Browse Topic: Biodiesel

Items (937)
225225
Coelho, Gabriella VilelaAlvarez, Carlos Eduardo CastillaRibeiro, Jessica Oliveira Notório
The transition to renewable fuels is critical to reduce greenhouse gas emissions and achieve carbon neutrality in the transportation sector. Ethanol has emerged as a promising biofuel for compression ignition (CI) engines due to its renewability and low-carbon profile. However, its low cetane number, high latent heat of vaporization, poor lubricity, and corrosive properties severely limit its auto-ignition capability and durable operation under conventional CI conditions. Building upon previous work using a Rapid Compression Machine (RCM) to assess ignition improvers for ethanol, this study explores a broader range of fuel formulations to enhance ethanol-based combustion. A total of nine blends were prepared, consisting predominantly of hydrated ethanol (50-80% by volume), combined with 5-25% biodiesel and up to 5% of a commercial ignition improvers. The biodiesel component acted both as a co-solvent and as a combustion stabilizer, particularly under cold-start conditions. Tests were
Bacic, Denise AmatoSánchez, Fernando ZegarraTicona, Epifanio MamaniPradelle, Renata Nohra ChaarSantos Coelho, Lucas dosMota, Crislane Almeida Pereira daPradelle, Florian
The increasing demand for reduced emissions in the automotive sector has driven research into alternative fuels, including Diesel, Biodiesel, and ethanol blends. This study aims to optimize mixing rules to predict the physicochemical properties of ternary fuel blends, essential for improving engine performance and minimizing emissions. Seven established mixing rules—Kay’s Equation, Semilogarithmic Equation, Grunberg-Nissan Equation, Modified Lederer Equation, Hu-Burns Equation, Power Law, and Polynomial Equation—were evaluated to estimate key properties such as kinematic viscosity, cetane number, cetane index, flash point, pour point, and cloud point. A comprehensive database, sourced from previous literature, included pure fuel properties and blend data for 33 to 101 cases. MATLAB was used to implement nonlinear optimization, adjusting coefficients to minimize error metrics like Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Standard Deviation (SD). The physical
Tirado, Carlos Andrés AbantoLobato, Maria Letícia CostaPassos, Sthefany FaberPradelle, Renata Nohra ChaarPradelle, Florian
This study presents a comparative Life Cycle Assessment (LCA) of urban buses powered by Diesel S10 with three fuel blends: B7 (7% biodiesel), B15 (15% biodiesel), and B100 (100% biodiesel). Employing a well-to-wheel approach, the analysis covers the extraction, production, distribution, and use of the fuels, as well as vehicle manufacturing and maintenance. The environmental impacts were quantified using the CML-IA and ReCiPe 2016 (Midpoint and Endpoint) methods. Results indicate that B100 significantly reduces Global Warming Potential, yet exhibits higher impacts in eutrophication, abiotic depletion, and ecotoxicity. Sensitivity analysis regarding vehicle occupancy revealed greater variability for B100. In conclusion, the optimal fuel choice depends on the prioritization of specific impact categories, providing insights for sustainable transportation policies.
Cavaliero, Carla Kazue NakaoBarboza, Franciele AlvesSeabra, Joaquim Eugênio AbelFerreira, Marcela CravoCarpoviki, Renan SiqueiraCruz, Robson Ferreira
In this study, a Kirloskar TV1 compression ignition engine is put to test using diesel, palm biodiesel (B100), and palm biodiesel–diesel blend (B40D60). Among the tested fuels, engine performance at 75% loading condition with reference fuel diesel showed the highest brake thermal efficiency, brake specific energy consumption, and exhaust gas temperature at 27.78%, 12.96 MJ/kWh, and 335.88°C, respectively. While B100 and B40D60 were observed to give a lower value for the same parameters due to their inferior physiochemical properties. In terms of combustion pressure, mean gas temperature, rate of heat release, and rate of pressure rise, the values observed with B40D60 at 67.39 bar, 1397.76 K, 68.83 J/CAD, and 4.34 bar/CAD, correspondingly are better than B100 due to the presence of diesel. Yet for the same combustion parameters, the values for both the aforementioned fuels are still lower than the results seen with pure diesel fueling. Owing to higher cetane number in comparison to
Balakrishnan, Navaneetha KrishnanChelladorai, PrabhuMuhammad, Syahidah Akmal
Increasing reservations about the mass consumption of fossil fuels because of their hazardous impact on ecosystem has led to an increased focus to look for renewable alternative. In the last decade, much research is made on production of biodiesel for blending with diesel to reduce diesel consumption in the transport sector. Studies suggest that biofuel do not provide any harm to environment because of their availability from natural resources. Biofuel production and its further utilization requires identifying unknown parameters having nonlinear relationships with each other. Accurate and better predictive tools are required at different stages during its usage. AI technique is one such tool that can provide support during production and utilization. The technique is utilized in designing, monitoring, predicting, decision making and optimizing systems. The present research investigates the areas of AI usage which makes use of models for designing better production strategies, accurate
KUMAR, VIVEKVashist, Devendra
