Browse Topic: Gasohol

Items (189)
Particulate matter (PM), mainly its finer fraction, is among the main atmospheric pollutants present in an urban environment. The relationship between the increase in the concentration of this pollutant and the harm to human health is well established. The main sources of particulate matter in urban areas are mobile sources, which include the exhaust emission from light duty vehicles. This work measured the emission of PM in three light duty passenger vehicles, characterizing it in terms of emitted mass in one “flex” vehicle with port fuel (indirect) injection (PFI), using ethanol and gasohol (mixture of 22% anhydrous ethanol and 78% gasoline, by volume), in another “flex” vehicle with direct fuel injection (GDI), and in a diesel vehicle. In addition to mass measurement, images of the filters used in PM sampling were produced using scanning electron microscopy. The processing of these images made it possible to determine the average PM size, as well as establish a particle size
Borsari, VanderleiNeto, Edson Elpídiode Abrantes, Rui
Alcohol fuels are regarded as a feasible approach to address rising energy demands and reduce the dependency on fossil fuels, with ethanol and methanol emerging as a promising renewable fuel for spark-ignition engines. In this research work, tests were performed on a spark ignition engine altered from a diesel engine that employs ethanol/methanol-gasoline blend as fuel operating under lean conditions. The experiments were conducted at 10.5:1 compression ratio and 1500 rpm under full throttle condition with three fuel blends namely M10 (10% of methanol+ 90% gasoline), E10 (10% of ethanol+ 90% gasoline), E5M5 (5% of each ethanol and methanol+ 90% gasoline). Investigational results reveals that alcohol-gasoline blends displayed low COV of IMEP. Furthermore, the alcohol-gasoline mixtures enhanced the peak in-cylinder pressure owing to improved flame speed and flammability limits. Adopting lean-burn operation and high compression ratio can efficiently improve combustion attributes in an
Devunuri, SureshPorpatham, Dr. E
India aims to achieve 20% ethanol blending (E20) in petrol by 2025 under its National Biofuels Policy to reduce carbon emissions, enhance energy security, and support the agricultural economy. Building on this, E27 (27% ethanol in gasoline) is being evaluated as an advanced mid-level blend to further lower greenhouse gas emissions and reduce reliance on fossil fuels. This study investigates the performance, emissions, and combustion characteristics of a turbocharged gasoline direct injection (TGDI) engine using E27 fuel over 20,000 km in real-world driving conditions, as part of a broader research program accumulating over 100,000 km across multiple vehicle categories. Key findings indicate that E27 achieves an optimal balance of emissions reduction and performance, with NOx and THC emissions decreasing by 12% and 5%, respectively, compared to E10, while CO and CO₂ levels remained stable, reflecting ethanol’s oxygenation effect and lower carbon intensity. Power output and acceleration
D R, VigneshwarBhakthavachalu, VijayabaskarMuralidharan, M.
The application of short burn durations at lean engine operation has the potential to increase the efficiency of spark-ignition engines. To achieve short burn durations, spark-assisted compression ignition (SACI) as well as active pre-chamber (PC) combustion systems are suitable technologies. Since a combination of these two combustion concepts has the potential to achieve shorter burn durations than the application of only one of these concepts, the concept of jet-induced compression ignition (JICI) was investigated in this study. With the JICI, the fuel is ignited in the PC, and the combustion products igniting the charge in the main combustion chamber (MC) triggered the autoignition of the MC charge. A conventional gasoline fuel (RON 95 E10) and a Porsche synthetic fuel (POSYN) were investigated to assess the fuel influence on the JICI. Variations of the relative air/fuel ratio in the exhaust gas (λex) were performed to evaluate both the occurrence of the JICI and the dilution
Burkardt, PatrickGünther, MarcoVillforth, JonasPischinger, Stefan
Dimethyl ether (DME) is an alternative fuel that, blended with propane, could be an excellent alternative for exploring the use of fuels from renewable sources. DME–propane blends are feasible for their comparable physicochemical properties; these fuels may be pressured as liquids using moderate pressure at ambient temperature. Adding a proportion of DME with a low octane number to a less reactive fuel like propane can improve the combustion process. However, the increased reactivity of the mixture induced by the DME could lead to the early appearance of knocking, and this tendency may even be pronounced in boosted SI engines. Hence, this study experimentally analyzes the effect of E10 gasoline (baseline) and DME–propane blends, with varying proportions of DME in propane ranging from 0% to 30% by weight, in increments of 5% on knocking tendency, combustion characteristics, gaseous emissions, and particle number concentration, under different intake pressure conditions (0.8, 0.9, 1.0
Soto, LianHan, TaehoonBoehman, Andre L.
