Browse Topic: Foot
A significant portion of the global population about 13.6% of the world's population faces challenges due to upper limb disabilities caused by accidents, genetics, health issues or aging. These people struggle with everyday mobility tasks and often need help. Hence, the research is focused on creating special vehicle control systems to help them. This study gathers knowledge from various science and technology fields to develop foot-operated steering systems letting those with upper limb differences control vehicles with their feet. The research explores various technologies like modified steering, brain-controlled vehicles, foot-operated steering, steer-by-wire and Ackermann steering. Most of these systems are custom-made for people with upper limb differences. Ensuring safety, security, malfunction prevention, precise steering, user-friendliness and affordability is a significant challenge that demands advanced technology. Furthermore, there is a requirement to develop this system to
This user’s manual covers the small adult female Hybrid III test dummy. It is intended for technicians who work with this device. It covers the construction and clothing, disassembly and reassembly, available instrumentation, external dimensions and segment masses, as well as certification and inspection test procedures. It includes instructions for safe handling of the instrumented dummy, repairing dummy flesh, and adjusting the joints throughout the dummy
This user's manual covers the Hybrid III 10-year old child test dummy. The manual is intended for use by technicians who work with this test device. It covers the construction and clothing, assembly and disassembly, available instrumentation, external dimensions and segment masses, as well as certification and inspection test procedures. It includes guidelines for handling accelerometers, guidelines for flesh repair, and joint adjustment procedures. Finally, it includes drawings for some of the test equipment that is unique to this dummy
This procedure establishes a recommended practice for performing a lumbar flexion test to the Hybrid III 50th male anthropomorphic test device (ATD or crash dummy). This test was created to satisfy the demand from industry to have a certification test which characterizes the lumbar without interaction of other dummy components. In the past, there have not been any tests to evaluate the performance of Hybrid III 50th lumbar
The purpose of this document is to provide the user with the procedures needed to properly assemble and disassemble the 50th percentile male Hybrid III dummy, certify its components and verify its mass and dimensions. Also within this manual are guidelines for handling accelerometers, repairing flesh and setting joints
The Insurance Institute of Highway Safety (IIHS) introduced driver side small overlap test in 2012 and added the passenger side small overlap test in 2018 to the top safety pick plus ratings requirement. The injury of a passenger’s outboard right foot in the passenger-side small overlap rigid barrier (PSORB) test is of more concern compared to the driver’s outboard left foot in the driver-side small overlap rigid barrier (DSORB) test. The reason is, the passenger’s right foot is positioned just above the carpet on the toe pan, and is closer to the barrier during the PSORB impact event, unlike the driver’s outboard left foot in DSORB, which rests on a stiff foot rest. So it is often necessary to develop countermeasures to protect the passenger from lower leg injuries. This paper describes a time efficient method to model the PSORB occupant sled model using finite element modeling and it also demonstrates the model’s application in the process of countermeasure development for the
This SAE Standard provides the specifications and procedures for using the H-point machine (HPM1) to audit vehicle seating positions. The HPM is a physical tool used to establish key reference points and measurements in a vehicle (see Figure 1 and Appendix A). The H-point design tool (HPD) is a simplified CAD2 version of the HPM, which can be used in conjunction with the HPM to take the optional measurements specified in this document, or used independently during product design (see Appendix D). These H-point devices provide a method for reliable layout and measurement of occupant seating compartments and/or seats. This document specifies the procedures for installing the H-point machine (HPM) and using the HPM to audit (verify) key reference points and measurements in a vehicle. The devices are intended for application at designated seating positions. They are not to be construed as tools that measure or indicate occupant capabilities or comfort. They are not intended for use in