Biodiesel acceptance and consumption increased rapidly from 2018 onwards because of government policies promoting and mandating (in few cases) the consumption of local made Biodiesel feedstock to replace/reduce the import crude oil to save fuel import costs. Currently biodiesel usage is unregulated and non-standardized in few countries and in cases it is mandated and well controlled by local government (e.g. Indonesia). This unregulated, non-standardized and rapidly increasing usage of Biodiesel started to show consequences such as reduced fuel filter life, degradation of engine and filter with material non-compatibility issues with biodiesel and this developed a need of in-depth study, research and creation of recommendations / best practices for the use of Biodiesel in various application. This paper will discuss the root causes of challenges related to usage of biodiesel (manufacturing process, storing and handling of biodiesel at application site), technical challenges and it’s
Bhalerao, HariprasadShah, AvaniKhedkar, Prashant
A large number of research studies have raised global concerns about the rapid depletion of traditional energy sources like petroleum. These fuels, being largely non-renewable, are being consumed at a rate much faster than they can be replenished. This growing imbalance between demand and supply has led to fears that, in the near future, the world could face a serious energy crisis if alternative sources are not developed and adopted in time. The use of alternative fuels plays an important role in lowering harmful emissions, including those that contribute to ozone formation and other toxic pollutants. It is a well-established scientific understanding that the continued combustion of fossil fuels is a key driver of global atmospheric warming. As environmental awareness grows, many individuals across the globe believe that shifting toward cleaner and more sustainable fuel sources is essential for protecting and improving the health of our planet. Extensive research is being conducted to
G, ManikandanSubbaiyan, GunasekharanSaminathan, SathiskumarT, KarthiS, GokulJ, Sanmuganathan
Alcohol is being considered as an alternative to traditional fuels for compression ignition engines due to their oxygen content and biomass origin. Although alcohol generally has lower cetane numbers, which makes them more favorable for premixed combustion, they also offer potential for lowering emissions in internal combustion engines, particularly when combined with strategies such as exhaust gas recirculation (EGR). This research focuses on enhancing the performance of a single-cylinder, four- stroke diesel engine by introducing ethanol into the intake port during the intake phase. Diesel and rubber seed biodiesel were used as primary fuels and were directly injected into the combustion chamber. The findings indicated that adding ethanol to rubber seed biodiesel, along with 10% EGR, led to improved brake thermal efficiency and a reduction in NOX emissions. The ethanol injection timing and duration were optimized for effective dual-fuel operation. At full engine load, the highest
Saminathan, SathiskumarG, ManikandanBungag, Joel QuendanganT, Karthi
As global energy demands continue to grow and environmental challenges intensify, Biodiesel stands out as an environmentally sound and technically feasible alternative to curb fossil fuel use and emissions. This study provides an in-depth analysis of the performance and emissions profile of a compression ignition (CI) engine running on a renewable diesel fuel blend made from ethanol and cottonseed (Cs) combinations enhanced with aluminium oxide (Al2O3) nanoparticles. The experimental fuel blends, consisting of 10%, 20%, and 30% cottonseed biodiesel with 5% ethanol and remaining with conventional diesel, were analyzed under varying engine load conditions. The inclusion of ethanol improved fuel atomization due to its lower viscosity and higher volatility, while Al2O3 nanoparticles acted as advanced combustion catalysts, promoting enhanced oxidation rates and thermal efficiency. Among the blends, B10 (10% cottonseed biodiesel) exhibited superior performance metrics, achieving a brake
T, KarthiG, ManikandanSaminathan, SathiskumarM E, ChandhuruS, BavanyaS, Arunkumar
The increasing demand for alternative fuels due to environmental concerns has sparked interest in biodiesel as a viable substitute for conventional diesel. Most automotive engines use diesel fuel engines. They contribute a major portion of today’s air pollution, which causes serious health issues including chronic bronchitis, respiratory tract infections, heart diseases, and many more. Greenhouse gases are produced using fossil fuel in the engines and causes global warming. To combat air pollution, we need clean renewable and environmentally friendly fuels. Due to depletion of fossil fuels, it has become necessary to find alternative fuel which are safer for the environment and humankind. One such possible solution is Biodiesel. In present study, series of experiments were carried out on 435cc naturally aspirate DI Diesel engine with port water injection and different blend of Jatropha based Biodiesel. Biodiesel was derived from Jatropha oil, produced using a heterogeneous catalyst
Bhoite, VikramSyed, KaleemuddinChaudhari, SandipKhairnar, GirishJagtap, PranjalReddy, Kameswar
Ducted fuel injection (DFI) was tested for the first time on a production multi-cylinder engine. Design-of-experiments (DoE) testing was carried out for DFI with a baseline ultra-low sulfur diesel (ULSD) fuel as well as three fuels with lower lifecycle carbon dioxide (CO2) emissions: renewable diesel, neat biodiesel (from soy), and a 50/50 blend by volume of biodiesel with renewable diesel denoted B50R50. For all fuels tested, DFI enabled simultaneous reductions of engine-out emissions of soot and nitrogen oxides (NOx) with late injection timings. DoE data were used to develop individual calibrations for steady-state testing with each fuel using the ISO 8178 eight-mode off-road test cycle. Over the ISO 8178 test, DFI with a five-duct configuration and B50R50 fuel reduced soot and NOx by 87% and 42%, respectively, relative to the production engine calibration. Soot reductions generally decreased with increasing engine load. Hydrocarbon and carbon monoxide emissions tended to increase
Ogren, Ryan M.Baumgard, Kirby J.Radhakrishna, VishnuKempin, Robert C.Mueller, Charles J.
