Browse Topic: Launch vehicles
A Coventry University design and materials engineer is leading an international team of researchers in the creation of a new material for liquid hydrogen storage tanks that are used to propel rockets into space. Coventry University, Coventry, UK The future of space travel is seemingly changing by the day and a Coventry University academic is doing his bit to stay at the front of the space race. Dr. Ashwath Pazhani along with an international team of researchers have created a new material for storing the liquid hydrogen used to propel rockets into space by the likes of NASA.
Researchers at the Max Planck Institute for Extraterrestrial Physics have developed a new way to produce and shape large, high-quality mirrors that are much thinner than conventional space-telescope mirrors. The final product is even flexible enough to be rolled up and stored compactly inside a launch vehicle.
In any human space flight program, safety of the crew is of utmost priority. In case of exigency in atmospheric flight, the crew is safely and quickly rescued from the launch vehicle using Crew Escape System (CES). CES is a critical part of the Human Space Flight which carries the crew module away from the ascending launch vehicle by firing its rocket motors (Pitch Motor (PM), Low altitude Escape Motor (LEM) and High altitude Escape Motor (HEM)). The structural loads experienced by the CES during the mission abort are severe as the propulsive, aerodynamic and inertial forces on the vehicle are significantly high. Since the mission abort can occur at anytime during the ascent phase of the launch vehicle, trajectory profiles are generated for abort at every one second interval of ascent flight period considering several combinations of dispersions on various propulsive parameters of abort motors and aero parameters. Depending on the time of abort, the ignition delay of PM, LEM and HEM
With regards to any aerospace mission, it is very useful to have awareness about the state of vehicle, i.e., the information about its position, velocity, attitude, rotational rates and other concerned data such as control surface deflections, landing gear touchdown, working of mechanisms and so on. The sensor data from the vehicle that is communicated to the ground can be difficult to perceive and analyze. A frame work for real-time motion simulation of an aerospace vehicle from onboard telemetry data is henceforth developed in order to improve the understanding about the current state of the mission and aid in real-time decision making if required. The telemetry data, that is transmitted through User Datagram Protocol (UDP), is received and decoded to usable format. The visualization software accepts the data in a fixed time interval and applies the required transformations in order to ensure one-to-one correspondence between actual vehicle and simulation. The transformations
Unsteady pressure fluctuations in launch vehicles can induce aerodynamic instabilities, potentially resulting in vibration, structural fatigue, and even catastrophic failure. These risks undermine structural integrity and jeopardize payload delivery, threatening mission success and crew safety. Therefore, precise measurements of unsteady pressure are vital for understanding dynamic pressure distribution and flow behaviour caused by phenomena like shock waves, vortices, boundary layer interactions, and flow separation. While ground-based wind tunnel tests have conventionally provided these insights, this paper presents an on-board system designed for real-time unsteady pressure data acquisition. The system addresses the challenge of accurately resolving high-frequency pressure variations over very high base pressure values. It can be integrated into re-entry vehicles and stage recovery experiments, providing confidence in acquiring data for complex geometrical shapes. Moreover, the
Launch vehicle structures in course of its flight will be subjected to dynamic forces over a range of frequencies up to 2000 Hz. These loads can be steady, transient or random in nature. The dynamic excitations like aerodynamic gust, motor oscillations and transients, sudden application of control force are capable of exciting the low frequency structural modes and cause significant responses at the interface of launch vehicle and satellite. The satellite interface responses to these low frequency excitations are estimated through Coupled Load Analysis (CLA). This analysis plays a crucial role in mission as the satellite design loads and Sine vibration test levels are defined based on this. The perquisite of CLA is to predict the responses with considerable accuracy so that the design loads are not exceeded in the flight. CLA validation is possible by simulating the flight experienced responses through the analysis. In the present study, the satellite interface responses are validated
In recent years, industry adoption of thermoplastic composites (TPCs) in lieu of thermosets and metallic structures has increased for the fabrication of air and launch vehicle components. Manufacturing of TPCs, performed via automated tape laying (ATL) and automated fiber placement (AFP), uses machines that place prepreg tow or tapes on molds in a unidirectional manner, which then undergo cure cycles, autoclaving, and other steps that require special tooling. The process is time, material, and energy intensive, requires large facilities to house equipment, and limits the size, mechanical properties and shapes of the parts manufactured. To address these limitations, NASA’s Langley Research Center has developed a simplified, tool-less automated tow/tape placement (ATP) system.
This SAE Aerospace Information Report (AIR) includes all missile and launch vehicle actuation systems, including electrohydraulic, electropneumatic, and electromechanical types. The data for many systems are not complete. As more information becomes available, periodic updates will be issued to complete existing data sheets and to add new ones. An index by type of vehicle and by type of actuation system is included. The actual data sheets in the body of the report are organized in alphabetical order.
Louisiana State University Baton Rouge, LA
Cranes for lifting and lowering heavy objects are an important and sometimes essential tool in modern industries such as construction, transportation, and manufacturing. NASA uses overhead and mobile cranes for assembly of load lines employed in full-scale testing of its Space Launch System (SLS), a super-heavy-lift launch vehicle for deep space human space exploration. Structural testing of the SLS requires precision placement of heavy objects with soft contact during mating connections, which proved to be problematic with the relatively coarse control available with motor-driven overhead cranes and the existing rigging devices.
Using rockets to launch satellites and people into orbit currently requires a lot of high-energy fuel, which is 95% of total rocket mass. Launching a pound of payload can cost $10,000 or more, so minimizing the total cost of launching rockets would maximize the scientific payloads and increase the feasibility of space exploration.
