Browse Topic: Methane
Since proportion of wall heat loss takes as high as 20-30% of the total engine heat loss, the reduction of wall heat loss is considered as an effective way to improve the engine thermal efficiency. The heat transfer near the wall boundary layer plays a significant role on the exploration about the mechanism of wall heat transfer which contributes to figuring out the approach to the reduction of wall heat loss. However, the near wall characteristics of heat transfer are still unclear. In this study, the premixed lean methane flame propagation was captured by the high-speed schlieren and the flame behavior in the near-wall region was investigated by the micro CH* chemiluminescence. The temporal histories of the wall temperature and the heat flux are measured by the co-axial thermocouple. The factors including the convective heat transfer coefficient and non-dimensionless numbers, Nusselt number and Reynolds number, were used to characterize the near wall characteristics. Also, the
NASA's Cryogenic Flux Capacitor (CFC) capitalizes on the energy storage capacity of liquefied gases. By exploiting a unique attribute of nano-porous materials, aerogel in this case, fluid commodities such as oxygen, hydrogen, methane, etc. can be stored in a molecular surface-adsorbed state. This cryogenic fluid can be stored at low to moderate pressure densities, on par with liquid, and then quickly converted to a gas, when the need arises. This solution reduces both safety-related logistics issues and the limitations of complex storage systems.
Pipeline inspection is a crucial aspect of maintaining the integrity, safety, and reliability of the planet’s energy infrastructure. However, due to cost and scale challenges, infrastructure operators struggle to conduct accurate, large-scale inspections. A French startup, HyLight, offers a solution to precisely detect issues on the infrastructure, such as methane leaks on pipelines and defects on power lines at an industrial scale, without emitting greenhouse gases.
Solar panels are an increasingly popular way to generate electricity from the sun’s energy. Although humans are still figuring out how to reliably turn that energy into fuel, plants have been doing it for eons through photosynthesis. Now, a team reporting in ACS Engineering Au has mimicked the process to produce methane, an energy-dense fuel, from carbon dioxide, water and sunlight. Their prototype system could help pave the way toward replacing nonrenewable fossil fuels.
Natural gas furnaces not only heat your home, they also produce a lot of pollution. Even modern high-efficiency condensing furnaces produce significant amounts of corrosive acidic condensation and unhealthy levels of nitrogen oxides, carbon monoxide, hydrocarbons, and methane. These emissions are typically vented into the atmosphere and end up polluting our soil, water, and air.
Innovators at NASA Johnson Space Center have developed a coil-on-plug ignition system for integrated liquid oxygen (LOX)/liquid methane (LCH4) thermal-vacuum environment propulsion systems operating in a thermal vacuum environment. The innovation will help quell corona discharge issues and reduce overall mass.
Items per page:
50
1 – 50 of 602