The demand for alternate fuel continues to grow steadily, while energy sources are being researched and explored every year. Considering the energy demand and fuel cost this research was initiated to identify better sources for fuel production. Also the emission released into the atmosphere causes significant influence in the global market in terms of pollution, which was also a prime motive toward this research analysis. A green biodiesel, fatty acid alkyl ester, has attracted much attention as an environmentally friendly diesel fuel. This is due to several advantages, especially that fatty acid alkyl ester is renewable, biodegradable, and has less toxic properties as a fuel. In this article, cottonseed (Gossypium hirsutum) biodiesel and algal (Stoechospermum marginatum) biodiesel was prepared with a yield of 94% and 85%, respectively. Single-stage transesterification was performed since the free fatty acid percentage was within the limit. The performance characteristics in terms of
Godwin, John J.Hariram, V.Muthiya, Solomon JenorisSambandam, PadmanabhanPrathik, S. J.Santhosh, K.Baskar, S.Boopathi, D.
As of today, scenario using the renewable resources from the waste and biomass is essential to decrease the dependence on the fossil fuel imports. This study is to use the waste castor seed into oil and for powering the power pack along with biobutanol extracted from waste of fruits and vegetables from the food processing outlets. As a first step the possible combination of the fuel blend is being chosen by preparing various proportions of castor oil biodiesel (from 100% to 55% in steps of 5%) and biobutanol (0%–35% in increments of 5%). The blends are being tested for the phase separation test in the environment of 25°C for a period of 30 days. The chosen blend (25% biobutanol and rest castor oil biodiesel 75CBD25BB) has been tested for the performance in power pack, which is used for diesel as primary fuel. This blend was further tested by optimizing the parameters—compression ratio, fuel injection timing, and nozzle opening pressure of the test power pack through L9 orthogonal array
Prabakaran, B.Yasin, Mohd Hafizil MatMamat, Rizalman
The urgent need to decarbonise transport has increased the utilisation of renewable fuels blended with current hydrocarbons. Heavy duty vehicle electrification solutions are yet to be realised and therefore the reliance on diesel engines may still be present for decades to come. Currently, the diesel supplied to fuel stations across the UK is a 7% blended biodiesel, whilst in South Korea a 5% blend is utilised. Biodiesel is produced from renewable sources, for example, crops, waste residue, oils and biomass. Particulates from diesel combustion are known to be toxic due to the presence of polycyclic aromatic hydrocarbons (PAHs), however there is very limited understanding of blending oxygenated fuels on the toxicity of the particulates produced. PAHs are aromatic structures that can be metabolised into chemicals which can disrupt DNA replication and potentially influence cancer mechanisms if inhaled in high quantities. Soyabean methyl-ester (SME) was blended at lower ratios, e.g., 5
Hailwood, EmmaHellier, PaulLadommatos, NicosLeonard, Martin
Renewable and alternative liquid fuels are being evaluated for their equivalence with ultra-low sulfur diesel (ULSD) in terms of engine and emission control system performance. Our previous research showed an elevated lightoff temperature for diesel oxidation catalyst (DOC) and lower DOC thermal efficiency for biodiesel blends into ULSD with more than 20% biodiesel. Here we report a similar DOC performance study to gage the performance of blends of biodiesel and hydrocarbon renewable diesel (RD) also made from fats and oils feedstocks. The same DOC used previously was used to evaluate RD blends with biodiesel up to 60 vol% (B60R40) in decrements of 10%. The performance of the DOC was evaluated on a steady-state performance cycle and a transient lightoff curve. Similar to previous results, the performance of the DOC is significantly affected by even low blend levels of biodiesel. At low flow rates 50% (B50R50) and higher biodiesel blends have a poor performance defined as the lightoff
Lakkireddy, VenkataWeber, PhillipMcCormick, RobertHowell, Steve
Prior study with biodiesel and its blends with ultra-low sulfur diesel (ULSD) and renewable diesel (RD) showed that a commercial diesel oxidation catalyst (DOC) is unable to effectively oxidize neat biodiesel (B100) or high-level biodiesel blends injected into the exhaust of a diesel engine at challenging conditions of low temperature, high exhaust flow rate and high dosing rate. In steady-state performance tests, the performance of blends up to B50 in ULSD or RD was nearly equivalent to ULSD at the lowest exhaust flow rate or for exhaust temperature over 340°C for medium and high flows. ULSD blends above 50 vol% biodiesel exhibited reduced thermal efficiency and DOC outlet temperature with increasing dosing rate and required exhaust temperatures over 400°C to achieve similar performance as ULSD. For RD blends at higher flow rates and temperatures below 300°C even B10 blends showed some loss in performance at the highest dosing rates. Data showed an increase in lightoff temperature
Lakkireddy, VenkataWeber, PhillipMcCormick, RobertHowell, Steve
The huge energy demand and environmental anxiety have focused the interest on alternative fuels to the diesel engine. This suggested the worldwide search for renewable, less pollutant and agricultural-based alternative fuel. Also, attention is given to increasing the efficiency of a conventional diesel engine when running on alternative fuels. Non-edible oil derived from Pongamia pinnata and Azadirachta indica seed oil blends as an alternative fuel have been considered for this study. Using Copper oxide (5% w/w), the two oils were transesterified for 6 hours at a temperature of 75 °C and a methanol to oil ratio of 20:1. The biodiesel samples that were produced underwent FTIR and GC-MS analysis. The results indicated that the FAME conversion for the biodiesel derived from Azadirachta indica and Pongamia pinnata was 99.19% and 97.93%, respectively. Diesel engine combustion components, viz., the piston crown and liner, were coated with Aluminium titanate thermal barrier material. The
R, SureshR, AshwinUppuluri, KiranbabuT, MohanRaj
In response to rising emissions and pollutants, an alternative and environmentally friendly synthesis is gaining prominence on the energy sources. The leather industries generate substantial amount of waste and fleshing oil extracted from fleshing which is rich in lipids and presents a viable feedstock for biodiesel production. In this research work, Response Surface Methodology (RSM) is used to optimize the conversion of leather fleshing oil into biodiesel using three parameters such as operating temperature, reaction time, and molar ratio. Experiments were carried out to determine the most optimal conditions and the response on yield (%) and viscosity (mm2/s) based on a 17-run Box–Behnken Design matrix. Stochastic model parameters such as R2 (0.9715 and 0.9793), adjusted R2 (0.9349 and 0.9527), predicted R2 (0.8327 and 0.7656), and high F-values (26.52 and 36.78) of both responses (yield and viscosity) were found to be statistically significant and warranted model adequacy. ANOVA and
