Browse Topic: Heat transfer

Items (3,365)
This study presents a systematic CFD-based investigation of air-cooled lithium-ion battery pack thermal management using a novel U-shaped channel. The U-shaped domain was selected due to its ability to promote recirculation and uniform air distribution, which enhances cooling effectiveness compared to conventional straight and Z-type channels. A systematic parametric optimization of inlet position and airflow velocity was performed to minimize hotspot formation and improve temperature uniformity. Results reveal that shifting the inlet from 30 mm to 20 mm and increasing velocity from 2 m/s to 3 m/s reduced the maximum battery temperature by 3.46 K, from a baseline of 333 K to 329.54 K, while maintaining minimal pressure drop. These findings highlight that strategic control of inlet parameters can yield significant thermal improvements with high cost-effectiveness and geometric simplicity.
PC, MuruganJ, SivasankarW, Beno WincyG, Arun Prasad
The performance and longevity of lithium-ion (Li-ion) batteries in electric vehicles (EVs) are critically dependent on effective thermal management. As internal heat generation during charge and discharge cycles can lead to uneven temperature distribution, exceeding optimal operating limits (25 - 40°C) can significantly degrade battery performance and lifespan. This study presents a performance evaluation of a novel liquid-based Battery Thermal Management System (BTMS) featuring a dual-directional coolant channel configuration designed to enhance thermal uniformity and heat dissipation. The proposed configuration combines horizontal and vertical coolant passages in an indirect cooling layout to address the limitations of conventional serpentine-type channels. A comprehensive thermal analysis was carried out under realistic loading conditions using three coolant types: water, ethylene glycol- based G48, and graphene-enhanced water nanofluids. These were evaluated for thermal
Selvan, Arul MozhiPeriyasamy, MuthukumarR, ThiruppathiPrasad S, HariRaghav, RBoddu, Sriram Pydi Aditya
Turbochargers play a crucial role in modern engines by increasing power output and fuel efficiency through intake air compression, thereby improving volumetric efficiency by allowing more air mass into the combustion chamber. However, this process also raises the intake air temperature, which can reduce charge density, lead to detonation, and create emissions challenges—such as smoke limits in diesel engines and knock in gasoline spark-ignited (GSL) engines. To mitigate this, intercoolers are used to cool the compressed air. Due to packaging constraints, intercoolers are typically long and boxy, limiting their effectiveness, especially at low vehicle speeds where ram air flow is minimal. This study investigates the use of auxiliary fans to enhance intercooler performance. Two methodologies were adopted: 1D simulation using GT-Suite and experimental testing on a vehicle under different fan configurations—no fan, single fan, and dual fans (positioned near the intercooler inlet and outlet
Patra, SomnathHibare, NikhilGanesan, ThanigaivelGharte, Jignesh Rajendra
With the increasing tonnage of electric heavy commercial vehicles, there is a growing demand for higher power and torque-rated traction motors. As motor ratings increase, efficient cooling of the EV powertrain system becomes critical to maintaining optimal performance. Higher heat loads from traction motors and inverters pose significant challenges, necessitating an innovative cooling strategy to enhance system efficiency, sustainability, and reliability. Battery-electric heavy commercial vehicles face substantial cooling challenges due to the high-pressure drop characteristics of conventional traction system cooling architectures. These limitations restrict coolant flow through key powertrain components and the radiator, reducing heat dissipation efficiency and constraining the operating ambient temperature range. Inefficient cooling also leads to increased energy consumption, impacting the overall sustainability of electric mobility solutions. This paper presents a novel approach of
Dixit, SameerPatil, BhushanGhosh, Sandeep
With the rise of EVs, researchers are focusing on optimizing busbar design to meet the demands of high energy density, fast charging, and compact battery packs. The busbar design starts by selecting the material and the cross-sectional area required based on the rated current requirement. The width matches or may exceed the battery cell terminal size, whereas the length is optimized such that it is packaged within the given space constraints. The research also highlights the risk of busbars to oxidation and corrosion, which increases resistance and decreases conductivity for which plating/coating techniques are applied to improve the surface finish, overall durability, conductivity and in some cases the surface hardness, while minimizing the heat loss. Using simulations and experimental validation, the study examines three key design parameters: the weld diameter for busbar welded joints, electrical resistance, and contact resistance. A detailed analysis investigates how the weld
