce favorable outcomes while keeping the occupant in their higher
Thorbole, Chandrashekhar
Government of India, in 2017, mandated a Side Impact Test (AIS 099 technically aligned to UN ECE Regulation No. 95.03 series of amendments) on M1 category Passenger Vehicles to ensure protection of occupants in lateral impact accident scenarios. Later, in 2022, a draft notification has been issued by the Government mandating installation of 6 airbags (2 Nos of thorax side airbags, 2 Nos of head protection or curtain airbags in addition to already mandated installation of Driver and Passenger Airbags) in all such passenger vehicles. However, the vehicles fitted with side thorax airbag and curtain airbags are proposed to be assessed as per AIS099 test only. Curtain Airbags are typically installed to protect occupant’s head from severe injuries in narrow object impacts simulated in Pole Side Impact Test Configurations. However, at present, India has not notified an equivalent standard to UN R135 demanding performance of the vehicle in pole side impact scenarios. Typically, OEMs may need
Jaju, DivyanKulkarni, DileepMahindrakar, RahulMahajan, Rahul
Introduction: The use of less lethal impact munitions (LLIMs) by law enforcement has increased in frequency, especially following nationwide protests regarding police brutality and racial injustice in the summer of 2020. There are several reports of the projectiles causing severe injuries when they penetrate the skin including pulmonary contusions, bone fractures, liver lacerations, and, in some cases, death. The penetration threshold of skin in different body regions is due to differences in the underlying structure (varying degree of muscle, adipose tissue, and presence or absence of bone). Objective: The objective of this study was to further investigate what factors affected the likelihood of skin penetration in various body regions and to develop corresponding penetration risk curves. Methods: A total of eight, fresh/never frozen, unembalmed, postmortem human specimens (PMHS) were impacted by two projectile sizes: a 1″ and 5/8″ neoprene rubber ball in various body regions
Foley, SierraSherman, DonaldDavis, AndrewMacDonald, RobertBir, Cynthia
Computational and experimental studies have been undertaken to investigate injurious head-first impacts (HFI), which can occur during automotive rollovers. Recent studies assume a torso surrogate mass (TSM) boundary condition, wherein the first or first two thoracic vertebrae are potted and constrained to only move in the vertical loading direction. The TSM boundary condition has not been compared with a full body (FB) model computationally or experimentally for HFI. In this study, the Global Human Body Models Consortium 50th percentile male detailed human body model (M50-O, Version 6.0) was applied to compare the kinematic, kinetic, and injury response of an HFI with a TSM boundary condition (M50-TSM), and a full body boundary condition (M50-FB). Impacts (to M50-TSM and M50-FB) were simulated between the head and a rigid plate using a commercial FE code (LS-DYNA). The impact velocity of 3.1 m/s corresponded to the onset of spinal injury in diving reconstructions, and the impact
Morgan, M.I.Corrales, M.Cripton, P.Cronin, D.S.
The objective of this study was to compare head, neck, and chest injury risks between front and rear-seated Hybrid III 50th-percentile male anthropomorphic test devices (ATDs) during matched frontal impacts. Seven vehicles were converted to rear seat test bucks (two sedans, three mid-size SUVs, one subcompact SUV, and one minivan) and then used to perform sled testing with vehicle-specific frontal NCAP acceleration pulses and a rear seated (i.e., second row) Hybrid III 50th male ATD. Matched front seat Hybrid III 50th male ATD data were obtained from the NHTSA Vehicle Crash Test Database for each vehicle. HIC15, Nij, maximum chest acceleration, and maximum chest deflection were compared between the front and rear seat tests, as well as between vehicles with conventional and advanced three-point belt restraint systems in the rear seat. Additionally, a modified version of the NCAP frontal star rating was calculated for the front and rear seat tests. All injury metrics, except for chest
Bianco, Samuel T.Albert, Devon L.Guettler, Allison J.Hardy, Warren N.Kemper, Andrew R.