P, KanthasamySelvan, Arul MozhiP, Shanmugam
The rising demand for fossil fuels and the exploration of renewable energy sources from plants have gained significant attention due to their role in reducing emissions and enhancing energy security. Prosopis juliflora, abundantly available in India, offers a viable source for biodiesel production. This study investigates the performance and emission characteristics of a 5.2 kW, 1500 rpm, four-stroke single-cylinder compression ignition (CI) engine using blends of diesel, vegetable oil, and biodiesel derived from Prosopis juliflora seeds. The engine was tested with pure diesel, vegetable oil (PJO), biodiesel (B100), and biodiesel-diesel blends at 20%, 40%, 60%, and 80% by volume, designated as B20, B40, B60, and B80, respectively. Key performance metrics, including brake thermal efficiency (BTE) and brake specific energy consumption (BSEC), were measured, along with emissions such as carbon monoxide (CO), smoke, hydrocarbons (HC), and nitrogen oxides (NO). Results indicated that BTE
Duraisamy, BoopathiStanley Martin, JeromeThiyagarajan, PrakashRajendran, SilambarasanMarutholi, MubarakJohn, Godwin
The primary issues in using pure vegetable oils for internal combustion engines are their high soot output and reduced thermal efficiency. Therefore in the present investigation, a Heavea Brasiliensis biodiesel (HBB) is used as a carbon source of fuel and ethoxy ethane as a combustion accelerator on a compression ignition (CI) engine. In this investigation, an only one cylinder, four-stroke, air-cooled DI diesel engine with a rated output of 4.4 kW at 1500 rpm was utilized. Whereas heavea brasiliensis biodiesel was delivered straightly into the cylinder at almost close to the end of compression stroke and ethoxy ethane was sprayed instantly in the intake manifold in the event of intake stroke. At various loads, the parameter of ethoxy ethane volume rate were optimised. To minimise exhaust emissions, an air plasma spray technology was employed to cover the engine combustion chamber with a thermal barrier coating. Because of its adaptability for high-temperature applications, YSZ (Yttria
Sagaya Raj, GnanaNatarajan, ManikandanPasupuleti, Thejasree
This study investigates the potential of biodiesel derived from Azolla algae as an alternative fuel for conventional diesel. The performance and emissions characteristics of various biodiesel blends were evaluated experimentally. The physicochemical properties of pure diesel (D100), and blends with Azolla biodiesel at 5% (BD5), 10% (BD10), 15% (BD15), 20% (BD20), and 100% (B100) were analyzed. It is observed that the amount of fuel consumed is higher at higher loads when fuel is blended with biodiesels. Hydrocarbon emissions were reduced with biodiesel blends at full load and the reduction is higher with increase in blend concentration. A significant difference of 85 ppm NOx was observed between BD20 and D100 at full load. CO emissions decreased with higher biodiesel concentrations, with BD20 resulted less CO emissions than D100, making BD20 a more environmentally viable fuel. Artificial neural networks (ANN) were employed for predictive modeling, achieving approximately 95% accuracy
Senthilkumar, D.Murugesan, SivanesanBhadrinath, P.Shamitha, G.Adityasree, R.
This study’s objective is to examine the combustion and performance of mosambi waste peel biodiesel (MWPB) combined with butylated hydroxytoluene (BHT) nanoparticles as a substitute fuel for diesel engines. It also aims to assess the impact of this blend on engine combustion, such as in-cylinder pressure, heat release rate (HRR), ignition delay (ID), combustion duration (CD) and mass fraction burnt (MFB) and performance indicators, including brake thermal efficiency (BTE), brake-specific energy consumption (BSEC), engine torque, exhaust gas temperature (EGT), indicated mean effective pressure (IMEP), air-fuel ratio (A/F ratio) and volumetric efficiency, while also considering the feasibility of employing waste materials in fuel generation. The experimental configuration utilized a research diesel engine functioning under standard conditions, emphasizing the maintenance of uniform injection pressure to ensure optimal fuel atomization and combustion. The test fuels are diesel, MWPB, MWPB
Jayabal, RavikumarMadhu, S.Devarajan, YuvarajanDomian, Christopher Selvam
Lowering carbon emissions from road-based transport is required to achieve climate targets. In addition to passenger cars, long-haul trucks contribute more than one-third of on-road generated carbon emissions. Therefore, this sector has great potential to reduce such emissions. Numerous options including electrified drivetrains are possible. Nevertheless, the existing fleet of trucks powered by conventional diesel engines also needs to be addressed. Additionally, a ramp-up of green electricity and charging infrastructure is required to ensure carbon-neutral and reliable transport. Heavy-duty diesel engines are typically suitable for use with first-generation biofuels. However, operational restrictions, such as shorter oil drain intervals are mandatory for users. In the case at hand, the oil change was mandatory after only 30,000 km when pure biodiesel (B100) was used instead of 120,000 km when operating on conventional, mineral oil-based diesel. These boundaries counter efforts to
Rohbogner, Christoph J.Heine, Carsten
Society in actual engineering must promote sustainable developments in new renewable technologies in the transport sector, with resiliency and low greenhouse gas emissions produced. Pollutant emissions must be reduced to obtain an environmental equilibrium and stabilize part of the world’s climate change. With this, the principal objective of this research is to do different blends of diesel- biodiesel and diesel-hydrogenated biodiesel in proportions of 10, 20, 40, 80, and 100% to evaluate the performance of these samples of fuels in the internal combustion engine (ICE) diesel, model BD 5.0, connected to dynamometer XL43, located in the engines laboratory of University UFVJM, in Diamantina MG- Brazil at 1384 MASL, to obtain torque and power in different conditions of rotation. These tests were performed with blends of diesel-biodiesel and biodiesel- diesel with bubbling hydrogen (H2). The obtained data were developed with different comparisons, and results showed a positive influence
Barón Pinilla, José D.Silva, N. S.Melo, R. A. A.Santos, Alexandre S.Nery, M. C.Junqueira, H. H. B.
