Browse Topic: Head

Items (1,067)
The introduction of unrestrained torso neck braces as a safety intervention for helmeted motorcycle riders has introduced a set of unsolved challenges. Understanding the injury prevention afforded by these devices depends on a reliable test methodology by which to critically evaluate their efficacy against the most common mechanisms of neck injury. An inverted pendulum test is proposed to evaluate compression flexion (CF), tension flexion (TF), and tension extension (TE) of the neck using a Hybrid III anthropomorphic test device (HIII ATD) neck and a motorcycle-specific ATD (MATD) neck. In addition to investigating methods to quantify the beneficial effects of a neck brace, potential adverse effects of such a device are evaluated by measuring and evaluating relevant neck response measures. To that end, measured data using a current neck brace were analyzed and applied to various injury criteria related to the ATD neck used to compare the injury risk predicted by each parameter. The
de Jongh, Cornelis U.Basson, Anton H.Knox, Erick H.Leatt, Christopher J.
With the capability of predicting detailed injury of occupants, the Human Body Model (HBM) was used to identify potential injuries for occupants in car impact events. However, there are few publications on using HBM in the aviation industry. This study aims to investigate and compare the head, neck, lumbar spine and thoracic responses of the Hybrid III and the THUMS (Total Human Model for Safety) model in the horizontal 26g and vertical 19g sled tests required by the General Aviation Aircraft Airworthiness Regulations. The HIC of THUMS and Hybrid III did not exceed the requirements of airworthiness regulations. Still, THUMS had higher intracranial pressures and intracranial stresses, which could result in brain injury to the occupants. In vertical impact, the highest stress of the neck of THUMS appears at the cervical spine C2 and the upper neck is easily injured; in horizontal impact, the cervical spine C7 has the highest load, and the lower neck is easily injured. Due to the low
Shi, XiaopengDing, XiangheGuo, KaiLiu, TianfuXie, Jiang
Rear-end vehicle collisions may lead to whiplash-associated disorders (WADs), comprising a variety of neck and head pain responses. Specifically, increased axial head rotation has been associated with the risk of injuries during rear impacts, while specific tissues, including the capsular ligaments, have been implicated in pain response. Given the limited experimental data for out-of-position rear impact scenarios, computational human body models (HBMs) can inform the potential for tissue-level injury. Previous studies have considered external boundary conditions to reposition the head axially but were limited in reproducing a biofidelic movement. The objectives of this study were to implement a novel head repositioning method to achieve targeted axial rotations and evaluate the tissue-level response for a rear impact condition. The repositioning method used reference geometries to rotate the head to three target positions, showing good correspondence to reported interverbal rotations
Reis, Matheus SeifCronin, Duane
Forward-facing child restraint systems (FF CRS) and high-back boosters often contact the vehicle seat head restraint (HR) when installed, creating a gap between the back surface of the CRS and the vehicle seat. The effects of HR interference on dynamic CRS performance are not well documented. The objective of this study is to quantify the effects of HR interference for FF CRS and high-back boosters in frontal and far-side impacts. Production vehicle seats with prominent, removeable HRs were attached to a sled buck. One FF CRS and two booster models were tested with the HR in place (causing interference) and with the HR removed (no interference). A variety of installation methods were examined for the FF CRS. A total of twenty-four tests were run. In frontal impacts, HR interference produced small but consistent increases in frontal head excursion and HIC36. Head excursions were more directly related to the more forward initial position rather than kinematic differences caused by HR
Mansfield, Julie A.
A team led by University of Maryland computer scientists invented a camera mechanism that improves how robots see and react to the world around them. Inspired by how the human eye works, their innovative camera system mimics the tiny involuntary movements used by the eye to maintain clear and stable vision over time. The team’s prototyping and testing of the camera — called the Artificial Microsaccade-Enhanced Event Camera (AMI-EV) — was detailed in a paper published in the journal Science Robotics in May 2024
Most humans rely heavily on our visual abilities to function in the world—we are optically oriented. In the broadest sense, “optics” refers to the study of sight and light. At its foundation, Radiant’s business is all about optics: measuring light and the properties of light in relation to the human eye. Photometry is the science of light according to our visual perception. Colorimetry is the science of color: how our eyes interpret different wavelengths of light
The advent of neck braces for the helmeted motorcycle rider has introduced a pertinent research question: To what extent do they reduce measures related to the major mechanism of neck injury in unrestrained torso accidents, i.e., compression flexion (CF)? This question requires a suitable method of testing and evaluating the measures for a load case resulting in the required mechanism. This study proposes a weighted swinging anvil striking the helmeted head of a supine HIII ATD by means of a near vertex impact with a low degree of anterior head impact eccentricity to induce CF of the neck. The applied impact was chosen for the baseline (no neck brace) so that the upper and lower neck axial forces approached injury assessment reference values (IARV). The head impact point evaluated represents those typically associated with high-energy burst fractures occurring within the first 20 ms, with possible secondary disruption of posterior ligaments. The proposed test can be used to evaluate
de Jongh, Cornelis U.Basson, Anton H.Knox, Erick H.Leatt, Christopher J.