Some anthropomorphic test devices (ATDs) currently being developed are equipped with abdominal pressure twin sensors (APTS) for the assessment of abdominal injuries and as an indicator of the occurrence of the submarining of an occupant during a crash event. The APTS is comprised of a fluid-filled polyurethane elastomeric bladder which is sealed by an aluminum cap with an implanted pressure transducer. It is integrated into ATD abdomens, and fluid pressure is increased due to the abdomen/bladder compression due to interactions with the seatbelt or other structures. In this article, a nonlinear dynamic finite element (FE) model is constructed of an APTS using LS-PrePost and converted to the LS-Dyna solver input format. The polyurethane bladder and the internal fluid are represented with viscoelastic and isotropic hypoelastic material models, respectively. The aluminum cap was considered a rigid part since it is significantly stiffer than the bladder and the fluid. To characterize the
Yang, PeiyuKatangoori, DivyaNoll, ScottStammen, JasonSuntay, BrianCarlson, MichaelMoorhouse, Kevin
This user’s manual covers the small adult female Hybrid III test dummy. It is intended for technicians who work with this device. It covers the construction and clothing, disassembly and reassembly, available instrumentation, external dimensions and segment masses, as well as certification and inspection test procedures. It includes instructions for safe handling of the instrumented dummy, repairing dummy flesh, and adjusting the joints throughout the dummy
Dummy Testing and Equipment Committee
This user's manual covers the Hybrid III 10-year old child test dummy. The manual is intended for use by technicians who work with this test device. It covers the construction and clothing, assembly and disassembly, available instrumentation, external dimensions and segment masses, as well as certification and inspection test procedures. It includes guidelines for handling accelerometers, guidelines for flesh repair, and joint adjustment procedures. Finally, it includes drawings for some of the test equipment that is unique to this dummy
Dummy Testing and Equipment Committee
Injury assessment by using a whole-body pedestrian dummy is one of the ways to investigate pedestrian safety performance of vehicles. The authors’ group has improved the biofidelity of the lower limb and the pelvis of the mid-sized male pedestrian dummy (POLAR III) by modifying those components. This study aims to evaluate the biofidelity of the whole-body response of the modified dummy in full-scale impact tests. The pelvis, the thigh and the leg of POLAR III have been modified in a past study by optimizing their compliance by means of the installation of plastic and rubber parts, which were used for the tests. The generic buck developed for the assessment of pedestrian dummy whole-body impact response and specified in SAE J3093 was used for this study. The buck representing the geometry of a small family car is comprised of six parts: lower bumper, bumper, grille, hood edge, hood and windshield. Tests were performed by conforming to SAE J2782 that specifies test conditions to
Asanuma, HiroyukiBae, HyejinNakamura, HidetoshiGunji, YasuakiNagashima, AkikoMori, Fumie
This procedure establishes a recommended practice for performing a lumbar flexion test to the Hybrid III 50th male anthropomorphic test device (ATD or crash dummy). This test was created to satisfy the demand from industry to have a certification test which characterizes the lumbar without interaction of other dummy components. In the past, there have not been any tests to evaluate the performance of Hybrid III 50th lumbar
Dummy Testing and Equipment Committee
Human thoracic injury under frontal collisions is an inevitable problem in vehicle safety research. Compared with the Multiple Rigid-Body Models (MRBMs) and Finite Element Human Body Models (FEHBMs), Mathematical Equivalent Models (MEMs) can not only provide important data but also improve the research efficiency. The current thoracic MEMs usually adapted the mechanical isolation method to isolate the thorax from the human body; therefore, the effects of the head, neck, and lower body internal organs on the mechanical responses of the thorax are not considered. In this article, a new thoracic MEM, named as Improved Consistent Lobdell Model (ICLM), is developed based on the concentrated mass-spring-damping system to consider the energy absorbed by the deformation of the internal soft tissue and the motion hysteresis of the head, neck, and lower body. Thorax equivalent stiffness curve predicted by the ICLM has a good fit with the corridor obtained by the Post-Mortem Human Subjects (PMHS