The goal of this research is to better understand the methodologies for manufacturing biodiesel worldwide and the main raw materials used in its production. We aim to compare the solutions established by relevant countries with those used in Brazil, identifying their advantages and disadvantages. Our primary areas of interest include the United States, Indonesia, and Europe, where we will analyze the solutions and, whenever possible, understand the commercial and political interests involved. We will highlight aspects related to sustainability in the production, transportation, and use of biodiesel. The methodology is based on research from recent publications and news, organized into graphs to facilitate analysis and comparison. Next, we will also examine the consequences of the solutions adopted in Brazil, envisioning future scenarios and recommended paths. In the short term, biodiesel is expected to be replaced by renewable diesel (also known as green diesel in some regions
Labigalini, Marcio RobertoBarreto, Gilmar
This study investigates the efficiency of a compression ignition (CI) engine powered by biodiesel derived from rubber seed oil (RSO) and its various blends. This research aims to assess the feasibility of using RSO biodiesel as a substitute fuel in CI engines to reduce harmful emissions and the depletion of fossil fuels. Initially, the process of obtaining rubber seed oil was preceded by transesterification. After transesterification, the same was blended in different proportions with conventional diesel in B20, B40, B60, B80, and B100. Results show that brake thermal efficiency (BTE) decreased with rising concentration of biodiesel, particularly at higher blends. B100 had a 20-25% lower BTE in every load condition than conventional diesel. The brake specific fuel consumption (BSFC) generally decreased with increasing biodiesel content, particularly at lower loads applied to the engine. B100 portrayed a perceptible improvement of 25.6% in BSFC compared diesel at 1 kg load. This
Jayabal, RavikumarLionus Leo, G. M.Madhu, S.
This research investigates the potential of muskmelon waste seed biodiesel (MWSB) enhanced with graphene oxide (GO) nanoparticles as an alternative fuel for diesel engines. The study focuses on transesterifying waste seed oil from muskmelon fruits to produce biodiesel suitable for common rail direct injection (CRDI) diesel engines. The addition of GO nanoparticles serves as a combustion enhancer, aiming to improve engine performance and reduce emissions. The test fuels included pure diesel, MWSB, and MWSB blends with 10 ppm and 20 ppm of GO nanoparticles. The results demonstrated a significant reduction in emissions when GO nanoparticles were added to the MWSB. Specifically, the MWSB+GO20 ppm blend achieved reductions in smoke, hydrocarbon (HC), and carbon monoxide (CO) emissions by 16.66%, 26.19%, and 45.33%, respectively, compared to diesel at maximum brake power (5.5 kW). However, this blend also resulted in a 7.4% increase in oxides of nitrogen (NOx) emissions at maximum brake
Jayabal, RavikumarMadhu, S.
This study investigates the influence of Silica-Diamond-Like Carbon (Si-DLC) coated pistons on performance metrics of diesel engine fuelled with various blends of Cassia Fistula biodiesel (CFBD10, CFBD20, CFBD30, and CFBD40). The primary focus is on key performance metrics, including Brake Thermal Efficiency (BTE), Brake Specific Energy Consumption (BSEC), and Exhaust Gas Temperature (EGT). The results demonstrated improvement in BTE and EGT, alongside a reduction in BSEC across all biodiesel blends compared to conventional diesel. Specifically, at full engine load, CFBD10 exhibited a BTE of 33.41%, which is 3.17% higher than neat diesel in the stock engine. At part load and no-load scenarios, improvements of 2% and 0.51% over neat diesel were recorded. During no-load conditions, the BSEC for CFBD10 was measured at 9.901 MJ.kW-hr, 0.738 MJ.kW-hr lower than that of neat diesel. Further increases in Cassia fistula blends resulted in higher BSEC values due to lower calorific content
Veeraraghavan, SakthimuruganDe Poures, Melvin VictorMadhu, S.Palani, Kumaran
Diesel engines produce more smoke and nitrogen oxide (NOx) emissions. Hence, one has to develop a new technique that reduces these emissions besides works satisfactorily with alternative fuels in place of diesel. In this work, used temple oil biodiesel (BTO) is a candidate to replace diesel to run diesel engine. Also, common rail direction injection (CRDi) is a technique that injects fuel at a higher pressure than conventional injectors of diesel engines that produce fine fuel droplets suitable for highly viscous biodiesel. This work also uses the design of experiments (DOE) and response surface methodology (RSM) modeling approach to evaluate the performance of CRDi engine with three operating parameters namely injection timing (IT), injection pressure (IP), and exhaust gas recirculation (EGR). From the study, it could be concluded that CRDi engine showed better performance at IT of 9°bTDC, IP of 855 bar with EGR of 20% but with little reduction in thermal efficiency. The study has
Shaikh, Sardar MansoorKhandal, Sanjeevkumar V.