Researchers have found a way to bind engineered skin tissue to the complex forms of humanoid robots. This brings with it potential benefits to robotic platforms such as increased mobility, self-healing abilities, embedded sensing capabilities and an increasingly lifelike appearance. Taking inspiration from human skin ligaments, the team, led by Professor Shoji Takeuchi of the University of Tokyo, included special perforations in a robot face, which helped a layer of skin take hold. Their research could be useful in the cosmetics industry and to help train plastic surgeons
Ergonomics plays an important role in automobile design to achieve optimal compatibility between occupants and vehicle components. The overall goal is to ensure that the vehicle design accommodates the target customer group, who come in varied sizes, preferences and tastes. Headroom is one such metric that not only influences accommodation rate but also conveys a visual perception on how spacious the vehicle is. An adequate headroom is necessary for a good seating comfort and a relaxed driving experience. Headroom is intensely discussed in magazine tests and one of the key deciding factors in purchasing a car. SAE J1100 defines a set of measurements and standard procedures for motor vehicle dimensions. H61, W27, W35, H35 and W38 are some of the standard dimensions that relate to headroom and head clearances. While developing the vehicle architecture in the early design phase, it is customary to specify targets for various ergonomic attributes and arrive at the above-mentioned
Rajakumaran, SriramS, RahulVasireddy, Rakesh MitraNair, Suhas
The history of construction materials and methods has evolved over time, with Portland cement concrete being the most widely used material on Earth. Constructing habitats and infrastructure on the Moon and Mars, however, requires a different approach given the lack of such conventional construction resources and materials. Recognizing the need for in-situ resource utilization (ISRU) to support long-duration human missions to the Moon and Mars, NASA’s Kennedy Space Center and Sidus Space have developed a novel three-dimensional print head apparatus using regolith-polymer mixtures as a building material
Seatback and head restraints are the primary restraining devices in rear-impact collisions. The seatback failures expose front seat occupants to dive deep into the rear compartment survival space. Furthermore, it allows the occupants to get in a position with lower spinal tolerance to the impact direction. This paper employs sled tests to demonstrate the dangers of seatback failures in severe rear impact by allowing the occupants to orient their spine in its lowest tolerance zone to the impact direction. Furthermore, the sled test shows the potential of head pocketing phenomena and torso augmentation producing compressive cervical spine loading enough to cause first-order neck buckling. Finally, the results of collapsing seatback dynamics are compared to the strong seatback performance by conducting a similar test with a strong ABTS seatback. The study demonstrates that the strong seatbacks in severe rear impacts produce favorable outcomes while keeping the occupant in their higher
Thorbole, Chandrashekhar
Computational and experimental studies have been undertaken to investigate injurious head-first impacts (HFI), which can occur during automotive rollovers. Recent studies assume a torso surrogate mass (TSM) boundary condition, wherein the first or first two thoracic vertebrae are potted and constrained to only move in the vertical loading direction. The TSM boundary condition has not been compared with a full body (FB) model computationally or experimentally for HFI. In this study, the Global Human Body Models Consortium 50th percentile male detailed human body model (M50-O, Version 6.0) was applied to compare the kinematic, kinetic, and injury response of an HFI with a TSM boundary condition (M50-TSM), and a full body boundary condition (M50-FB). Impacts (to M50-TSM and M50-FB) were simulated between the head and a rigid plate using a commercial FE code (LS-DYNA). The impact velocity of 3.1 m/s corresponded to the onset of spinal injury in diving reconstructions, and the impact
Morgan, M.I.Corrales, M.Cripton, P.Cronin, D.S.