Nogdhe, YogeshSingh, Shobit KumarPaul, JibinMishra, MukeshMenon, Praveen
This study aimed to develop a thermally conductive TPE mat and assess its performance in comparison to an existing antiskid rubber mat, specifically evaluating its impact on wireless charger efficiency. Moreover, morphological and thermal analyses were conducted to establish a correlation between the material behaviours of the new and current thermally conductive antiskid mats. The process of developing the thermally conductive TPE involved utilizing a two-roll mill followed by compression moulding to achieve a 2D sheet shape. Notably, the thermally conductive mat demonstrated a consistent enhancement in charging efficiency over the conventional antiskid mat. To examine the thermal characteristics, thermal characterization techniques including DSC and TGA were employed for both the existing and newly developed mats. FTIR spectroscopy was also utilized to confirm the presence of organic functional groups within the mat. The morphological analysis of the fillers used to enhance thermal
Naikwadi, Amol TarachandMali, ManojPatil, BhushanTata, Srikanth
The objective of this paper is to evaluate the thermal performance of the brake discs in the design stage of its life cycle by developing a methodology to replicate dynamometer testing using multi-disciplinary Finite Element Analysis (FEA) methods. A simulation workflow was formulated in which Computational Fluid Dynamics (CFD) was used to create temperature and velocity dependent Heat Transfer Coefficients (HTC) which were in turn used in Computer Aided Engineering (CAE) to do a thermo-mechanical analysis. With this workflow various designs of the brake discs were analyzed. A sensitivity study was done to determine critical design features that affected its thermal performance. A final design was fixed that met both the weight and thermal performance targets. This design was evaluated in dynamometer testing, and 93% correlation was achieved. Thus, the developed simulation workflow ensured that a first-time right brake disc can be finalized in the design stage, which will meet the
Balaji, PraveenK, KarthikeyanS, KesavprasadS Kangde, SuhasReddy, Jagadeeswara
This study focuses on enhancing energy efficiency in electric vehicle (EV) thermal management systems through the development and optimization of control logic. A full vehicle thermal management system (VTMS) was modeled using GT-Suite software, incorporating subsystems such as the high voltage battery (HVB), Electric powertrain (EPT), and an 8-zone cabin. Thermal models were validated with experimental data to ensure accurate representation of key dynamics, including coolant to cell heat transfer, cell-to-ambient heat dissipation, and internal heat generation. Control strategies were devised for Active Grille Shutter (AGS) and radiator fan operations, targeting both cabin cooling and EPT thermal regulation. Energy consumption was optimized by balancing aerodynamic drag, fan power, and compressor power across various driving conditions. A novel series cooling logic was also developed to improve HVB thermal management during mild ambient conditions. Simulation results demonstrate
Chothave, AbhijeetKumar, DipeshGummadi, GopakishoreKhan, ParvejThiyagarajan, RajeshPandey, RishabhS, AnanthAnugu, AnilMulamalla, SarveshwarGangwar, Adarsh
Gears play a critical role in automotive transmission systems. During operation, frictional heat is generated in the intermeshing region due to loading. Effective lubrication and cooling are essential to minimize heat generation and ensure smooth operation. Lubrication failure can lead to a significant local temperature rise, potentially causing gear scuffing—a phenomenon where intermeshed gear teeth weld together and tear apart during rotation—resulting in severe damage and compromised transmission performance. To prevent this, gears are typically lubricated using splash or jet lubrication techniques. This study presents a Conjugate Heat Transfer (CHT) simulation of a jet-lubricated gear pair in an automotive transmission system to predict the local temperature rise due to frictional heating in the intermeshing region of the gears. The paper focuses on implementation of the frictional heat generation on the gear teeth and resultant transient temperature rise in the gear contact region