Incorporating ethanol and biodiesel into diesel fuel offers substantial benefits from bioenergy perspective. To assess the effect of these alternative fuels, a study was undertaken to evaluate the impact of Ethanol-Biodiesel-Diesel blends (BD7, E2B7, E5B7) on the performance and emissions of a diesel car under Modified Indian Driving Cycle (MIDC), Worldwide Harmonized Light Vehicles Test Cycle (WLTC), wide-open throttle (WOT), and acceleration tests. A four-cylinder 1.5L Common Rail Turbo based diesel passenger car was selected for the study. The test findings revealed that under MIDC conditions, biodiesel blend (BD7) resulted in higher CO emissions compared to neat diesel, but these emissions decreased with the addition of ethanol (E2B7 and E5B7) due to ethanol's embedded oxygen content. While biodiesel lowered THC emissions, these emissions increased when ethanol was added. NOx emissions increased with biodiesel due to its higher cetane number and shorter ignition delay, and this
Dhyani, VipinPatil, Yogesh JSinghal, NikitaKhandai, ChinmayanandaKannala, RaghavaMuralidharan, M
Biofuels are gaining significant global attention as renewable and alternative energy sources, produced from various materials through different extraction methods and conversion processes. Food industry generates not only substantial organic waste, presenting economic and ecological challenges but also potential opportunities for valorization. This study focuses on recovering industrial fish waste from the manufacture of canned tuna, specifically targeting non-food and abundant fish co-products such as heads, bones, skin, and viscera, which constitute nearly 50% of the fish body. The process involves several steps: oil extraction using Soxhlet extraction, purification, and conversion into biodiesel via transesterification, followed by physicochemical analysis. The experiments revealed that 32.41% of fish waste was in the liquid phase (a mixture of hexane and oil), and the extracted oil accounted for 26.56% of the total fish waste weight (from 1.012 kg of waste, approximately 268.78 g
Bousbaa, HamzaNAIMA, KhatirLamia, MedjahedBenramdane, MohammedBalasubramanian, DhineshJohnson, Anish Jafrin Thilak
The Galapagos Islands have a protected marine reserve that currently gets most of its energy—over 80%—from fossil fuels like diesel. This reliance on fossil fuels is a significant issue because it impacts the environment and sustainability of the region. Understanding this heavy dependence is important for exploring alternatives that can provide cleaner energy. This paper introduces a new simulation model based on system dynamics to explore the effects of completely replacing fossil fuels with biodiesel as a short-term solution. The simulation uses current official data for the Galapagos Islands and connects different factors to calculate their effects all at once. Our goal is to identify the social, economic, energy-related, and environmental factors that make biodiesel a better choice than the currently used fossil fuels. We aim to find a way to keep the energy supply stable, as it mainly depends on internal combustion engines, while also quickly providing cleaner and greener energy
Gutierrez, MarcosTaco, Diana
The present work deals with the effects of nano-additives on ternary blend biodiesel fuel added in diesel engine. The ternary blend comprises of mustard oil biodiesel and rice bran oil biodiesel, synthesized by means of transesterification and diesel. Nano-additives used in the current study include carbon nanotubes (CNT) and MgO/MgAl2O4 spinel, which were added in a suitable concentration to the biodiesel. CNTs were procured from the market and MgO/MgAl2O4 spinel was prepared by co-precipitation via ball milling process. The nano-additives were characterized by means of FTIR (Fourier transform infrared spectroscopy), AFM (atomic force microscopy), and DSC (differential scanning calorimetry) analysis. Biodiesel blend samples were prepared such as B20 (20% biodiesel + 80% diesel), B20 + CNT (1000 PPM), B20+MgO/MgAl2O4 spinel (1000 PPM), and B20+CNT+MgO/MgAl2O4 spinel (1000 PPM) were tested against diesel fuel. The maximum increase in brake thermal efficiency (BTE), oxides of nitrogen
Jeyakumar, NagarajanDhinesh, BalasubramanianPapla Venugopal, Inbanaathan
This study proposes an investigation of the thermochemical and transport properties of biodiesel from Azadirachta indica (neem biodiesel). These properties are important in the CFD modeling process of hydrocarbon combustion. Two groups of properties are taken into account: on the one hand, the primary properties such as critical pressure, critical volume, critical temperature, boiling temperature, and normal melting point; on the other hand, secondary properties such as vapor pressure, liquid viscosity, latent heat of vaporization, liquid mass density, and surface tension. The group contribution model takes into account second-order groups used for the predictive proposition of primary properties. The secondary properties are generated by matrix programming of the available data. The primary properties thus determined are used as a digital database. After setting the boundary conditions, matrix writings are developed in the MATLAB code. The rendering obtained is exported in the form of
Ayissi, Merlin ZacharieMouzong, Francis BongneMohamed, BencherifObounou Akong, Marcel BriceMouangue, Ruben
Fossil fuel usage causes environmental pollution, and fuel depletion, further affecting a country’s economy. Biofuels and diesel-blended fuels are practical alternatives to sustain fossil fuels. This experimental study analyses lemongrass oil’s performance, emissions, and combustion characteristics after blending with diesel. Lemongrass oil is mixed with diesel at 10 (B10), 15 (B15), and 25% (B25) and evaluated using a 5.20 kW direct injection diesel engine. B10 brake thermal efficiency is 36.47%, which is higher than other blends. The B10 displays an 8.73% decrease in brake-specific fuel consumption compared to diesel. An increase in exhaust gas temperature for B10 than diesel is 4.5%. It indicates that higher lemongrass oil blends decrease exhaust gas temperature. The decrease in average carbon monoxide emissions in B10 to diesel is 22.19%. The decrease in hydrocarbon emissions for B10 to diesel is 7.14%. Biodiesel with lemongrass oil increases nitrogen oxide (NOx) because of