The present study aims to determine the comparative performance evaluation in terms of fuel economy (kmpl) and wide open throttle (WOT) power derived from set of different blends of high octane gasoline fuel(s) i.e., Neat Gasoline (E0), E10 & E20 (With different dosages of additives) in high compression ratio (HCR) motorcycle on chassis dynamometer facility. With the Government of India focus on use of alcohol as co-blend of gasoline with the endeavour to save foreign exchange and also to reduce greenhouse gases (GHG) emissions. The commercially available blended fuels, E10 & E20, have high research octane number (RON, 92-100) and as per the available literature high RON fuel have the better anti-knocking tendencies thereby lead to higher fuel economy. There are various routes to formulate high octane fuel (refining technologies, additive approach & ethanol blending route) in the range of 92-100 octane number which are currently commercialized in Indian market. In the present study
Saroj, ShyamsherKalita, MrinmoyKumar, PrashantKant, ChanderPatanwal, PradeepChakradhar, MayaSithananthan, MArora, Ajay KumarHarinarain, Ajay KumarMaheshwari, Mukul
Net-Zero emission ambitions coupled with availability of oxygenated fuels like ethanol encouraged the Government towards commercial implementation of fuels like E20. In this background, a study was taken up to assess the impact of alcohol blended fuels on performance and emission characteristics of a BS-VI complaint motorbike. A single cylinder, 113-cc spark ignition, ECU based electronic fuel injection motorbike was used for conducting tests. Pure gasoline (E0), 10% ethanol-gasoline (E10), 20% ethanol-gasoline (E20) and 15% methanol-gasoline (M15) blends meeting respective IS standards were used as test fuels. The oxygen content of E10, E20 and M15 fuels were 3.7%, 7.4% and 8.35% by weight respectively. Experiments were conducted following worldwide motorcycle test cycle (WMTC) as per AIS 137 standard and wide-open-throttle (WOT) test cycle, using chassis dynamometer. The experimental results on WMTC tests indicated that the fuel consumption of the vehicle increased with increase in
Sahu, YamanP, SakthivelSithananthan, MMaheshwari, Mukul
Ethanol blending is one method that can be used to reduce knock in spark ignition engines by decreasing the autoignition reactivity of the fuel and modifying its laminar flame speed. In this paper, the effects of ethanol blending on knock propensity and flame speed of petroleum and low-carbon gasoline fuels is analyzed. To do so, surrogate fuels were formulated for methanol-to-gasoline (MTG) and ethanol-to-gasoline (ETG) based on the fuels’ composition, octane number, and select physical properties; and 0-D and 1-D chemical kinetics simulations were performed to investigate reactivity and laminar flame speed, respectively. Results of MTG and ETG were compared against those of PACE-20, a well-characterized surrogate for regular E10 gasoline. Similarly to PACE-20, blending MTG and ETG with ethanol increases the fuel’s research octane number (RON) and sensitivity. The trends of the ethanol blending effects were slightly stronger with PACE-20 and MTG than with ETG, with 13.6% volume of
MacDonald, JamesLopez Pintor, DarioMatsubara, NaoyoshiKitano, KojiYamada, Ryota
Surrogate fuels that reproduce the characteristics of full-boiling range fuels are key tools to enable numerical simulations of fuel-related processes and ensure reproducibility of experiments by eliminating batch-to-batch variability. Within the PACE initiative, a surrogate fuel for regular-grade E10 (10%vol ethanol) gasoline representative of a U.S. market gasoline, termed PACE-20, was developed and adopted as baseline fuel for the consortium. Although extensive testing demonstrated that PACE-20 replicates the properties and combustion behavior of the full-boiling range gasoline, several concerns arose regarding the purity level required for the species that compose PACE-20. This is particularly important for cyclo-pentane, since commercial-grade cyclo-pentane typically shows 60%–85% purity. In the present work, the effects of the purity level of cyclo-pentane on the properties and combustion characteristics of PACE-20 were studied. Chemical kinetic simulations were performed to
Lopez-Pintor, DarioAbboud, RamiMacDonald, JamesLee, Sanguk
Ethanol-gasoline blended fuels have been widely implemented in Indian markets followed by the Govt of India’s road map as ethanol reduces life-cycle greenhouse gas emissions and improves anti-knock performance. However, effects of Ethanol Blending on engine out emissions characteristics including particulates from gasoline direct injection (GDI) engine remains under development and investigation. In this study the effect of ethanol blended gasoline fuels with two blending rates 10% and 20% (v/v %) on catalyst conversion efficiencies and emissions on a 1.2 litre 3-cylinder turbo GDI engine is investigated. The addition of ethanol to gasoline fuel enhances the Octane rating (RON) of the blended fuels, oxygen content and changes Reid vapor pressure (RVP). The influence of lambda biasing, and lambda trim controller has been tested. The approach for calibration was adopted based on achieving the target pollutant conversion efficiencies. Test bench results indicated that with E10 blend all
R, Navaneetha KannanS, Easwar RamS, Satish KumarKarthi, RamanathanRamakrishnan, Muthu
Several governments are increasing the blending mandate of renewable fuels to reduce the life-cycle greenhouse gas emissions of the road transport sector. Currently, ethanol is a prominent renewable fuel and is used in low-level blends, such as E10 (10 %v/v ethanol, 90 %v/v gasoline) in many parts of the world. However, the exact concentration of ethanol amongst other renewable fuel components in commercially available fuels can vary and is not known. To understand the impact of the renewable fuel content on the emissions from Euro 6d-TEMP emissions specification vehicles, this paper examines the real-driving emissions (RDE) from four 2020 to 2022 model-year vehicles run on E0 and E10 fuels. CO, CO2, NO, and NO2 were measured through a Portable Emissions Measuring System (PEMS). In addition, N2O, formaldehyde, acetaldehyde, volatile organic compounds (VOCs), and other gaseous and particulate tailpipe emissions were measured and categorized in cold-start, urban, rural, and motorway
Shankar, VarunUsen, ImeMolden, NickWillman, ChristopherLeach, Felix
Tank-to-wheels (TTW) CO2 reduction for ethanol blends is determined from either gasoline composition or vehicle exhaust measurements. Fuels are characterized using a carbon intensity (CI), which is the ratio of carbon (as CO2 mass) in the fuel to the net heating value. Our objective is to assess changes in CI of market gasoline with varying ethanol content that can be used to appreciate change in vehicle tailpipe greenhouse gases (GHG) in response to policy controlling the ethanol level in market fuels. Ethanol has both a reduced carbon content and a reduced net (lower) heating value relative to petroleum species, with a CI slightly lower than that of typical petroleum gasoline. However, ethanol blending offers additional CI reduction because it enables a reduction of aromatics in the petroleum blendstock for oxygenate blending (BOB) while maintaining octane rating of the blend. Aromatics have a CI about 20% higher than paraffins. The primary refinery option for aromatic reduction is
Clark, Nigel N.Klein, TammyHiggins, TerrenceMcKain, David
Reducing the carbon emissions associated with ICE- containing vehicles is a complimentary step towards carbon neutrality alongside the introduction of vehicles using newer energy vectors. In this study, the authors investigated emissions and efficiency impact of fully renewable E10-grade gasoline fuels blended with sustainable components at both 90 RON and 96 RON in comparison with reference regular E0 and premium certification gasolines across a range of ICE vehicle applications. Both renewable fuels were blended to the Japan JIS K2022 2012 E10 specification. The study shows very low carbon gasolines are technically feasible and potentially have an important role to play in decarbonizing both new advanced technology ICE vehicles and, critically, the existing ICE vehicle parc in the transition towards a zero emissions future.