The devices of this SAE Standard provide the means by which passenger compartment dimensions can be obtained using a deflected seat rather than a free seat contour as a reference for defining seating space. All definitions and dimensions used in conjunction with this document are described in SAE J1100. These devices are intended only to apply to the driver side or center occupant seating spaces and are not to be construed as instruments which measure or indicate occupant capabilities or comfort. This document covers only one H-point machine installed on a seat during each test. Certified H-point templates and machines can be purchased from: SAE International 400 Commonwealth Drive Warrendale, PA 15096-0001 Specific procedures are included in Appendix A for seat measurements in short- and long-coupled vehicles and in Appendix B for measurement of the driver seat cushion angle. Specifications and a calibration inspection procedure for the H-point machine are given in Appendix C
Robots have replicated much of the human sensory experience on Mars. Cameras have given us sight; robotic hands, arms, and feet have supplied touch; and chemical and mineral sensors have let us taste and smell on Mars. Hearing is the last of the five senses yet to be exercised on the Red Planet
Occupant dynamics during passenger vehicle underride has not been extensively evaluated. The present study examined the occupant data from IIHS rear underride crash tests. A total of 35 crash tests were evaluated. The tests were classified as full-width (n = 9), 50% overlap (n = 11), and 30% overlap (n = 15). A 2010 Chevrolet Malibu impacted the rear underride guard of a stationary trailer at 35 mph. Several occupant kinematics and dynamics data including head accelerations, head injury criteria, neck shear and axial forces, neck moments, neck indices, chest acceleration, chest displacement, chest viscous criterion, sternum deflection rate, and left/right femur forces/impulses, knee displacements, tibia axial forces, upper/lower tibia moments, upper/lower tibia indices, and foot accelerations were measured. The vehicle accelerations, delta-Vs, and occupant compartment intrusions were also evaluated. The results indicated that the head and neck injury parameters were positively
In order to compare test results obtained from different crash test facilities, standardized coordinate systems need to be defined for crash test dummies, vehicle structures, and laboratory fixtures. In addition, recorded polarities for various transducer outputs need to be defined relative to positive directions of the appropriate coordinate systems. This SAE Information Report describes the standardized sign convention and recorded output polarities for various transducers used in crash testing
During Operation Iraqi Freedom and Operation Enduring Freedom, improvised explosive devices were used strategically and with increasing frequency. To effectively design countermeasures for this environment, the Department of Defense identified the need for an under-body blast-specific Warrior Injury Assessment Manikin (WIAMan). To help with this design, information on Warfighter injuries in mounted under-body blast attacks was obtained from the Joint Trauma Analysis and Prevention of Injury in Combat program through their Request for Information interface. The events selected were evaluated by Department of the Army personnel to confirm they were representative of the loading environment expected for the WIAMan. A military case review was conducted for all AIS 2+ fractures with supporting radiology. In Warfighters whose injuries were reviewed, 79% had a foot, ankle or leg AIS 2+ fracture. Distal tibia, distal fibula, and calcaneus fractures were the most prevalent. The most common
This SAE Standard specifies brake system performance and test criteria to enable uniform evaluation of the braking capability of self-propelled, rubber-tired and tracked asphalt pavers. Service, secondary, and parking brakes are included
SAE International defines six levels of autonomous driving system, four of which include a change of control from the system to the driver in certain conditions. When vehicle control changes from the system to a human driver, a safe transition time is necessary. The present study focuses on level 3 automation, in which the system controls driving in ordinary conditions, but the human driver is expected to intervene in emergency situations. The aim of this study was to investigate the relationship between driver posture and transition time. Driver posture included four components: backrest angle, seat position, foot position, and arm position. These were adjusted to investigate a total of 30 posture patterns. In addition, the situation in which the driver was not watching the road, but instead using a tablet computer was investigated. The driver’s braking and steering reaction times were measured for a highway-driving scenario in which a truck dropped cargo in front of the vehicle
This user's manual covers the Hybrid III 10-year old child test dummy. The manual is intended for use by technicians who work with this test device. It covers the construction and clothing, assembly and disassembly, available instrumentation, external dimensions and segment masses, as well as certification and inspection test procedures. It includes guidelines for handling accelerometers, guidelines for flesh repair, and joint adjustment procedures. Finally, it includes drawings for some of the test equipment that is unique to this dummy