Liu, ZhixinZheng, HongMa, Weijie
The purpose of this document is to provide the user with the procedures needed to properly assemble and disassemble the 50th percentile male Hybrid III dummy, certify its components and verify its mass and dimensions. Also within this manual are guidelines for handling accelerometers, repairing flesh and setting joints
Dummy Testing and Equipment Committee
This procedure establishes a recommended practice for establishing the sensitivity of the chest displacement potentiometer assembly used in the Hybrid III family of Anthropomorphic Test Devices (ATDs, or crash dummies). This potentiometer assembly is used in the Hybrid III family to measure the linear displacement of the sternum relative to the spine (referred to as chest compression). An inherent nonlinearity exists in this measurement because a rotary potentiometer is being used to measure a generally linear displacement. As the chest cavity is compressed the potentiometer rotates, however the relationship between the compression and the potentiometer rotation (and voltage output) is nonlinear. Crash testing facilities have in the past used a variety of techniques to calibrate the chest potentiometer, that is to establish a sensitivity value (mm/(volt/volt) or mm/(mvolt/volt)). These sensitivity values are used to convert recorded voltage measurements to engineering units, in this
Dummy Testing and Equipment Committee
This procedure establishes a recommended practice for performing a Low Speed Thorax Impact Test to the Hybrid III Small Female Anthropomorphic Test Device (ATD or crash dummy). This test was created to satisfy the demand by the industry to have a certification test which results in peak chest deflection similar to current full vehicle, frontal impact tests. An inherent problem exists with the current certification procedure because the normal (6.7 m/s) thorax impact test has test results for peak chest deflection that are greater than those currently seen in full vehicle, frontal tests. The intent of this document is to develop a low speed thorax certification procedure for the H-III5F dummy with a 3.0 m/s impact similar to the SAE J2779 procedure for the H-III50M dummy
Dummy Testing and Equipment Committee
The Test Device for Human Occupant Restraint (THOR) is an advanced crash test dummy designed for frontal impact. Originally released in a 50th percentile male version (THOR-50M), a female 5th version (THOR-05F) was prototyped in 2017 (Wang et al., 2017) and compared with biofidelity sub-system tests (Wang et al., 2018). The same year, Trosseille et al. (2018) published response corridors using nine 5th percentile female Post Mortem Human Subjects (PMHS) tested in three sled configurations, including both submarining and non-submarining cases. The goal of this paper is to provide an initial evaluation of the THOR-05F biofidelity in a full-scale sled test, by comparing its response with the PMHS corridors published by Trosseille et al. (2018). Significant similarities between PMHS and THOR-05F were observed: as in Trosseille et al. (2018), the THOR-05F did not submarine in configuration 1, and submarined in configurations 2 and 3. The lap belt tension and seat forces were similar in
Richard, OlivierLebarbé, MatthieuUriot, JérômeTrosseille, XavierPetit, PhilippeWang, Z. JerryLee, Ellen
Fracture to the lumbo-pelvis region is prevalent in warfighters seated in military vehicles exposed to under-body blast (UBB). Previous high-rate vertical loading experimentation using whole body post-mortem human surrogates (PMHS) indicated that pelvis fracture tends to occur earlier in events and under higher magnitude seat input conditions compared to lumbar spine fracture. The current study hypothesizes that fracture of the pelvis under high-rate vertical loading reduces load transfer to the lumbar spine, thus reducing the potential for spine fracture. PMHS lumbo-pelvis components (L4-pelvis) were tested under high-rate vertical loading and force and acceleration metrics were measured both inferior-to and superior-to the specimen. The ratio of inferior-to-superior responses was significantly reduced by unstable pelvis fracture for all metrics and a trend of reduced ratio was observed with increased pelvis AIS severity. This study has established that pelvis fracture reduces
R. Barnes, DavidYoganandan, NarayanMoore, JasonHumm, JohnPintar, FrankL. Loftis, Kathryn