Yates, TimothyAli, RanaSuzuki, MayuMatsubara, NaoyoshiYokoo, NozomiMorii, TakuyaAkiyama, ShotaIshizaki, Keita
The study was aimed at assessing the impact of fuel quality on the PN10 and PN23 emissions. A total of 6 fuels having different level of ethanol, renewable components, additives, and aromatic hydrocarbons were tested on the test vehicle. In the first phase of the study, the emission tests were conducted removing the GPF present in the original aftertreatment system to measure the direct impact of different fuels on the tailpipe particle emissions. The emission results showed that heavy aromatics components lead to a significant increase in particle emissions while the fuel with renewable components and E20 emit less PN comparing to the E10 reference fuel. However, those fuel impacts became very small with a GPF present due to a high filtration efficiency independent of fuel type.
Chijiiwa, RyokoRose, DominikBoger, ThorstenKrueger-Venus, JensCracknell, RogerWilliams, Rod
The aim of this study is to develop a pathway towards Hydrogen combustoin on an opposed-piston four stroke engine (OP4S) by using 1D simulation code from Gamma Technologies. By its configuration, the OP4S engine has significant thermal efficiency benefits versus conventional ICE. The benefit of the OP4S is reduced heat losses due to elimination of the cylinder head, which increase the brake thermal efficiency. A hydrogen-fueled (H2) opposed-piston four stroke (OP4S) engine was modeled using GTPower to determine the potential on performance, thermal efficiency and emissions targets. The 1D model was first validated on E10 gasoline using experimental data and was used to explore changes to fuel type in NG and H2, fueling location (TPI and DI), fuel mixture strength (stoichiometric and lean), for an optimized plenum volume and turbocharger selection. The impact of these changes on volumetric efficiency, rated power, brake thermal efficiency and finally emissions for naturally aspirated
Zoldak, PhilipDouvry-Rabjeau, JulienZyada, Antowan
Climate change mitigation is the main challenge for the automotive industry, as the government issues legislation to combat CO2 emissions. In addition to electrification and battery electric vehicles, using low-carbon and zero-carbon fuels in Internal Combustion (IC) engines can also be an effective way to reach net zero-carbon transport. This study investigated and compared the combustion characteristics, performance and emissions of a highly boosted spark ignition (SI) engine fuelled with EU VI 95 RON E10 gasoline and blends of second-generation bio-gasoline with different ethanol contents of 5% (E5), 10% (E10), and 20% (E20). The single-cylinder SI engine was equipped with a centrally mounted high-pressure injector and supplied externally boosted air. Engine experiments were conducted at 2000 RPM and 3000 RPM with low and high load operations. The overall finding indicates that increasing the ethanol content of second-generation biofuels from 5% to 20% improves the indicated thermal
Mohamed, MohamedZhao, HuaHarrington, AnthonyHall, Jonathan
Formula (1) vehicles have transitioned from E5 to E10 fuel for the 2022 season to reduce carbon emissions and by 2026 the vehicles are required to use 100% sustainable fuels. The aim of this paper is to identify the operating envelope of the F1 power unit for E10-E100 fuel and the resulting emission levels for these fuel compositions using numerical simulations. To achieve this aim an F1 engine model has been developed in GT-Suite with reference to the FIA 2022 Technical Regulations. The combustion model has been validated using data obtained from literature relating to laminar and turbulent flame speed, friction and heat transfer characteristics within the combustion chamber. One of the main challenges of using ethanol-based fuels is the increased levels of formaldehyde in the tailpipe. This paper presents the operating window for achieving the optimum engine performance with ethanol fuel blends ranging from the current E10 to E100, in keeping with the current 2022 FIA F1 regulations
Reeves, NickSamuel, Stephen
With the ever-increasing demand for sustainable energy, alcohol fuels have garnered interest for use in heavy duty engines. The significant infrastructure for ethanol production and blending of ethanol with gasoline make these fuels/fuel blends desirable candidates. However, development of heavy duty engine technology that is capable of burning alcohol fuels while retaining the advantages of traditional diesel combustion requires an improved understanding of the soot formation for these fuels under conditions relevant to mixing-controlled combustion. This work uses an extinction diagnostic to study the sooting tendency of ethanol and gasoline/ethanol blends ranging from E10 to E98 during ignition in a homogeneous environment. Experiments were conducted in a rapid compression machine (RCM) for compressed conditions of 20 ± 1 bar and an approximately constant temperature (± 10K) which was unique for each fuel. For a given soot volume fraction, a linear relationship was observed between
Gross, JosephChowdhury, MusharratDempsey, AdamAllen, Casey