Ballani, AbhishekVartanian, AleksandrSchlautman, JeffRaj, GowthamSrinivasan, ChiranthMaiti, Dipak
The performance and longevity of Li-ion batteries in electric vehicles are significantly influenced by the cell temperature. Hence, efficient thermal management techniques are essential for battery packs. Simulation based optimization approaches improves the efficiency of the battery pack thermal management during the early stage of product development. In this paper, a simulation-based methodology has been introduced to increase the heat transfer from/to coolant via cooling plate as well as to reduce the heat transfer from/to the external environment. The heat transfer coefficient between cooling plate and coolant needs to be enhanced to achieve efficient heat transfer through cooling plate, without exceeding the coolant pressure drop the target limit. A one-dimensional simulation methodology described in this work analyzed numerous design of experiments for coolant layout without performing CAD iteration loops and optimized the cooling channel width, height and number of channels to
U, ReghunathP S, Shebin
The HVAC (Heating, Ventilation, and Air conditioning) system is designed to fulfil the thermal comfort requirement inside a vehicle cabin. Human thermal comfort primarily depends upon an occupant’s physiological and environmental condition. Vehicle AC performance is evaluated by mapping air velocity and local air temperature at various places inside the cabin. There is a need to have simulation methodology for cabin heating applications for cold climate to assess ventilation system effectiveness considering thermal comfort. Thermal comfort modelling involves human manikin modeling, cabin thermal model considering material details and environmental conditions using transient CAE simulation. Present study employed with LBM (Lattice-Boltzmann Method) based PowerFLOW solver coupled with finite element based PowerTHERM solver to simulate the cabin heat up. Human thermal comfort needs physiological modelling; thus, the in-built Berkeley human comfort library is used in simulation. Human
Baghel, Devesh KumarKandekar, AmbadasKumar, RaviDimble, Nilesh
Battery Thermal Management Systems (BTMS) play a critical role in ensuring the longevity, safety, and efficient operation of lithium-ion battery packs. These systems are designed to better dissipate the heat generated by the cells during vehicle operation, thereby maintaining a uniform temperature distribution across the battery modules, preventing overheating and mitigating the chances of thermal runaway. However, one of the primary challenges in BTMS design lies in achieving effective thermal contact between the battery cells and the cooling plate. Non-uniform or excessive application of Thermal Interface Materials (TIMs) without ensuring robustness and uniformity can increase interfacial thermal resistance, leading to significant temperature variations across the battery modules, which may trigger power limitations via the Battery Management System (BMS) and these thermal changes can cause inefficient cooling, ultimately affecting battery performance and lifespan. In this paper, a
K, MathankumarJahagirdar, ManasiKumbhar, Makarand Shivaji
In automotive vehicle manufacturing, paint shop constitutes one of the highest energy intensive processes. This steers automotive OEMs to continuously improve production efficiency and reduce operational costs of the processes involved in paint shop through digital twin technologies. In addition, the push for shorter time-to-market emphasizes the need for simulation-based manufacturing processes, such as virtual testing and CAE simulations. The simulation-based processes enable faster and data-driven decision-making early in the product development cycle, thereby ultimately reducing cost and development time. Among the various stages in the paint shop, two of the important stages are: 1 Electro-dip coating (E-coating), also known as Electro-Deposition coating, which applies a corrosion-resistant primer to the Body-in-White (BIW). 2 Oven curing, which ensures the primer is properly bonded and cured for long-term protection and finish quality. To optimize the processes in these stages
Gundavarapu, V S KumarP, VivekaanandanGarg, ManishNavelkar, TanayBS, Balachandran