Swami Punniakodi, Banumathi MunuswamyArumugam, ChelliahSuyambazhahan, SivalingamSenthil, RamalingamBalasubramanian, DhineshPapla Venugopal, InbanaathanNguyen, Van NhanhCao, Dao Nam
Heavy duty engines for long-haul trucks are quite difficult to electrify, due to the large amount of energy that should be stored on-board to achieve a range comparable to that of conventional fuels. In particular, this paper considers a stock engine with a displacement of 12.9 L, developed by the manufacturer in two different versions. As a standard diesel, the engine is able to deliver about 420 kW at 1800 rpm, whereas in the compressed natural gas configuration the maximum power output is 330 kW, at the same speed. Three possible alternatives to these fossil fuels are considered in this study: biodiesel (HVOlution by Eni), bio-methane and green hydrogen. While the replacement of diesel and compressed natura gas with biofuels does not need significant hardware modifications, the implementation of a hydrogen spark ignition combustion system requires a deep revision of the engine concept. For a more straightforward comparison among the alternative fuels, the same engine platform has
Volza, AntonelloPisapia, AlfredoCaprioli, StefanoRinaldini, CarloMattarelli, Enrico
Various feedstocks can be employed for biodiesel production, leading to considerable variation in composition and engine fuel characteristics. Using biodiesels originating from diverse feedstocks introduces notable variations in engine characteristics. Therefore, it is imperative to scrutinize the composition and properties of biodiesel before deployment in engines, a task facilitated by predictive models. Additionally, the international commercialization of biodiesel fuel is contingent upon stringent regulations. The traditional experimental measurement of biodiesel properties is laborious and expensive, necessitating skilled personnel. Predictive models offer an alternative approach by estimating biodiesel properties without depending on experimental measurements. This research is centered on building models that correlate mid-infrared spectra of biodiesel and critical fuel properties, encompassing kinematic viscosity, cetane number, and calorific value. The novelty of this
Bukkarapu, Kiran RajKrishnasamy, Anand
Biodiesel (i.e., mono-alkyl esters of long chain fatty acids derived from vegetable oils and animal fats) is a renewable diesel fuel providing life-cycle greenhouse gas emission reductions relative to petroleum-derived diesel. With the expectation that there would be widespread use of biodiesel as a substitute for ultra-low sulfur diesel (ULSD), there have been many studies looking into the effects of biodiesel on engine and aftertreatment, particularly its compatibility to the current aftertreatment technologies. The objective of this study was to generate experimental data to measure the effectiveness of a current technology diesel oxidation catalysts (DOC) to oxidize soy-based biodiesel at various blend levels with ULSD. Biodiesel blends from 0 to 100% were evaluated on an engine using a conventional DOC. In the steady-state performance test where fuel dosing rate was increased at fixed DOC inlet temperature, B20 performed similarly to ULSD at the lowest flow rate or exhaust
Lakkireddy, VenkataWeber, PhillipMcCormick, RobertHowell, Steve
Biodiesel is a promising alternative to traditional diesel fuel due to its similar combustion properties to diesel and lower carbon emissions on a well-to-wheel basis. However, combusting biodiesel still generates hydrocarbon (HC), CO, NOx and particulate matter (PM) emissions, similar to those from traditional diesel fuel usage. Therefore, aftertreatment systems will be required to reduce these emissions to meet increasingly stringent emission regulations to minimize the impact to the environment. Diesel oxidation catalysts (DOC) are widely used in modern aftertreatment systems to convert unburned HC and CO, to partially convert NO to NO2 to enhance downstream selective catalytic reaction (SCR) catalyst efficiency via fast SCR and to periodically clean-up DPF via controlled soot oxidation. In this work, we focus on the performance difference between biodiesel and diesel over a commercial DOC catalyst to identify the knowledge gap during the transition from diesel fuel to biodiesel
Xi, YuanzhouOttinger, NathanLiu, Z. Gerald
As I was working on this issue's cover story - a look at the current state of low- and no-carbon fuels and the potential they hold - the cyclical nature of life made itself readily apparent (once again). I will warn those of you who were involved in the automotive industry a decade or two ago that you might experience similar flashbacks when you read about how eFuels could, if everything works the way it's supposed to, provide a way for much of today's internal combustion engines to power legitimately zero-new-emission vehicles, especially in regions of the world where EVs don't yet make sense. That's great. Well, it sounds great, at least. The many promises made by producers and researchers of synthetic fuels sound strikingly similar to what the companies supporting biofuels were saying back when George W. Bush was still president. The fuel is cleaner, they said. We can keep (some of) the same infrastructure, or just modify it slightly, they said. This will work with EVs to make the
Blanco, Sebastian
The study aims to produce biodiesel from waste cooking oil and compare the effects of two different catalysts (KOH and CaO) on the transesterification process. Homogeneous catalysts and heterogeneous catalysts are the two types of catalysts used in the transesterification process to produce biodiesel. In the present investigation, homogeneous catalysts KOH and heterogeneous catalyst CaO are used in the transesterification reaction. Catalysts are used to accelerate the reaction and increase reaction efficiency. The reaction temperature is set at 65°C. A methanol-to-waste cooking oil ratio of 6:1 is used for KOH and 8:1 for CaO. The catalyst amount is maintained at 2% of the weight of palmitic acid relative to the weight of waste cooking oil. The reaction time is 150 minutes for KOH and 240 minutes for CaO catalysts. The blends include B50C (50% biodiesel with CaO as catalyst and 50% conventional diesel fuel), B50K (50% biodiesel with KOH as catalyst and 50% conventional diesel fuel
Devan, P.K.Balasubramanian, M.Madhu, S.Prathap, P.