The transition towards sustainable mobility encourages research into biofuels for use in internal combustion engines. For these alternative energy carriers, high-fidelity experimental data of flame speeds influenced by pressure, temperature, and air-fuel equivalence ratio under engine-relevant conditions are required to support the development of robust combustion models for spark-ignition engines. E.g., physicochemical-based approximation formulas adjusted to the fuel provide similar accuracy as high fidelity chemical kinetic model calculations at a fraction of the computational cost and can be easily adopted in engine simulation codes. In the present study, a workflow to enable predictive combustion engine modeling is applied first for a gasoline reference fuel and two biofuel blends recently proposed by Dahmen and Marquardt [Energy Fuels, 2017]. They identified one promising high-octane rating biofuel blend, expected to be optimized for SI combustion engines, and one promising low
Hesse, RaikSchwenzer, ChristianGlaznev, RomanEsposito, StefaniaFenard, YannPitsch, HeinzBeeckmann, Joachim
Much development in the automotive industry relates to the use of high-content ethanol blended fuels to reduce the emissions produced by on-road engines/vehicles. However, less research has been done on the effect of operating small off-road engines (SORE) on high-blend ethanol fuels without substantial modifications. Most manufacturers of such engines only certify proper operation on low content ethanol blends such as E10 (10% ethanol, 90% gasoline by volume). This paper focuses on the use of E77 fuel in a small off-road engine which is speed-governed. Such engines are commonly used in lawn mowers, small recreational vehicles, or other equipment. The exhaust emissions and performance of the engine were evaluated using the EPA 6-mode duty cycle for small recreational engines where testing and analysis followed the recommendations of SAE J1088. This test cycle consisted of operating the engine at steady state load points using a fixed engine speed. The performance of the engine was
Davis, GregoryMazzei, Arnaldo
A vehicle fleet of seven low-mileage gasoline direct injection (GDI) vehicles from the U.S. market were tested to determine if GDI injector deposits were present causing a loss in fuel economy (FE). The real-world vehicles were tested “as-is” from the field. The data shows that, even in a deposit control additive (DCA) mandated market that uses E10 gasoline, injector deposits can still result in up to 2.7 % loss in FE. In addition, the data shows that the level of real-world FE loss is comparable to that demonstrated in the GDI injector fouling test developed to simulate real-world dirty-up of GDI vehicle injectors.
Taylor, Daniel J.Sears, BrianGalante-Fox, Julie
Biofuels are a promising alternative to fossil fuels as their availability has been reduced during the last decades and they are the main sources of greenhouse gases emissions. Moreover, the targets of the international regulations include reduction of fossil fuels consumption, and improvement of the sustainability of the vehicle fleet. Blending gasoline with biofuels will result in changes in fuel blending procedures and combustion process especially for the gasoline direct injection (GDI) engines. In this article, flame visualization using chemiluminescence techniques in a Single Cylinder Optical Research Engine (SCORE) is presented, with an adjusted intake pressure of 850 mbar and early intake single injection (280 CAD BTDC), by using 100% hydrocarbon-based gasoline, E10 (90% gasoline - 10% ethanol) and ETBE20 (80% gasoline - 20% ethyl tert-butyl ether). ETBE20 is a potential alternative for E10, as it contains the same amount of renewable fuel and has low water solubility. Moreover
Tsiogkas, Vasileios D.Kleitsas, IoannisKolokotronis, DimitriosTourlidakis, AntoniosKaronis, Dimitrios
Renewable synthetic fuels offer the opportunity to significantly reduce carbon dioxide (CO2) emissions worldwide if burned in the internal combustion engines of existing and future passenger car fleets. To evaluate this potential, two renewable synthetic gasoline fuels and alcohol blends that can be produced via the methanol-to-gasoline (MtG) synthesis process are evaluated in this study. The first synthetic gasoline, hereafter referred to as MtG, was developed by Chemieanlagenbau Chemnitz GmbH and Technische Universität Bergakademie Freiberg, produced within the closed carbon cycle mobility (C3-Mobility) project, and was blended with 10%(V/V) ethanol (MtG-E10), 20%(V/V) ethanol (MtG-E20), 15%(V/V) methanol (MtG-M15), and 15%(V/V) 2-butanol (MtG-2Bu15). The second synthetic fuel, named POSYN (POrsche SYNthetic fuel), was developed by Porsche. The suitability of the synthetic fuels was experimentally investigated in a spark-ignition (SI) single-cylinder research engine with a
Wouters, ChristianLehrheuer, BastianPischinger, StefanSeifert, PeterRaabe, ToniKolbeck, MichaelRausch, BenjaminMenger, LarsCasal Kulzer, André
Autoignition enhancing additives have been used for years to enhance the ignition quality of diesel fuel, with 2-ethylhexyl nitrate (EHN) being the most common additive. EHN also enhances the autoignition reactivity of gasoline, which has advantages for some low-temperature combustion techniques, such as Sandia’s Low-Temperature Gasoline Combustion (LTGC) with Additive-Mixing Fuel Injection (AMFI). LTGC-AMFI is a new high-efficiency and low-emissions engine combustion process based on supplying a small, variable amount of EHN into the fuel for better engine operation and control. However, the mechanism by which EHN interacts with the fuel remains unclear. In this work, a chemical-kinetic mechanism for EHN was developed and implemented in a detailed mechanism for gasoline fuels. The combined mechanism was validated against shock-tube experiments with EHN-doped n-heptane and HCCI engine data for EHN-doped regular E10 gasoline. Simulations showed a very good match with experiments. EHN