The performance, lifespan, safety, and overall cost of high-voltage batteries—central elements in electric vehicles (EVs)—are fundamental to the success of the entire EV industry. These batteries, primarily used as energy storage systems, are especially critical in small commercial vehicles (SCVs), where efficient thermal management directly impacts reliability and durability. This paper presents innovative methods to improve energy efficiency, driving range, charging speed, and cost-effectiveness by combining advanced insulation techniques with thermoelectric cooling systems (TECs). The automotive industry is growing in EV domain and mostly in commercial vehicle application. The major challenge in EV’s is maintaining battery temperature to get optimal performance and best battery warranty. The key strategy of this research is providing insulating materials to stabilize battery temperatures. The thermal insulation minimizes thermal losses and buffers against external environmental
Chormule, Suhas RangraoWarule, PrasadNagpure, RahulJadhav, Vaibhav
In recent decades, interest in alternative fuels has grown exponentially. Hydrogen has been researched as total or partial substitutes for gasoline in light vehicles, showing great potential. However, this fuel has unique characteristics and properties that can bring improvements or limitations in engine performance. Therefore, a quick analysis of the pressure and HRR curve can highlight changes in combustion and performance. To this end, the aim of this work is to develop a visual interface generated by MATLAB capable of showing the performance parameters of a spark ignition engine when using hydrogen as fuel, initially. This graphic interface is supported with a zero-dimensional model based on the Wiebe function and Woschni correlation to estimating the pressure and HRR values. The interface is designed to receive operating conditions and geometry of the engine, as well as combustion angles. From the information entered, it is possible to visualize mass fraction burned, heat transfer
Rincon, Alvaro Ferney AlgarraAlvarez, Carlos Eduardo CastillaOliveira Notório Ribeiro, Jéssica
Virtual reality (VR), Augmented Reality (AR) and Mixed reality (MR) are advanced engineering techniques that coalesces physical and digital world to showcase better perceiving. There are various complex physics which may not be feasible to visualize using conventional post processing methods. Various industrial experts are already exploring implementation of VR for product development. Traditional computational power is improving day-by-day with new additional features to reduce the discrepancy between test and CFD. There has been an increase in demand to replace actual tests with accurate simulation approaches. Post processing and data analysis are key to understand complex physics and resolving critical failure modes. Analysts spend a considerable amount of time analyzing results and provide directions, design changes and recommendations. There is a scope to utilize advanced features of VR, AR and MR in CFD post process to find out the root cause of any failures occurred with
Savitha, BhuduriSharma, Sachin
The average product development cycle spans 3-5 years, involving extensive virtual and physical testing of the machine. Advances in simulation tools have significantly enhanced our ability to identify product solutions early in the design phase. Tools like 1D KULI and Creo Flow Analysis (CFA) offer faster solutions in less time, thereby accelerating the product development cycle. Cooling systems are crucial components of off-highway tractor machines, directly affecting engine efficiency and overall machine functionality. An optimized cooling system ensures the engine operates within safe temperature ranges, preventing overheating and potential damage. Thus, designing an effective cooling system is a vital aspect of machine engineering. 3D Computational Fluid Dynamics (CFD) simulations are essential for evaluating cooling system performance. These high-fidelity simulations provide detailed insights into fluid flow and heat transfer, enabling engineers to predict and enhance cooling
Ukey, SnehalTirumala, BhaskarNukala, Ramakrishna
This numerical study investigates a spark-ignited, two-stroke engine employing uniflow scavenging, flathead cylinder head design, and an exhaust valve system to identify the optimal bore-to-stroke (B/S) ratio for maximizing brake efficiency at fixed displacement. A single-cylinder prototype engine was constructed, and its experimental data validated a 1D GT-SUITE simulation model. This validated model was then utilized to simulate a full-scale, 1.5-liter displacement, horizontally opposed four-cylinder engine with supercharger-assisted boosting, intended for small aircraft propulsion. The simulations explored a range of B/S ratios from undersquare (0.7) to oversquare (1.5), maintaining a consistent brake power output of 60 kW at 3000 rpm and lambda 0.9. Results showed that increasing the B/S ratio enhanced brake efficiency from 26.0% at B/S=0.7 to 27.0% at B/S=1.5, largely due to reduced frictional losses attributed to shorter stroke and lower piston speeds, decreased heat transfer