Traumatic brain injury is a leading cause of global death and disability. Clinically relevant large animal models are a vital tool for understanding the biomechanics of injury, providing validation data for computation models, and advancing clinical translation of laboratory findings. It is well-established that large angular accelerations of the head can cause TBI, but the effect of head impact on the extent and severity of brain pathology remains unclear. Clinically, most TBIs occur with direct head impact, as opposed to inertial injuries where the head is accelerated without direct impact. There are currently no active large animal models of impact TBI. Sheep may provide a valuable model for studying TBI biomechanics, with relatively large brains that are similar in structure to that of humans. The aim of this project is to develop an ovine model of impact TBI to study the relationships between impact mechanics and brain pathology. An elastic energy impact injury device has been
Magarey, Charlie CQuarrington, Ryan DJones, Claire F
Objective: This study aimed to optimize restraint systems and improve safety equity by using parametric human body models (HBMs) and vehicle models accounting for variations in occupant size and shape as well as vehicle type. Methodology: A diverse set of finite element (FE) HBMs were developed by morphing the GHBMC midsize male simplified model into statistically predicted skeleton and body shape geometries with varied age, stature, and body mass index (BMI). A parametric vehicle model was equipped with driver, front passenger, knee, and curtain airbags along with seat belts with pretensioner(s) and load limiter and has been validated against US-NCAP results from four vehicles (Corolla, Accord, RAV4, F150). Ten student groups were formed for this study, and each group picked a vehicle model, occupant side (driver vs. passenger), and an occupant model among the 60 HBMs. About 200 frontal crash simulations were performed with 10 combinations of vehicles (n = 4) and occupants (m = 8
Yang, ZhenhaoDesai, AmoghsiddBoyle, KyleRupp, JonathanReed, MatthewHu, Jingwen
The objective of this study was to compare head, neck, and chest injury risks between front and rear-seated Hybrid III 50th-percentile male anthropomorphic test devices (ATDs) during matched frontal impacts. Seven vehicles were converted to rear seat test bucks (two sedans, three mid-size SUVs, one subcompact SUV, and one minivan) and then used to perform sled testing with vehicle-specific frontal NCAP acceleration pulses and a rear seated (i.e., second row) Hybrid III 50th male ATD. Matched front seat Hybrid III 50th male ATD data were obtained from the NHTSA Vehicle Crash Test Database for each vehicle. HIC15, Nij, maximum chest acceleration, and maximum chest deflection were compared between the front and rear seat tests, as well as between vehicles with conventional and advanced three-point belt restraint systems in the rear seat. Additionally, a modified version of the NCAP frontal star rating was calculated for the front and rear seat tests. All injury metrics, except for chest
Bianco, Samuel T.Albert, Devon L.Guettler, Allison J.Hardy, Warren N.Kemper, Andrew R.
Oblique motor vehicle crashes can cause serious head or brain injuries due to contact with interior vehicle structures even with the deployment of air bags, as they are not yet completely successful in preventing traumatic brain injury. Rotational head velocity is strongly correlated to the risk of brain injury, and this head motion is potentially related to the tangential friction force developed during contact between the head and air bags. Although crash test dummy head skins are designed with appropriate mass properties and anthropometry to simulate the normal direction impact response of the human head, it is not known whether they accurately represent the frictional properties of human skin during air bag interaction. This study experimentally characterized the dynamic friction coefficient between human/dummy skins and air bag fabrics using a pin-on-disc tribometer. Human skin samples were harvested from five locations (left and right forehead, left and right cheek, and chin
Noll, ScottDong, ShengKang, Yun-SeokBolte, JohnStammen, JasonMoorhouse, Kevin
This SAE Standard describes head position contours and procedures for locating the contours in a vehicle. Head position contours are useful in establishing accommodation requirements for head space and are required for several measures defined in SAE J1100. Separate contours are defined depending on occupant seat location and the desired percentage (95 and 99) of occupant accommodation. This document is primarily focused on application to Class A vehicles (see SAE J1100), which include most personal-use vehicles (passenger cars, sport utility vehicles, pick-up trucks). A procedure for use in Class B vehicles can be found in Appendix B
Human Accom and Design Devices Stds Comm