Lopez Pintor, DarioDec, John
Rapid population growth and fuel crisis due to limited availability of fossil fuels, led the research in the fields of alternative fuel for the replacement of conventional fuels. The petroleum-like characteristics of ethanol make it an excellent alternative fuel for the internal combustion (IC) engines. It can be easily derived from waste agricultural resources such as plant biomass and forest residue, ease of production increases the possibility of its utilization locally in the agricultural engine and transport vehicles. A laboratory experiment was carried out, using a common rail direct injection (CRDI) diesel engine at varying load conditions (no-load, 20 Nm and 40 Nm) with two ethanol blends (5% and 10% v/v indicated by E05 and E10) and diesel (D100) to explore the combustion stability, combustion behaviour and emissions parameters of ethanol in existing compression ignition (CI) engine. The maximum in-cylinder pressure and heat release rate (HRR) were increased with ethanol
Sahu, Tomesh KumarKshatri, RavindraKumar, AtulShukla, Pravesh Chandra
In order to maximize the efficiency of light-duty gasoline engines, the Co-Optimization of Fuels and Engines (Co-Optima) initiative from the U.S. Department of Energy is investigating multi-mode combustion strategies. Multi-mode combustion can be describe as using conventional spark-ignited combustion at high loads, and at the part-load operating conditions, various advanced compression ignition (ACI) strategies are being investigated to increase efficiency. Of particular interest to the Co-Optima initiative is the extent to which optimal fuel properties and compositions can enable higher efficiency ACI combustion over larger portions of the operating map. Extending the speed-load range of these ACI modes can enable greater part-load efficiency improvements for multi-mode combustion strategies. In this manuscript, we investigate fuel effects for six different fuels, including four with a research octane number (RON) of 98 and differing fuel chemistries, iso-octane, and a market
Powell, TommySzybist, James
Chassis dynamometer tests were conducted on three Class III on-highway motorcycles produced for the North American market and equipped with advanced emission control technologies in order to inform emissions inventories and compare the impacts of existing Tier 2 (E0) fuel with more market representative Tier 3 and LEV III certification fuels with 10% ethanol. For this study, the motorcycles were tested over the US Federal Test Procedure (FTP) and the World Motorcycle Test Cycle (WMTC) certification test cycles as well as a sample of real-world motorcycle driving informally referred to as the Real World Driving Cycle (RWDC). The primary interest was to understand the emissions changes of the selected motorcycles with the use of certification fuels containing 10% ethanol compared to 0% ethanol over the three test cycles. Generally, for most of the test motorcycle/drive cycle combinations, the use of E10 certification fuels compared to Tier 2 (E0) resulted in reductions in CO, HC, NMHC
Rosenblatt, DeborahStokes, JonathanCaffrey, CherylBrown, Kevin
Ethanol is regarded as a potential alternative fuel for combustion engine as it provides lower exhaust emissions, higher efficiency and higher octane rating. However, the solubility of ethanol in oil can effect lubricant quality. The impact of ethanol-blend gasoline on lubricants is a matter of concern that must be addressed. With this in mind, the current study investigates the effect of blending ethanol with gasoline on the oil layer adsorption/desorption mechanism. The blends used for the study are E0, E5, E10, and E15. The study is carried out with the help of a mathematical model that predicts the fuel adsorbed/desorbed in the oil layer of an engine. The mathematical model predictions are compared to experimental results obtained on a single-cylinder gasoline engine. Fuel adsorbed in the oil layer ranges from 0.46% for E0 fuel to 0.35% for E15 fuel. Similarly, the desorbed fuel ranges from 0.45% to 0.29% as the ethanol fraction increases from 0% to 15%. Despite the fact that the
Kushwaha, GarimaSaraswati, SamirPaul PhD, Bireswar
Ethanol has shown tremendous potential in the journey of substitution of fossil fuels in the recent past. Primarily, the ethanol blends up to 10% in gasoline used in many countries as the existing vehicles are compatible with lower ethanol content. However, it is essential to address the compatibility of the vehicle’s fuel system when using higher ethanol-containing blends. The current study focused on the compatibility of different ethanol-gasoline blends with two widely used elastomer materials in the vehicle’s fuel system, namely, nitrile butadiene rubber/polyvinyl chloride blend (NBR/PVC) and epichlorohydrin (ECO). These materials are used for manufacturing parts like seals, gaskets, hoses/tubes, and cover of the fuel systems. The test fuels used in this study include commercial gasoline (E0), gasoline containing 10% ethanol (E10), 12% ethanol (E12), 15% ethanol (E15), and 20% ethanol (E20). The compositional analysis of NBR/PVC blend and ECO samples was undertaken using Carbon
Katta, LakshmiJoshi, RatnadeepSeth, SaritaSakthivel, P.Garg, SaritaChakradhar, MayaKagdiyal, VivekanandSaxena, DeepakRamakumar, S.S.V.