Zanchin, GuilhermeHausen, RobertoFagundez, Jean LuccaLanzanova, ThompsonMartins, Mario
Electricity is a fundamental necessity for individuals worldwide, serving as a force driving technological progress hitherto unimaginable. Electricity generation uses diverse methodologies based on available natural resources in a given geographic region. Conventional methods like thermal power from coal and natural gas, water-based hydropower, solar power from the sun, wind power, and nuclear power are used extensively, the former two being the dominant sources. The generation of nearly 70% of the world's electricity is estimated to be from thermal power plants; however, these operations lead to widespread environmental destruction, greenhouse emissions, and the occurrence of acid rain. Conventional thermal power plants run on the Rankine cycle principle of a boiler, a turbine, a condenser, and a pump. A similar method may be used in the Organic Rankine Cycle (ORC) with the use of solar energy, where heat is transferred to the working fluid in the boiler using a heat pipe, a passive
Deepan Kumar, SadhasivamKumar, VDhayaneethi, SivajiMahendran, MSaminathan, SathiskumarR, KarthickA, Vikasraj
The proton exchange membrane (PEM) water electrolyzer is an emerging technology to produce green hydrogen due to its compactness and producing high purity hydrogen. This study presents a numerical investigation on multiphase flow dynamics and heat transfer within the anode flow field of a PEM water electrolyzer. Two different channel configurations, i.e., rectangular, semi-circular are considered having same cross-sectional area while keeping the porous transport layer (PTL) thickness constant (which is within the commercially available ranges). Simulations are conducted for various oxygen generation rates and heat fluxes (corresponding to different current densities) and different inlet water flow rates. The effects of channel configurations on pressure drop, flow uniformity, and temperature distribution are illustrated pictorially and graphically. The impact of water flow rates and oxygen generation rates on phase distribution, pressure drop, and temperature profiles, particularly
Dash, Manoj KumarBansode PhD, Annasaheb
In automotive systems, efficient thermal management is essential for refining vehicle performance, enhancing passenger comfort, and reducing MAC Power Consumption. The performance of an air conditioning system is linked to the performance of its condenser, which in turn depends on critical parameters such as the opening area, radiator fan ability and shroud design sealing. The opening area decides the airflow rate through the condenser, directly affecting the heat exchange efficiency. A larger opening area typically allows for greater airflow, enhancing the condenser's ability to dissipate heat. The shroud, which guides the airflow through the condenser, plays a vital role in minimizing warm air recirculation. An optimally designed shroud can significantly improve the condenser's thermal performance by directing the airflow more effectively. Higher fan capacity can increase the airflow through the condenser, improving heat transfer rates. However, it is essential to balance fan
Nayak, Akashlingampelly, RajaprasadNeupane, ManojMittal, SachinKumar, MukeshUmbarkar, Shriganesh
The work presents a micro-electromechanical system (MEMS) temperature sensor that has been designed using COMSOL Multiphysics 6.0 software for use in predicting the temperature of automotive parts. Due to its versatility, the shape of this design employs a meander, and this involves joule heating physics. It clearly shows the variation of resistance with temperature. For this design, Nitinol nano material is used because of the following advantages: Enhanced Shape Memory Effect, Superior Super elasticity, Increased Surface Area, Increased Surface Area, Improved Biocompatibility, Tunable Properties, Enhanced Mechanical Properties. Nitinol having high strength to weight ratio find its application in aerospace industry. This sensor works based on the principle of temperature dependence of resistance; that is, the resistance of the material increases or decreases based on temperature. It is observed that Nitinol has low von Mises stress, proving the safety nature of the material in
P, Geetha