Head worn displays (HWD) can display a variety of information ranging from a full complement of primary flight information (PFI), including enhanced, synthetic, or combined vision system imagery to simple representations of airspeed, altitude, or heading to operationally specific information that may not be related aircraft performance or control. The display functions discussed in this ARP are limited to intended functions related to aircraft control and management and the presentation of PFI. The material provided in this document consists of recommendations related to the design, analysis, testing, and intended functions of head worn displays (HWDs) for normal, utility, acrobatic, commuter, and transport category aircraft and special classes of aircraft. The content is targeted to HWDs that provide navigation, control and primary flight guidance information including terrain and obstacle avoidance. The content of the document is limited to statements of general design and
G-10HWD Head Worn Display Committee
Scientists have developed electrode arrays that can be funneled through a small hole in the skull and deployed over a relatively large surface over the brain’s cortex. The technology may be particularly useful for providing minimally invasive solutions for epileptic patients
Traumatic brain injury (TBI) is the leading cause of death and long-term disability in road traffic accidents (RTAs). Researchers have examined the effect of vehicle front shape and pedestrian body size on the risk of pedestrian head injury. On the other hand, the relationship between vehicle front shape parameters and pedestrian TBI risks involving a diverse population with varying body sizes has yet to be investigated. Thus, the purpose of this study was to comprehensively study the effect of vehicle front shape parameters and various pedestrian bodies ranging from 95th percentile male (AM95) to 6 years old (YO) child on the dynamic response of the head and the risk of TBIs during primary (vehicle) impact. At three different collision speeds (30, 40, and 50 km/h), a total of 36 car-to-pedestrian collisions (CPCs) were reconstructed using three different vehicle types (Subcompact passenger sedan, mid-sedan, and sports utility vehicle (SUV)) and four distinct THUMS pedestrian finite
Gunasekaran, KalishIslam, Sakib UlMao, Haojie
This document establishes acceptable design criteria for instrument and cockpit illumination for general aviation aircraft
A-20A Crew Station Lighting
This user’s manual covers the small adult female Hybrid III test dummy. It is intended for technicians who work with this device. It covers the construction and clothing, disassembly and reassembly, available instrumentation, external dimensions and segment masses, as well as certification and inspection test procedures. It includes instructions for safe handling of the instrumented dummy, repairing dummy flesh, and adjusting the joints throughout the dummy
Dummy Testing and Equipment Committee
Extremely uncomfortable levels of bounce and pitch vibrations are produced when a CV moves over uneven terrain. The present study was carried out to ascertain the vibrational response at the driver’s, commander’s and trooper’s seats. A 23 -degrees of freedom (DOF) lumped parameter 3-D model of a combined CV and human body was made. The vehicle had 15 DOF corresponding to the bounce, pitch and roll of the hull (sprung mass) and bounce motions of the 12 wheel stations (unsprung masses) on either side. The human body was idealized as having 8 DOF corresponding to bounce motions of the pelvis, abdomen, diaphragm, thorax, torso, back and head. The seat was also assigned a bounce DOF. The lumped masses of the body parts were distributed and connected by springs. The differential equations of motion for the linear rigid body model were formulated and the natural frequencies of different parts of the human body and the military tank were determined by eigenvalue analysis using MATLAB
Chandramohan, SujathaSinha, Adheesh
This user's manual covers the Hybrid III 10-year old child test dummy. The manual is intended for use by technicians who work with this test device. It covers the construction and clothing, assembly and disassembly, available instrumentation, external dimensions and segment masses, as well as certification and inspection test procedures. It includes guidelines for handling accelerometers, guidelines for flesh repair, and joint adjustment procedures. Finally, it includes drawings for some of the test equipment that is unique to this dummy
Dummy Testing and Equipment Committee
This paper presents an analysis on the position of driver eye height as a function of their standing height, weight, biological sex, seat back angle and seat bottom angle. Typically, eye heights are estimated based on standing height, or measured from a rigid seated position with a vertical seat back. While reasonably close, these estimated eye heights are generally not correct for individuals seated in deformable vehicle seats with non-vertical seat back angles. Thus, these measurements tend to overestimate the participants eye height in more ecologically probable scenarios, such as driver eye height while operating a vehicle. In this study, eye measurements were taken from a standing position and while seated on a rigid surface and then compared to the same participant’s eye height measured while seated on six different representative vehicle seats with seat back angles of 20, 25, and 30 degrees respectively. Furthermore, this study also measured for-aft positioning of the
Roescher, ToddRandles, BryanWelcher, Judson