This procedure establishes a recommended practice for performing a Lumbar Flexion test to the Hybrid III 50th Male Anthropomorphic Test Device (ATD or crash dummy). This test was created to satisfy the demand from industry to have a certification test which characterizes the lumbar without interaction of other dummy components. In the past, there have not been any tests to evaluate the performance of Hybrid III 50th lumbar
At the collision moment, a driver’s lower extremity will be in different foot position, which leads to the different posture of the lower extremity with various muscle activations. These will affect the driver’s injury during collision, so it is necessary to investigate further. A simulated collision scene was constructed, and 20 participants (10 male and 10 female) were recruited for the test in a driving simulator. The braking posture and muscle activation of eight major muscles of driver’s lower extremity (both legs) were measured. The muscle activations in different postures were then analyzed. At the collision moment, the right leg was possible to be on the brake (male, 40%; female, 45%), in the air (male, 27.5%; female, 37.5%) or even on the accelerator (male, 25%; female, 12.5%). The left leg was on the floor all along. Muscle activation of gastrocnemius, vastus medialis and vastus lateralis of right legs of male drivers in brake pedal region were significantly larger compared
Due to the accidents of the motor vehicles and the osteoporosis, many people enface a lot of troubles and sometimes necessities for replacement of their knee joints. Practically, mechanical properties and surface characteristics of Total Knee Replacement (TKR) are very important parameters for improving the performance response in human. The meniscus is a small element and an essential part of the TKR. The knee meniscus has special feature allows the easy dynamic loading and motion of leg and foot with high accuracy and good balance. Therefore design and analysis of the geometrical shape for the meniscus replacement is worthy to be studied. In this paper, a proposed design using a computer software package has been presented. 3D simulation analyses of a variety of meniscus thickness and different materials under different loads are investigated. The compression stresses and surfaces deformations are determined numerically through the Finite Element Analysis (FEA) technique. A developed
The devices of this SAE Standard provide the means by which passenger compartment dimensions can be obtained using a deflected seat rather than a free seat contour as a reference for defining seating space. All definitions and dimensions used in conjunction with this document are described in SAE J1100. These devices are intended only to apply to the driver side or center occupant seating spaces and are not to be construed as instruments which measure or indicate occupant capabilities or comfort. This document covers only one H-point machine installed on a seat during each test. Certified H-point templates and machines can be purchased from: SAE International 400 Commonwealth Drive Warrendale, PA 15096-0001 Specific procedures are included in Appendix A for seat measurements in short- and long-coupled vehicles and in Appendix B for measurement of the driver seat cushion angle. Specifications and a calibration inspection procedure for the H-point machine are given in Appendix C
Nowadays, studying the human body response in a seated position has attracted a lot of attention as environmental vibrations are transferred to the human body through floor and seat. This research has constructed a multi-body biodynamic human model with 17 degrees of freedom (DOF), including the backrest support and the interaction between feet and ground. Three types of human biodynamic models are taken into consideration: the first model doesn't include the interaction between the feet and floor, the second considers the feet and floor interaction by using a high stiffness spring, the third one includes the interaction by using a soft spring. Based on the whole vehicle model, the excitation to human body through feet and back can be obtained by ride simulation. The simulation results indicate that the interaction between feet and ground exerts non-negligible effect upon the performance of the whole body vibration by comparing the three cases
This user’s manual covers the small adult female Hybrid III test dummy. It is intended for technicians who work with this device. It covers the construction and clothing, disassembly and reassembly, available instrumentation, external dimensions and segment masses, as well as certification and inspection test procedures. It includes instructions for safe handling of the instrumented dummy, repairing dummy flesh, and adjusting the joints throughout the dummy