In view of the new emission regulations seeking to lower the particle cut-off size down to the current 23 nm, an extensive comprehension on the nature of sub-23 nm particles is crucial. In this regard, a new challenge lies ahead considering an even more massive use of biofuels. The objective of this research study was to characterize the sub-23 nm particles and to evaluate their volatile organic fraction (VOF) from a high performance, 1.8 L gasoline direct injection (GDI) engine under the Worldwide harmonized Light vehicles Test Cycle (WLTC). Particle emissions were measured through an Engine Exhaust Particle Sizer (EEPS) capable of particle sizing and counting in the range 5.6 - 560 nm. The sampling and conditioning were performed by both a single diluter and the Dekati Engine Exhaust Diluter (DEED) a Particle Measurement Programme (PMP) compliant sample conditioning system. The temperature of the dilution air at the first dilution stage and of the evaporation chamber in the DEED were
Catapano, FrancescoDi Iorio, SilvanaMagno, AgneseVaglieco, Bianca Maria
Mixture formation in GDI engine is considered crucial in determining combustion and emissions characteristics, which mainly depend on fuel spray quality. However, spray characteristics change with variations in control parameters such as fuel injection parameters, fuel injection strategy, engine operating conditions, and fuel properties. Growing research interest in the use of methanol as an additive with gasoline has motivated the need for deeper investigations of spray characteristics of these fuels. Although, it can be noted that sufficient literature is available in the area of spray characterization under several independent influencing factors, however, comparative analysis of gasohol spray behavior under different ambient conditions is hardly studied. This study is aimed at investigating the spray morphology, and evaporation and mixing characteristics of M15 (15% v/v methanol in iso-octane) and M85 (85% v/v methanol in iso-octane) in comparison to iso-octane at early injection
Kalwar, AnkurChintagunti, SamAgarwal, Avinash Kumar
Low-temperature gasoline combustion engines can provide high efficiencies with very low NOx and particulate emissions, but rapid control of the combustion timing (50% burn point, CA50) remains a challenge. Partial Fuel Stratification (PFS) was recently demonstrated [2019-01-1156] to control CA50 over a wide range at some selected operating conditions using a regular-grade E10 gasoline. PFS was produced by a double direct injection (D-DI) strategy using a gasoline-type direct injector. For this D-DI-PFS strategy, the majority of the fuel is injected early in the intake stroke, establishing the minimum equivalence ratio in the charge, while the remainder of the fuel is supplied by a second injection at a variable time (SOI2) during the compression stroke to vary the amount of stratification. Adjusting the stratification changes the combustion timing, and this can be done on a cycle-to-cycle basis by adjusting SOI2. The current work expands the understanding of D-DI-PFS by investigating
Lopez Pintor, DarioGentz, GeraldDec, John
Particulate matter, mainly its finer fraction, is among the main atmospheric pollutants present in an urban environment. The relationship between the increase in the concentration of this pollutant and the harm to human health is well established. The main sources of particulate matter in urban areas are mobile sources, which includes the exhaust emission from light duty vehicles. In Brazil since its advent in 2003, there has been great penetration in the market for bi-fuel or "flex" vehicles, which use ethanol, gasoline or their mixtures as fuel. More recently, with the introduction of public policies that led to the adoption of improvements in the energy efficiency of vehicles, the use of direct fuel injection technology (GDI), as a trend in downsizing for improved fuel economy, gained prominence. This technology optimizes the burning process in the combustion chamber of the engines, making their use more efficient. On the other hand, it has the side effect of a higher emission of
Borsari, VanderleiNeto, Edson ElpídioFerreira, Vanderlei RodriguesBerber, Erick Bueno
The compatibilities of fuel system elastomers and plastics were evaluated for test fuels containing 16 vol.% isobutanol (iBu16) and 10 vol.% ethanol (E10). Elastomers included two fluorocarbons, four acrylonitrile butadiene rubbers (NBRs), and one type of fluorosilicone, neoprene, and epichlorohydrin/ethylene oxide. Plastic materials included four nylon grades, three polyamides, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), ethylene tetrafluoroethylene (ETFE), polyphenylene sulfide (PPS), high-density polyethylene (HDPE), polybutylene terephthalate (PBT), polyoxymethylene (POM), flexible polyvinylchloride (PVC), polyetherimide (PEI), polyetheretherketone (PEEK), and a phenol formaldehyde reinforced with glass fiber (GFPF). For each polymer material, the volume, mass, and hardness were measured before and after drying. Dynamic mechanical analysis (DMA) measurements were also performed on the dried specimens. For the elastomer materials the measured properties were