This study focused on occupant responses in very large pickup trucks in rollovers and was conducted in three phases. Phase 1 - Field data analysis: In a prior study [9], 1998 to 2020 FARS data were analyzed; Pickup truck drivers with fatality were 7.4 kg heavier and 4.6 cm taller than passenger car drivers. Most pickup truck drivers were males. Phase 1 extended the study by focusing on the drivers of very large pickup trucks. The size of 1999-2016 Ford F-250 and F-350 drivers involved in fatal crashes was analyzed by age and sex. More than 90% of drivers were males. The average male driver was 179.5 ± 7.5 cm tall and weighed 89.6 ± 18.4 kg. Phase 2 – Surrogate study: Twenty-nine male surrogates were selected to represent the average size of male drivers of F-250 and F-350s involved in fatal crashes. On average, the volunteers weighed 88.6 ± 5.2 kg and were 180.0 ± 3.2 cm tall with a 95.2 ± 2.2 cm seated height. The volunteers were lap-shoulder belted in the driver seat of a 2002 Ford F
Burnett, RogerParenteau, ChantalVogler, MichelleToomey, DanielOrlowski, KennethKrishnaswami, Ram
Child occupants have not been studied in far-side impacts as thoroughly as frontal or near side crash modes. The objective is to determine whether the installation method of child restraint systems (CRS) affects far-side crash performance. Twenty far-side impact sled tests were conducted with rear-facing (RF) CRS, forward-facing (FF) CRS, high-back boosters, and belt only. Each was installed on second row captain’s chairs from a recent model year minivan. Common CRS installation errors were tested, including using the seat belt in Emergency Locking Mode (ELR) instead of Automatic Locking Mode (ALR), not attaching the top tether, and using both the lower anchors (LA) and seat belt together. Correct installations were also tested as a baseline comparison. Q3s and Hybrid III 6-year-old (6yo) anthropomorphic test devices (ATDs) were used. Lateral displacements of the CRS and head were examined as well as injury metrics in the head, spine, and torso. For RF CRS, the ELR belt installation
Mansfield, Julie
Injury assessment by using a whole-body pedestrian dummy is one of the ways to investigate pedestrian safety performance of vehicles. The authors’ group has improved the biofidelity of the lower limb and the pelvis of the mid-sized male pedestrian dummy (POLAR III) by modifying those components. This study aims to evaluate the biofidelity of the whole-body response of the modified dummy in full-scale impact tests. The pelvis, the thigh and the leg of POLAR III have been modified in a past study by optimizing their compliance by means of the installation of plastic and rubber parts, which were used for the tests. The generic buck developed for the assessment of pedestrian dummy whole-body impact response and specified in SAE J3093 was used for this study. The buck representing the geometry of a small family car is comprised of six parts: lower bumper, bumper, grille, hood edge, hood and windshield. Tests were performed by conforming to SAE J2782 that specifies test conditions to
Asanuma, HiroyukiBae, HyejinNakamura, HidetoshiGunji, YasuakiNagashima, AkikoMori, Fumie
The National Highway Traffic Safety Administration (NHTSA) has developed the Large Omnidirectional Child (LODC) Anthropomorphic Test Device (ATD) to improve the biofidelity of the currently available Hybrid III 10-year-old (HIII-10C) ATD. The improvements of the LODC over the HIII-10C include changes in sub-assemblies such as the head and neck, where the LODC head is a redesigned HIII-10C head with pediatric mass properties and the neck has a modified atlanto-occipital joint to replicate observations made from human specimens. The current study focuses on developing a dynamic, nonlinear finite element (FE) model of the LODC ATD head and neck complex. The FE mesh is generated using HyperMesh based on the three-dimensional CAD model. The material data, contact definitions and initial conditions are defined in LS-PrePost and converted to LS-Dyna solver input format. The initial and boundary conditions are defined to replicate the neck flexion experimental tests. Next, an inverse method is
Yang, PeiyuKatangoori, Divya ReddyNoll, Scott
With the development of active safety technology, effort has gradually shifted to preventing or minimizing car crashes. Automatic Emergency Braking Technology (AEB) can avoid accidents by warning and even automatic braking, but there is a contradiction between the accompanying occupant out-of-position and traditional passive safety design. In addition, the 2025 version of C-NCAP plans to add neck injury assessment requirements for AEB [1]. In order to study the kinematic response of the occupant's neck under AEB, a neck finite element model with active muscle force is established in this paper. Firstly, the open-source THOR-50M neck geometric model is used for finite element discretization. Secondly, the neck FE model of THOR-50M is verified through the qualification procedure of the NHTSA standard. Thirdly, according to the geometric features of human neck muscles in Zygote Body database, the neck muscle parameters are preliminarily determined. Finally, the neck muscle parameters are
Wu, XiaofanJiang, BinhuiBai, ZhonghaoZhang, Guanjun