In this work, the impact of hexanol/diesel/biodiesel blend on engine characteristics of a common rail direct injection (CRDI) diesel engine was studied. Biodiesel is more viscous in nature and higher cetane count, hexanol has a lower viscosity and cetane count. The drawbacks of both biodiesel and hexanol can be overcome by blending both hexanol and biodiesel with diesel fuel in the right proportion. Tests were carried out using a 4-stroke CRDI engine with two cylinders. Biodiesel and 1-hexanol were blended in a ratio of 10% each by volume with diesel and compared with B10D90 and B20D80 blends. It was noted that the addition of hexanol enhances the combustion characteristics of the engine. At 20% load H10B10D80 showed71.34 bar which is highest compared to other fuels in the test. The blends had a positive effect on emissions, there was drastic reduction in NOx was noticed, also HC and CO emission was lower than diesel emissions. The lowest CO, and HC emission is obtained for H10B10D80
Santhosh, K.Shahapur, SaikumarKumar, G.N.Ravikumar, K.N.Raghavendra Reddy, N.V.
This study aims to assess the feasibility of utilizing a B20 blend, consisting of 20% ethanol and 80% diesel, as a potential alternative to diesel fuel in a compression ignition engine with a single cylinder. Ethanol, a commonly utilized biofuel, is renowned for its elevated oxygen content, which contributes to its efficacy as an oxygenator, hence augmenting fuel combustion and mitigating pollutants. The primary objective of our study is to evaluate the long-term durability and corrosion impacts of B20 fuel in comparison to a conventional diesel-only model. In a series of eight tests, each lasting 12.5 hours, it was observed that the B20 engine demonstrated enhanced long-term mechanical durability. Nevertheless, the introduction of ethanol blending resulted in the dilution and contamination of lubricants, as indicated by the observed rise in component wear and carbon deposition over a 100-hour testing period. Viscosity and contamination tests were employed to detect the presence of
Daniel Das, A.Suresh Balaji, R.Marimuthu, S.Manivannan, S.
In India, B7 (a biodiesel mix of 7% by volume in diesel) has been approved for use in diesel engines. Due to the depletion of fossil fuel supplies and tight pollution requirements, alternative diesel fuel has become critical. However, given the properties of diesel, no direct renewable alternative fuel can totally replace diesel. As a result, one of the solutions may be to replace part of the diesel with ethanol. In this inquisition, the impact of various diesel-ethanol blends, counting ED7.7, ED10, ED15 and ED20, were examined on two in-use multi-cylinder engines complying to different emission norms. The two engines under consideration complies with CPCB-I and CPCB-II, which is an Indian legal requirement for stationary Genset engines. For both engines, a 5-mode steady-state test cycle was considered. For each mode, the engine’s performance characteristics, including power, torque, and BSFC, were tested and described. The prime goal of adding this research is to delve into the
Sonawane, Shailesh BalkrishnaSekhar, RaviWarke, ArundhatiThipse, Sukrut SRairikar, SandeepSutar, Prasanna SJadhav, Ajinkya
Although pure biodiesel is used in diesel engines, some challenges, such as higher density, lower cetane number, and lower calorific value, prevent it from completely replacing conventional fossil diesel. Therefore, the addition of compounds aimed at improving the biodiesel combustion process or improving its physicochemical properties is a fundamental issue in using them in pure form or in high proportions in engines, thereby maintaining the performance of such equipment. An alternative that has been studied in recent years is the addition of nanoparticles to biodiesel, which act as catalysts in the combustion process. This study examined in detail the influence of nanoadditives on the performance, combustion, and emissions characteristics of the CI engine. Furthermore, it will discuss the challenges and potential future directions in the utilization of nanoparticles to improve the use of biodiesel in CI engines. The reviewed articles show that the addition of nanoparticles to
Rosa, Josimar SouzaSmaniotto, Marcos MorescoTelli, Giovani Dambros
Biodiesel is one of the renewable alternatives to the use of diesel of fossil origin, and its usage has been growing in the world. The production of biodiesel can be performed from a large variety of raw materials. Within these raw materials, a known highlight is the cottonseed, from which the oil can represent 20% of its mass. For this, this work has the goal to study, with an experimental and methodic approach, the behavior of an internal combustion engine when working with biodiesel produced from cottonseed and different blends of this biofuel with commercial diesel. The tested proportions were 100%, 80%, 50%, 20% and 0% of biodiesel in the blend. To make this research, the specific fuel consumption and the power generated on a diesel cycle conventional engine working at maximum power speed and plain load were observed. After the tests, it was identified that for every tested blend, the engine was able to develop a stable combustion and that as the percentage of biodiesel in the
Rincon, Alvaro Ferney Algarrade Oliveira, Lia AzevedoLaurindo, Geovani Marquesde Oliveira Notório Ribeiro, JessicaAlvarez, Carlos Eduardo Castilla
Items per page:
1 – 50 of 937