Kass, MichaelJanke, ChristopherConnatser, Raynella M.Lewis, SamuelBaustian, JamesWolf, LesKoch, Wolf
Water injection can be applied to spark ignited gasoline engines to increase the Knock Limit Spark Advance and improve the thermal efficiency. The Knock Limit Spark Advance potential of 6 °CA to 11 °CA is shown by many research groups for EN228 gasoline fuel using experimental and simulation methods. The influence of water is multi-layered since it reduces the in-cylinder temperature by vaporization and higher heat capacity of the fresh gas, it changes the chemical equilibrium in the end gas and increases the ignition delay and decreases the laminar flame speed. The aim of this work is to extend the analysis of water addition to different octane ratings. The simulation method used for the analysis consists of a detailed reaction scheme for gasoline fuels, the Quasi-Dimensional Stochastic Reactor Model and the Detonation Diagram. The detailed reaction scheme is used to create the dual fuel laminar flame speed and combustion chemistry look-up tables. The Detonation Diagram is used as a
Franken, TimSeidel, LarsMatrisciano, AndreaMauss, FabianKulzer, André C.Schuerg, Frank
ϕ-sensitivity is a fuel characteristic that has important benefits for the operation and control of low-temperature gasoline combustion (LTGC) engines. However, regular gasoline is not very ϕ-sensitive at low-pressure conditions, meaning that intake boosting (typically Pin ≥ 1.3 bar) is required to take advantage of this property. Thus, there is strong motivation to design a gasoline-like fuel that simultaneously improves ϕ-sensitivity, RON and octane sensitivity, to make an improved fuel suitable for both LTGC and modern SI engines. In a previous study [SAE 2019-01-0961], a 5-component regulation-compliant fuel blend (CB#1) was computationally designed; and simulations showed promising results when it was compared to a regular E10 gasoline (RD5-87). The current study experimentally evaluates CB#1 in the Sandia LTGC engine and compares the results with those of RD5-87. The RON and octane sensitivity were improved 1.3 and 3.6 units by CB#1, respectively. Similar amounts of intake heat
Lopez Pintor, DarioDec, JohnGentz, Gerald
Gasoline compression ignition (GCI) technology shows the potential to obtain high thermal efficiencies while maintaining low soot and NOx emissions in light-duty engine applications. Recent experimental studies and numerical simulations have indicated that high reactivity gasoline-like fuels can further enable the benefits of GCI combustion. However, there is limited empirical data in the literature studying the gasoline compression ignition process at relevant in-cylinder conditions, which are required for further optimizing combustion system designs. This study investigates the temporal and spatial evolution of the compression ignition process of various high reactivity gasoline fuels with research octane numbers (RON) of 71, 74 and 82, as well as a conventional RON 97 E10 gasoline fuel. A ten-hole prototype gasoline injector specifically designed for GCI applications capable of injection pressures up to 450 bar was used. Vapor and liquid penetration from high speed optical
Zhang, JiongxunTang, MengAtkinson, WilliamSchmidt, HenryLee, Seong-YoungNaber, JeffreyTzanetakis, TomSim, Jaeheon
The effect of low level ethanol fuel on the power and emissions characteristics was studied in a small, mass produced, carbureted, spark-ignited, Briggs and Stratton Vanguard 19L2 engine. Ethanol has been shown to be an attractive renewable fuel by the automotive industry; having anti-knock properties, potential power benefits, and emissions reduction benefits. With increasing availability and the possible mandates of higher ethanol content in pump gasoline, there is interest in exploring the effect of using higher content ethanol fuels in the small utility engine market. The fuels in this study were prepared by gravimetrically mixing 98.7% ethanol with a balance of 87 octane no-ethanol gasoline in approximately 5% increments from pure gasoline to 25% ethanol. Alcor Petrolab performed fuel analysis on the blended fuels and determined the actual volumetric ethanol content was within 2%. The purpose of this study is to evaluate the performance and emissions of a small utility engine
Paliwal, SaagerBower, Glenn R.
Flash boiling, as a potential way to achieve good atomization at low cost, is of great interest to researchers. A customized wide-angle multi-hole gasoline injector was utilized in this work to see how commercial E10 gasoline spray behaves at high injection pressure of gasoline compression ignition (GCI) application from 5 MPa to 45 MPa, and ambient gas pressure from 3 kPa to 300 kPa . A diffused back illumination technique was implemented to visualize the spray at flash boiling and non-flashing conditions. Three different types of spray pattern were observed and correlated to the characteristics like penetration length and spray width. A new parameter, namely optical thickness, was applied in the field of characterizing flash boiling effect for the first time, and compared with widely used penetration length and spray width. Optical thickness was found to be a good indicator for collapse, transition, and non-flashing spray.