Transport Canada, through its ecoTECHNOLOGY for Vehicles program, retained the services of the National Research Council Canada to undertake a test program to examine the operational and human factors considerations concerning the removal of the side mirrors on a Class 8 tractor equipped with a 53 foot dry van semi-trailer. Full scale aerodynamic testing was performed in a 2 m by 3 m wind tunnel on a system component basis to quantify the possible fuel savings associated with the removal of the side mirrors. The mirrors on a Volvo VN780 tractor were removed and replaced with a prototype camera-based indirect vision system consisting of four cameras mounted in the front fender location; two cameras on either side of the vehicle. Four monitors mounted in the vehicle - two mounted on the right A-pillar and two mounted on the left A-pillar - provided indirect vision information to the vehicle operator. Four commercial drivers were asked to perform a series of tests simulating typical
A soft, wearable device that mimics the muscles, tendons, and ligaments of the lower leg could aid in the rehabilitation of patients with foot-ankle disorders such as drop foot, said Yong-Lae Park, an assistant professor of robotics at Carnegie Mellon University, Pittsburgh, PA
This SAE Standard is intended to improve operator efficiency and convenience by providing guidelines for the uniformity of location and direction of motion of operator controls used on industrial wheeled equipment. The controls covered are those centrally located at the operator's normal position
This user’s manual covers the Hybrid III 6-year-old child test dummy, including changes specified in 49 CFR Part 572, Subpart N in the final rule dated December 9, 2010. It is intended for technicians who work with this device. It covers the construction and clothing, disassembly and reassembly, available instrumentation, external dimensions and segment masses, as well as certification and inspection test procedures. Appendix A contains guidelines for safe handling of instrumented dummies. Appendix B contains instructions for repairing dummy flesh. Appendix C includes procedures for adjusting the joints throughout the dummy
The research question investigated in this study is what are the key attributes of foot and ankle injury in the between-rail frontal crash? For the foot and ankle, what was the type of interior surface contacted and the type of resulting trauma? The method was to study with in-depth case reviews of NASS-CDS cases where a driver suffered an AIS=2 foot or ankle injury in between-rail crashes. Cases were limited to belted occupants in vehicles equipped with air bags. The reviews concentrated on coded and non-coded data, identifying especially those factors contributing to the injuries of the driver's foot/ankle. This study examines real-world crash data between the years 1997-2009 with a focus on frontal crashes involving 1997 and later model year vehicles. The raw data count for between-rail crashes was 732, corresponding to 227,305 weighted, tow-away crashes. A previous study suggested that the frequency of between-rail crashes (where the direct damage is between the 2 longitudinal
Improvised Explosive Devices (IEDs) and Anti-Tank (AT) mines are a significant threat for military vehicles and their occupants. These explosive devices are designed for the destruction and damage of armored and other vehicles, by using them in battle fields on routes of army vehicles. The blast event results in effects like shockwave, fragments, fire, gases, blast overpressure as well as the vertical impulse load. A blast event affects occupants inside the vehicle in the form of various types of injuries (lower leg, spinal, chest, head etc) and trauma. The Lower leg is the foremost injured body region in a blast event. The term lower leg is used to designate the tibia, fibula and the foot/ankle complex in this paper. Detonations occurring under a vehicle produce high velocity floorboard flutter/deformation and transmit axial loads to lower leg and create injuries. In order to mitigate lower leg injury, countermeasures like seat mounted footrests, surrogate floors; energy-absorbing
The design and analysis plays a major role for determining the root cause for the problem. Once the problem and its root cause were well defined, the solution for addressing the problem would be made clear. The engine excitation frequency and the chassis natural frequency were coming closer and it leads chassis to resonate. The resonance increases vibration levels at the Tractor footrest which was reducing comfort level of the operator. The vibration reduction methodologies like stiffening the structure, isolating the source from excitation and dampening techniques were studied to reduce vibration levels at footrest. The benchmarking evaluation was done with selected tractor models qualitatively to assess the difference in vibration level perception for customers. The test methodology and data acquisition methodology was formulated and used for better analysis and discussions. In this paper, the author demonstrated the systematic approach to reduce tractor footrest vibrations by 20%-25
This recommended practice covers a rail concept stand that may be used for horizontal disassembly and reassembly, and maintenance, incorporating certain design features which are defined herein. These features include the rail dimensions and width, length and height of stand to insure compatibility with rail concept type transport and positioning trailers
Items per page:
50
1 – 50 of 177