In vehicle collisions, the lap belt should engage the anterior superior iliac spine (ASIS). In this study, three-dimensional (3D) shapes of bones and soft tissues around the pelvis were acquired using a computed tomography (CT) scan of 10 male and 10 female participants wearing a lap belt. Standing, upright sitting, and reclined postures were scanned using an upright CT and a supine CT scan system. In the upright sitting posture, the thigh height was larger with a higher BMI while the ASIS height did not change significantly with BMI. As a result, the height of the ASIS relative to the thigh (ASIS-thigh height) became smaller as the BMI increased. Because the thigh height of females was smaller than that of males, the ASIS-thigh height was larger for females than for males. As the ASIS-thigh height was larger, the overlap of the lap belt with the ASIS increased. Thus, the lap belt overlapped more with the ASIS for the females than for the males. The abdomen outer shape is characterized
Tanaka, YoshihikoNakashima, AtsushiFeng, HaijieMizuno, KojiYamada, MinoruYamada, YoshitakeYokoyama, YoichiJinzaki, Masahito
Vehicles with automated driving systems (ADS) may allow nontraditional seating arrangements, such as a reclined seat that is rear facing in a frontal impact. Currently, there is not a widely accepted, commercially available, anthropomorphic test device (ATD) that is designed for a reclined, rear-facing, high-speed crash situation. To begin to identify what modifications are needed for candidate ATDs to exhibit human-like characteristics in these nontraditional scenarios, ATDs should be tested and compared to available postmortem human subject (PMHS) biofidelity response corridors in these seating arrangements. The first objective of this study was to present and discuss updates to the Biofidelity Ranking System (BRS). The second objective was to use the updated BRS to evaluate the responses of the THOR 50th percentile male (Test device for Human Occupant Response, THOR-50M) ATD in the rear-facing condition. Quantitative comparisons were made between the THOR responses and biofidelity
Hagedorn, AlenaStammen, JasonRamachandra, RakshitRhule, HeatherThomas, ColtonSuntay, BrianKang, Yun-SeokKwon, Hyun JungMoorhouse, KevinBolte IV, John H.
The objective of this study was to evaluate the thoracic response and injury metrics of the Hybrid III (HIII-50M) and Test device for Human Occupant Restraint (THOR-50M) 50th-percentile male Anthropomorphic Test Devices (ATDs) during frontal, rear-seated sled tests using modern vehicles with various rear seat characteristics. Test bucks were fabricated from seven vehicles (two sedans, three midsize sport utility vehicles [SUVs], one SUV, and one minivan) that represented varying levels of rear seat designs and safety technologies, e.g., three vehicles had advanced restraints with pretensioners (PT) and load limiters (LL). Twenty-four frontal sled tests were conducted using three sled pulses derived from the vehicle-specific New Car Assessment Program (NCAP) crash pulses (NCAP85 ΔV = 56 kph, Scaled ΔV = 32 kph, and Generic ΔV = 32 kph). The HIII-50M and THOR-50M ATDs were positioned in the right and left rear seats, respectively. Maximum chest acceleration (3 ms clip), maximum chest
Bianco, SamuelGuettler, Allison J.Hardy, Warren N.Albert, Devon L.Kemper, Andrew R.
The THOR-AV dummy is a modified THOR dummy being developed for occupant safety testing in upright and reclined seating postures. The dummy has a new neck with improved biofidelity in rear impact, a pelvis/abdomen/lumbar design to improve seating posture, and a pelvis anthropometry that mimics human submarining responses for reclined seat testing. The dummy was evaluated against postmortem human subject (PMHS) corridors in rearward facing impact conditions (56 km/h impact speed, 38g acceleration) in both 25° and 45° seatback configurations. Biofidelity Ranking System (BRS) scores were calculated in accordance with NHTSA’s latest calculation algorithm. The BRS scores for THOR-AV seat loading are 1.58 (“good” biofidelity) and 2.94 (“marginal” biofidelity) for the 25° and 45° configurations respectively. The BRS scores for THOR-AV occupant responses are 1.95 and 1.38 for the 25° and 45° configurations respectively, both corresponding to “good” biofidelity. From the evaluation, the dummy
Wang, Zhenwen Jerry