This SAE Aerospace Information Report (AIR) presents reference information for use in preparing detailed specifications and other documents. The intent is to have a master reference document containing frequently required tabulations of information, such as the meaning of abbreviations, the spelled out wording of acronyms, the definition of terms, etc. so that such tabulations need not be repeated in recommended practice documents describing how to prepare technical documents. This document is intended to provide references in the field of fluid system components for space applications. Space applications include spacecraft, such as satellites, space stations, launch vehicles and space shuttles, and servicing equipment and components used for ground systems and launching and for servicing in space. Fluid system components include couplings, fittings, hose and tubing assemblies.
To comply with the stringent fuel consumption requirements, many automobile manufacturers have launched vehicle electrification programs which are representing a paradigm shift in vehicle design. Looking specifically at powertrain calibration, optimization approaches were developed to help the decision-making process in the powertrain control. Due to computational power limitations the most common approach is still the use of powertrain calibration tables in a rule-based controller. This is true despite the fact that the most common manual tuning can be quite long and exhausting, and with the optimal consumption behavior rarely being achieved. The present work proposes a simulation tool that has the objective to automate the process of tuning a calibration table in a powertrain model. To achieve that, it is first necessary to define the optimal reference performance. The calibration table then has its values optimized by the Genetic Algorithm to a single value that better matches the
On September 1, 1961, NASA requested appropriations for initial land purchases on Merritt Island on Florida’s east coast to support the Apollo Lunar Landing Program. Designers quickly began developing plans for Launch Complex 39 facilities, which include the Launch Control Center, Pads A & B, and the huge hangar now known as the Vehicle Assembly Building (VAB).
Putting a satellite into low Earth orbit requires a lot of energy, with ground-launched rockets expending two-thirds of their propellant fighting to get through the atmosphere. Researchers at NASA’s Armstrong Flight Research Center have developed an innovative approach to launching satellites into space from an airborne platform. As with other air-launch approaches, it provides significant flexibility in the location and direction of the launch vehicle. Furthermore, unlike other air-based launch techniques, this system avoids the significant drawbacks related to expensive and complex design/development efforts, difficult maneuvering, risks to crew, and inefficient flight performance.
There is a need for a large deployable reflector of 2-meter diameter or greater so smaller launch vehicles can be used. Common issues with going from a large solid reflector into deployable structures are the structural stiffness and deployable structure complexity.
NASA has developed a game-changing deployable aeroshell concept for entry, descent, and landing (EDL) of large science and exploration-class payloads. The Adaptable, Deployable Entry Placement Technology (ADEPT) concept is a mechanically deployable semi-rigid aeroshell entry system capable of achieving low ballistic coefficient during entry suitable for a variety of planetary or Earth return missions. It leverages Ames expertise in Thermal Protection Systems (TPS) material and entry system design, development, and testing. The deployable decelerator systems offer a lighter-weight solution to current rigid, high-ballistic-coefficient aeroshells. The deployable feature of ADEPT allows each mission to utilize an entry system design that fits within existing launch vehicle systems, and later transforms into a low ballistic coefficient configuration for EDL. Consisting of rigid ribs and a TPS, deployment can be done for inspection in Earth orbit by extending the ribs and stretching the TPS
Glenn Research Center has always been in the business of perfecting engines. During World War II, the center, then called the Aircraft Engine Research Laboratory, developed a cooling system for the B-29 Super Fortress—a four-engine, propeller-driven heavy bomber that saw action in East Asia—and also investigated carburetor icing issues in preparation for aircraft flying over the Himalayas into China. In 1945, well before the dawn of the Space Age, trailblazing rocket scientists there began investigating the use of liquid hydrogen as a fuel source, culminating in the development of the Centaur rocket, which would become the Nation’s first upper-stage launch vehicle. Since the mid-1960s, Centaur has propelled into space numerous weather probes, communications satellites, and planetary explorers, such as Surveyor, Pioneer, Viking, and Voyager.
The current range ground-based infrastructure is extremely costly to operate and maintain. NASA has developed an Autonomous Flight Termination System (AFTS) that is an independent, self-contained subsystem mounted onboard a launch vehicle. The AFTS reference system eliminates the need for a ground-based infrastructure by moving the flight termination function from the ground to the launch vehicle. It will allow multiple vehicles to be launched and tracked at the same time. AFTS is necessary to support vehicles that have multiple flyback boosters.
Adaptive augmenting control (AAC) is a forward gain, multiplicative adaptive algorithm for launch vehicle flight control that meets three summary-level design objectives: Do no harm — return to baseline control design when not needed; respond to errors in the ability of the vehicle to track commands to increase performance; and respond to undesirable parasitic dynamics (e.g., control-structure interaction) to maintain stability.
This innovation integrates existing highperformance metallic materials and manufacturing technologies (all of which are now certified and used to produce thinner stiffened panels for launch vehicle structures) in a novel manner to allow fabrication of more structurally efficient panels with stiffeners that are substantially deeper than existing plate stock materials.
One of the crucial ground structures employed at the launch pad during the Space Shuttle program is the rainbird nozzle system, whose primary objective is to suppress acoustic energy generated by the launch vehicle during pad abort and nominal operations. It is important that the rainbird water flow does not impinge on the rocket nozzles and other sensitive ground support elements. For the new Space Launch System (SLS) vehicle, the operation is similar, regardless of the new mobile launcher and new engine configurations. The goal of the rainbird nozzle system remains sound suppression (SS), and the rocket engines still cannot get wet. However, the rearrangement of the rainbird water system for the SLS mobile launcher locates the rainbirds closer to the first-stage rocket engines, which are positioned above the exhaust hole. The close proximity of the rainbird nozzle system could potentially cause vehicle wetting during liftoff.
Items per page:
50
1 – 50 of 345