Human thoracic injury under frontal collisions is an inevitable problem in vehicle safety research. Compared with the Multiple Rigid-Body Models (MRBMs) and Finite Element Human Body Models (FEHBMs), Mathematical Equivalent Models (MEMs) can not only provide important data but also improve the research efficiency. The current thoracic MEMs usually adapted the mechanical isolation method to isolate the thorax from the human body; therefore, the effects of the head, neck, and lower body internal organs on the mechanical responses of the thorax are not considered. In this article, a new thoracic MEM, named as Improved Consistent Lobdell Model (ICLM), is developed based on the concentrated mass-spring-damping system to consider the energy absorbed by the deformation of the internal soft tissue and the motion hysteresis of the head, neck, and lower body. Thorax equivalent stiffness curve predicted by the ICLM has a good fit with the corridor obtained by the Post-Mortem Human Subjects (PMHS
Liu, ZhixinZheng, HongMa, Weijie
The SJD Barcelona Children’s Hospital’s pediatric maxillofacial surgery team has used 3D printing technology to successfully perform a complicated operation to resect a malignant tumor in an 11-year-old boy. Given the complexity of the operation, the medical team, led by Dr. Josep Rubio, head of the maxillofacial surgery unit at SJD, decided to carry out preoperative planning and simulation using BCN3D’s technology and 3D anatomical models of the parts of the patient’s skull
The purpose of this document is to provide the user with the procedures needed to properly assemble and disassemble the 50th percentile male Hybrid III dummy, certify its components and verify its mass and dimensions. Also within this manual are guidelines for handling accelerometers, repairing flesh and setting joints
Dummy Testing and Equipment Committee
E-25 General Standards for Aerospace and Propulsion Systems
The James Webb Space Telescope is set to show us some of the first stars in the universe, with its enormous and powerful mirrors capturing bits of light from more than 13 billion years ago. Meanwhile, technology developed as part of the decades-long effort to build Webb has already improved the vision of millions back on Earth by driving major improvements to LASIK eye surgery
This paper proposes a new method to improve the fit between the neck finite element calculation results and the experimental data through multi-objective optimization of cervical ligament parameters. By refining a previously established finite element model of the neck and improving the fineness of vertebrae and other structures, a new finite element model of the neck was established. The new model adopts the same material property parameters as the previous model. We performed many simulation calculations, each time only one ligament in the model was removed, leaving other structures unchanged. By observing the changes in the angle of the neck joints in the neck torsion experiment of the model before and after the ligament was removed, the influence of the ligament on the model was obtained. The six ligaments with the largest contribution are selected, and their laxity is optimized for multi-objective research, and the optimal solution for the laxity of the selected ligaments is
Yang, ShuaijunSong, XueweiWang, PengWang, Nan
A novel, electrically self-propelled, mobile, free-standing crash sled was constructed with a relatively minimal budget (i.e., ≤ $10,000). The crash sled was designed to simulate occupant driver or passenger seat movement in minor impacts at varying angles with minimal, if any, component replacement necessary between tests. Validation of the crash sled in a rear-end only configuration for determination of occupant accelerations was performed. Minor rear-end crash tests involving human occupants were conducted utilizing a 2007 Toyota Camry target vehicle and a 2005 Toyota Camry bullet vehicle with changes in velocity for the target vehicle ranging between 2.8 km/h and 7.7 km/h. Vehicle instrumentation consisted of tri-axial accelerometers affixed to the center tunnels near their respective center of gravities. Human occupant instrumentation occurred only in the target vehicle and involved tri-axial accelerometers at the head, thorax, and lumbar spine. Peak longitudinal head and lumbar
Vigil, Cole MackenzieSalboro, ConradJorgensen, MichaelJones, BrianBrink, JustinSwinford, Scott
A comfortable thermal environment can alleviate fatigue, reduce irritability, and improve driving safety. However, it is rather a challenge to evaluate thermal comfort inside a vehicle due to multifarious geometric and environmental factors as well as human differences. This study conducted a series of field experiments both in summer and winter conditions, measuring the thermal environment parameters inside the compartment and the skin temperature of experimental personnel, and carrying out subjective thermal sensation and comfort questionnaires. The experimental results showed that head and trunk are the most relevant parts of all human body parts to the overall thermal sensation/comfort. For overall thermal sensation, the value of regression R2 referring to head/trunk is 0.691/0.721, while those corresponding to overall thermal comfort is 0.802/0.773. And the value of regression slopes of thermal sensation and thermal comfort are 0.893/0.846 and 0.938/0.946 for head and trunk
Xu, XinZhao, LanpingYang, Zhigang
Items per page:
1 – 50 of 1067