This study was conducted to assess the effects of differing rear impact pulse characteristics on restraint performance, front-seat occupant kinematics, biomechanical responses, and seat yielding. Five rear sled tests were conducted at 40.2 km/h using a modern seat. The sled buck was representative of a generic sport utility vehicle. A 50th percentile Hybrid III ATD was used. The peak accelerations, acceleration profiles and durations were varied. Three of the pulses were selected based on published information and two were modeled to assess the effects of peak acceleration occurring early and later within the pulse duration using a front and rear biased trapezoidal characteristic shape. The seatback angle at maximum rearward deformation varied from 46 to 67 degrees. It was lowest in Pulse 1 which simulates an 80 km/h car-to-car rear impact. The seatback plastic deformation was greater in the pulse with the rear biased trapezoidal acceleration profile, Pulse 4, than in the front biased
Parenteau, ChantalWhite, SamuelBurnett, Roger
With the development of intelligent cockpit, child occupants will engage in traffic operation in various sitting postures. Therefore, studying the mechanism and risk of whiplash injury of child occupants with different sitting postures has important application value for the research and development of child restraint system. In this study, the 120° and 135° sitting postures of six-year-old child occupant were developed based on the validated 105° sitting posture finite element model with detailed anatomical structure. The whiplash test in Euro NCAP was reconstructed to evaluate the influence of sitting posture angle on the risk of whiplash injury. In the three groups of simulation experiments, the Upper Neck Tension (Fz) was far less than the higher limit of Euro NCAP evaluation although the Fz value increased as the upper torso angle increases. However, the Upper Neck Shear (Fx) and Neck Injury Criterion (NIC) values from the 105° sitting posture exceeded the higher limit of Euro
Li, HaiyanWang, YanxinHe, LijuanLv, WenleCui, ShihaiRuan, Jesse Shijie
A novel, electrically self-propelled, mobile, free-standing crash sled was constructed with a relatively minimal budget (i.e., ≤ $10,000). The crash sled was designed to simulate occupant driver or passenger seat movement in minor impacts at varying angles with minimal, if any, component replacement necessary between tests. Validation of the crash sled in a rear-end only configuration for determination of occupant accelerations was performed. Minor rear-end crash tests involving human occupants were conducted utilizing a 2007 Toyota Camry target vehicle and a 2005 Toyota Camry bullet vehicle with changes in velocity for the target vehicle ranging between 2.8 km/h and 7.7 km/h. Vehicle instrumentation consisted of tri-axial accelerometers affixed to the center tunnels near their respective center of gravities. Human occupant instrumentation occurred only in the target vehicle and involved tri-axial accelerometers at the head, thorax, and lumbar spine. Peak longitudinal head and lumbar
Vigil, Cole MackenzieSalboro, ConradJorgensen, MichaelJones, BrianBrink, JustinSwinford, Scott
This paper summarizes a series of matched-pair frontal sled tests using the Test device for Human Occupant Restraint 50th Percentile Male (THOR-50M) anthropomorphic test device (ATD). Testing was conducted to compare the response of an ATD equipped with an on-board data acquisition system (DAS) to that of one equipped with an off-board system. Sled testing was performed using a modified version of NHTSA’s Gold-Standard test method consisting of a generic buck with a ridged seat and a 3-point seatbelt system. Eight tests were conducted, all using a common generic 30 km/h crash pulse with a peak deceleration of 9 G’s, and a 2.5 kN load limiting 3-point seatbelt retractors without pretentioners. Four tests were conducted with each ATD, two tests with a left shoulder belt routing and two with a right shoulder belt routing to allow for evaluation of the ATD repeatability under each belt routing. Attention was given to the potential for a heating effect of the on-board DAS to influence the
Dix, JeffWard, JoshDellicolli, Anthony
A comfortable thermal environment can alleviate fatigue, reduce irritability, and improve driving safety. However, it is rather a challenge to evaluate thermal comfort inside a vehicle due to multifarious geometric and environmental factors as well as human differences. This study conducted a series of field experiments both in summer and winter conditions, measuring the thermal environment parameters inside the compartment and the skin temperature of experimental personnel, and carrying out subjective thermal sensation and comfort questionnaires. The experimental results showed that head and trunk are the most relevant parts of all human body parts to the overall thermal sensation/comfort. For overall thermal sensation, the value of regression R2 referring to head/trunk is 0.691/0.721, while those corresponding to overall thermal comfort is 0.802/0.773. And the value of regression slopes of thermal sensation and thermal comfort are 0.893/0.846 and 0.938/0.946 for head and trunk