Du, JianguoMohan, BalajiSim, JaeheonChang, JunseokFang, TiegangRoberts, William L
The compatibility of four potential bio-derived blendstock molecules with infrastructure elastomers was determined by measuring the volume change following exposure. The blendstock molecules included 1-propanol, diisobutylene, cyclopentanone, and a furan mixture. The elastomers included two fluorocarbons, six nitrile rubbers (NBRs), and one each of fluorosilicone, neoprene, polyurethane, and silicone. The elastomers were exposed to the fuel molecules as blends ranging from 0 to 30 vol.% in both a blendstock for oxygenate blending (BOB) formulation and an E10 fuel. Silicone exhibited excessive swelling in each test fuel, while the other elastomers showed good compatibility (low swell) with diisobutylene, 1-propanol, and the furan mixture when BOB was used as the base fuel. The E10 base fuel produced high (>30%) swell in neoprene, polyurethane, and some nitrile rubbers. In most cases diisobutylene produced the least amount of volume expansion. In contrast, the addition of cyclopentanone
Kass, Michael D.Janke, Christopher J.Connatser, Raynella M.West, Brian
In current production natural gas/gasoline bi-fuel vehicles, fuels are supplied via port fuel injection (PFI). Injecting a gaseous fuel in the intake port significantly reduces the volumetric efficiency and consequently torque as compared to gasoline. In addition to eliminating the volumetric efficiency challenge, direct injection (DI) of natural gas (NG) can enhance the in-cylinder flow, mixing, and combustion process resulting in improved efficiency and performance. A computational fluid dynamics (CFD) approach to model high-pressure gaseous injection was developed and validated against X-ray data from Argonne’s Advanced Photon Source. NG side and central DI of various designs and injection strategies were assessed experimentally along with CFD correlation. Significant effects on combustion metrics were quantified and explained via improved understanding of the in-cylinder flow effects due to NG injection. On-demand in-cylinder blending using E10 PFI and NG DI provides an additional
Wallner, ThomasPamminger, MichaelScarcelli, RiccardoPowell, ChristopherSimeu, Severin KamguiaWooldridge, StevenBoyer, BradIqbal, AsimReese, Ron
Internal combustion engines for plug-in hybrid heavy duty trucks, especially long haul trucks, could play an important role in facilitating use of battery power. Power from a low carbon electricity source could thereby be employed without an unattractive vehicle cost increase or range limitation. The ideal engine should be powered by a widely available affordable liquid fuel, should minimize air pollutant emissions, and should provide lower greenhouse gas emissions. Diesel engines could fall short in meeting these objectives, especially because of high emissions. In this paper we analyze the potential for a flex fuel gasoline-alcohol engine approach for a series hybrid powertrain. In this approach the engine would provide comparable (or possibly greater) efficiency than a diesel engine while also providing 90 around lower NOx emissions than present cleanest diesel engine vehicles. Ethanol or methanol would be employed to increase knock resistance. Engines that could be deployed in the
Cohn, DanielBromberg, Leslie
When fuel at elevated temperatures is injected into an ambient environment at a pressure lower than the saturation pressure of the fuel, the fuel vaporizes in the nozzle and/or immediately upon exiting the nozzle; that is, it undergoes flash boiling. It is characterized by a two-phase flow regime co-located with primary breakup, which significantly affects the spray characteristics. Under flash boiling conditions, the near nozzle spray angle increases, which can lead to shorter penetration because of increased entrainment. In a multi-hole injector this can cause other impacts downstream resulting from the increased plume to plume interactions. To study the effect of injector temperature and injection pressure with real fuels, an experimental investigation of the spray characteristics of a summer grade gasoline fuel with 10% ethanol (E10) was conducted in an optically accessible constant volume spray vessel. A gasoline direct-injection injector with six holes typical of a side-injection
Miganakallu Narasimhamurthy, NiranjanAtkinson, WilliamYang, ZhuyongNaber, Jeffrey
Six blendstocks identified by the Co-Optimization of Fuels & Engines Program were used to prepare fuel blends using a fixed blendstock for oxygenate blending and a target RON of 97. The blendstocks included ethanol, n-propanol, isopropanol, isobutanol, diisobutylene, and a bioreformate surrogate. The blends were analyzed and used to establish interaction factors for a non-linear molar blending model that was used to predict RON and MON of volumetric blends of the blendstocks up to 35 vol%. Projections of efficiency increase, volumetric fuel economy increase, and tailpipe CO2 emissions decrease were produced using two different estimation techniques to evaluate the potential benefits of the blendstocks. Ethanol was projected to provide the greatest benefits in efficiency and tailpipe CO2 emissions, but at intermediate levels of volumetric fuel economy increase over a smaller range of blends than other blendstocks. A bioreformate surrogate blendstock was projected to provide the greatest
Sluder, C. Scott
The influence of operating parameters on the performance of spark ignition engine has attracted the interest of engine manufacturers and researchers. In this instance, selection of optimum criteria of operating parameters based on experimental results is expressed as a multi attribute decision making (MADM) problem. In this study, a mathematical model which is an integration of Analytic hierarchy process (AHP) and Weighted Euclidean distance based approach (WED) is proposed to select optimal combination of operating parameters. The parameters chosen are compression ratio (6,7,8,9), fuel blends (E10, E20, E30, E40) and load (25%, 50%, 75%, 100%). Consistency check of weights of attributes was carried out by AHP and the weighted distance of attributes from the most and least favorable situations was evaluated using WED. Optimum criteria with the combination of compression ratio of 8, fuel blend of E20 at load of 100% was found to be optimum. The results of proposed mathematical model
Geetha, Narayanan KannaiyanPappula, Bridjesh
Low Temperature Combustion using compression ignition may provide high efficiency combined with low emissions of oxides of nitrogen and soot. This process is facilitated by fuels with lower cetane number than standard diesel fuel. Mixtures of gasoline and diesel (“dieseline”) may be one way of achieving this; however, a gasoline/diesel mixture in a fuel tank can result in a flammable headspace, particularly at very cold ambient temperatures. A mathematical model to predict the flammability of dieseline blends, including those containing ethanol, was previously validated. In this paper, that model is used to study the flammability of dieseline blends parametrically. Gasolines used in the simulations had Dry Vapour Pressure Equivalent (DVPE) values of 45, 60, 75, 90 and 110 kPa. Simulations were carried out for dieseline blends containing ethanol with two types of specifications - a fixed ethanol volume percent in the dieseline blend (0-50% ethanol), or blends containing specified EXX
Bardon, MichaelPucher, GregAriztegui, JavierCracknell, RogerHamje, HeatherPellegrini, LeonardoRogerson, John
Items per page:
1 – 50 of 189