Xu, XinZhao, LanpingYang, Zhigang
Many vehicles allow consumers to adapt the vehicle environment to their families’ needs by folding or removing one or more rear row seats. It is currently unclear how different seat configurations affect child restraint systems (CRS) installed in adjacent seats. The objective is to quantify CRS performance in far-side impacts when the seating position adjacent to the CRS is in its normal upright position, folded in half, or removed. Twelve tests were conducted. Second row seats from a recent model year minivan were obtained, including full size captain’s chairs from the outboard positions and narrow seats from the center position. Rear-facing (RF) and forward-facing (FF) CRS were installed one at a time in either the outboard or center position. The seating position adjacent to the CRS was set in either the standard upright position, folded in half, or removed. Far-side impacts were conducted at 10° anterior of pure lateral at 24.8 ± 0.2 g. The Q3s ATD was used for all tests. CRS
Mansfield, JulieKang, Yun Seok
Field accident data and vehicle crash and sled testing indicate that occupant kinematics, loading, and associated injury risk generally increase with crash severity. Further, these data demonstrate that the use of restraints, such as three-point belts, provides mitigation of kinematics and reduction in loading and injury potential. This study evaluated the role of seat belts in controlling occupant kinematics and reducing occupant loading in moderate severity frontal collisions. Frontal tests with belted and unbelted anthropomorphic test devices (ATDs) in the driver and right front passenger seats were performed at velocity changes (delta-Vs) of approximately 19 kph (12 mph) and 32 kph (20 mph) without airbag deployment. At the lower-moderate severity (19 kph), motion of the belted ATDs was primarily arrested by seat belt engagement, while motion of the unbelted ATDs was primarily arrested by interaction with forward vehicle structures. Occupant loading and injury risk was generally
Isaacs, Jessica L.George, JuffCampolettano, EamonCutcliffe, HattieMiller, Bruce
In order to further reduce the pedestrian fatalities, the improvement of pedestrian safety performance of vehicles is needed. One of the way to further understand read-world pedestrian accidents is the evaluation by using a whole-body pedestrian dummy. In the past studies, the leg, the thigh and the pelvis of the pedestrian dummy were developed and improved. However, the requirements for the biofidelity of the pedestrian dummy have been improved in SAE J2782. Therefore, this study aimed to evaluate these responses of the past studies by using new requirements and to modify these parts that didn’t meet them. The force-defection curves from 3-point lateral bending tests for the leg and the thigh were compared with the corridors updated in SAE J2782. The biofidelity of the pelvis was evaluated in dynamic lateral compression tests of the isolated pelvis. The sacrum and the pubis force-deflection curves of the iliac or the acetabulum impact were compared with the corridors. The leg and the
Asanuma, HiroyukiBae, HyejinNakamura, HidetoshiGunji, YasuakiNagashima, Akiko
This SAE Standard provides the specifications and procedures for using the H-point machine (HPM1) to audit vehicle seating positions. The HPM is a physical tool used to establish key reference points and measurements in a vehicle (see Figure 1 and Appendix A). The H-point design tool (HPD) is a simplified CAD2 version of the HPM, which can be used in conjunction with the HPM to take the optional measurements specified in this document, or used independently during product design (see Appendix D). These H-point devices provide a method for reliable layout and measurement of occupant seating compartments and/or seats. This document specifies the procedures for installing the H-point machine (HPM) and using the HPM to audit (verify) key reference points and measurements in a vehicle. The devices are intended for application at designated seating positions. They are not to be construed as tools that measure or indicate occupant capabilities or comfort. They are not intended for use in
Human Accom and Design Devices Stds Comm
This SAE Recommended Practice establishes minimum performance and test requirements for combination pelvic and upper torso occupant restraint systems provided for off-road self-propelled work machines
HFTC4, Operator Seating and Ride
The devices of this SAE Standard provide the means by which passenger compartment dimensions can be obtained using a deflected seat rather than a free seat contour as a reference for defining seating space. All definitions and dimensions used in conjunction with this document are described in SAE J1100. These devices are intended only to apply to the driver side or center occupant seating spaces and are not to be construed as instruments which measure or indicate occupant capabilities or comfort. This document covers only one H-point machine installed on a seat during each test. Certified H-point templates and machines can be purchased from: SAE International 400 Commonwealth Drive Warrendale, PA 15096-0001 Specific procedures are included in Appendix A for seat measurements in short- and long-coupled vehicles and in Appendix B for measurement of the driver seat cushion angle. Specifications and a calibration inspection procedure for the H-point machine are given in Appendix C
Human Accom and Design Devices Stds Comm
Corridors for the biofidelity of blunt impact to the back are important for sled and crash testing with Anthropomorphic Test Devices (ATDs). The Hybrid III is used in rear sled tests as part of Federal Motor Vehicle Safety Standards (FMVSS) 202a. The only corridor for biofidelity is the neck extension. Eight Post Mortem Human Subjects (PMHS) were subjected to 20 blunt impacts with a 15.2 cm (6 in.) diameter pendulum weighing 23.4 kg. The impact was below T1 at 4.5 m/s and 6.7 m/s and below T6 at 4.5 m/s centered on the back. Head, neck, and chest responses were reported in 2001 [8]. In this study, the responses were scaled to the 50th male Hybrid III, and corridors were determined defining biofidelity for blunt impacts to the back. The scaled data gives an average peak force of 3.44 kN ± 0.74 kN at T1 and 4.5 m/s, 5.08 kN ± 1.35 kN at T1 and 6.7 ms, and 3.4 kN ± 1.2 kN at T6 and 4.5 m/s. The corresponding scaled deflection was 44.0 ± 19.7 mm, 60.2 ± 21.2 mm, and 53.1 ± 16.5 mm. The
Parenteau, Chantal S.Viano, David C.Hardy, Warren N.
Blunt impacts to the back of the torso can occur in vehicle crashes due to interaction with unrestrained occupants, or cargo in frontal crashes, or intrusion in rear crashes, for example. Six pendulum tests were conducted on the back of an instrumented 50th percentile male Hybrid III ATD (Anthropomorphic Test Device) to determine kinematic and biomechanical responses. The impact locations were centered with the top of a 15-cm diameter impactor at the T1 or at T6 level of the thoracic spine. The impact speed varied from 16 to 24 km/h. Two 24 km/h tests were conducted at the T1 level and showed repeatability of setup and ATD responses. The 16 and 24 km/h tests at T1 and T6 were compared. Results indicated greater head rotation, neck extension moments and neck shear forces at T1 level impacts. For example, lower neck extension was 2.6 times and 3.8 times greater at T1 versus T6 impacts at 16 and 24 km/h, respectively. A 24 km/h test at T1 was also conducted with a seatback attached to the
Buckman, Jennifer L.Parenteau, Chantal S.Burnett, RogerViano, David C.Andrecovich, Christopher
Frontal impacts with reclined occupants are rare but severe, and they are anticipated to become more common with the introduction of vehicles with automated driving capabilities. Computational and physical human surrogates are needed to design and evaluate injury countermeasures for reclined occupants, but the validity of such surrogates in a reclined posture is unknown. Experiments with post-mortem human subjects (PMHS) in a recline posture are needed both to define biofidelity targets for other surrogates and to describe the biomechanical response of reclined occupants in restrained frontal impacts. The goal of this study was to evaluate the kinematic and injury response of reclined PMHS in 30 g, 50 km/h frontal sled tests. Five midsize adult male PMHS were tested. A simplified semi-rigid seat with an anti-submarining pan and a non-production three-point seatbelt (pre-tensioned, force-limited, seat-integrated) were used. Global motions and local accelerations of the head, pelvis, and
Richardson, RachelDonlon, John-PaulJayathirtha, MohanForman, Jason L.Shaw, GregGepner, BronislawKerrigan, Jason R.Östling, MartinMroz, KrystofferPipkorn, Bengt
Items per page:
1 – 50 of 750