To address the thermal management challenges in lithium-ion batteries-which are associated with safety, real-world driving, and operating cycles, particularly at high discharge rates and in extreme ambient conditions-it is essential to maintain the battery temperature within its optimal range. This work introduces a novel hybrid Battery Thermal Management System (BTMS) that integrating a Phase Change Material (PCM) and air cooling with fins attached to air-channel in PCM side. Unlike conventional approaches that use standard rectangular fins, this study employs angular fins with varying dimensions to enhance heat dissipation. The hybrid system is designed to leverage the high latent heat storage capability of the PCM while ensuring efficient convective heat removal through air cooling. The airflow through the cooling channel accelerates heat dissipation from the PCM, thereby increasing its effectiveness. The angular fins are strategically positioned within the PCM section to enhance
Kalvankar, TejasLam, Prasanth Anand KumarAruri, Pranushaa
Thermal management is critical for modern vehicles, particularly for Zero Emission Vehicles (ZEVs), where maintaining optimal temperature ranges directly influences thermal system efficiency and vehicle range. Accurate prediction of underhood airflow behavior is essential for effective thermal management and also to estimate overall energy consumption by cooling system, with air-side dynamics playing a pivotal role in heat transfer over the heat exchangers of cooling package. Simulation tools like GT-Suite are indispensable for this purpose, enabling engineers to evaluate complex thermal interactions without the cost and time constraints of extensive physical testing. While 3D Computational Fluid Dynamics (CFD) models offer detailed insights into flow characteristics, they are computationally expensive and time consuming. In contrast, 1D models provide faster simulation times, making them ideal for system-level analysis and iterative design processes. However, 1D models inherently lack
Mutyala k, AkhilPudota, PraveenFaseel, IhsanGole, PranaliBashir, Murad
Automotive mobile air conditioning (MAC) systems rely on effective thermal insulation to maintain cabin comfort and energy efficiency. However, insulation materials degrade over time due to thermal cycling and environmental exposure, impacting overall system performance. This study investigates the effects of reducing insulation material density (GSM) in critical areas such as the engine firewall, plenum, roof and door panels on MAC system efficiency. A multi-disciplinary approach combining basic engineering calculations, frontloading CAE simulations and targeted experimental testing was employed. Initial calculations provided directional input for cabin heat load analysis, guiding early-stage design decisions. Simulation models were used to predict the impact of insulation reduction on cooling performance, energy consumption and component durability, reducing reliance on iterative physical testing. Experimental validation was then conducted selectively, focusing on critical areas to
Kulkarni, ShridharDeshmukh, GaneshJoshi, GauravNayakawadi, UttamShah, GeetJaybhay, Sambhaji
Thermal management of electric vehicle (EV) battery systems is critical for ensuring optimal performance, user safety, and battery longevity. Existing high-fidelity simulation methods provide detailed thermal profiles, but their computational intensity makes them inefficient for early design iterations or real-time assessments. This paper introduces a streamlined, physics-based one-dimensional transient thermal model coded in MATLAB for efficiently predicting battery temperature behavior under various driving cycles. The model integrates vehicle dynamics to estimate power demands, calculates battery current output and heat generation from electrochemical principles, and determines the battery temperature profile through a 1D conduction model connected to a thermal resistance network boundary condition that incorporates the effect of coolant heat capacity. The model achieved prediction errors below 1% when compared to analytical solutions for conditions of no heat generation and steady
Builes, IsabelMedina, MarioBachman, John Christopher
Hydrogen has been identified as a promising decarbonization fuel in internal combustion engine (ICE) applications in many areas including heavy-duty on- and off-road, power-generation, marine, etc. Hydrogen ICEs can achieve high power density and very low tailpipe emissions. However, there are challenges; designing systems for a gaseous fuel with its own specific mixing, burn rate and combustion control needs, which can differ from legacy products. Being able to determine the thermal distribution and temperatures of the power cylinder components has always been critical to the design and development of ICE. SAE-2023-01-1675 [1] presented an analytical FE-based tool, and validation using both FE and CFD methods for a Euro VI HD Diesel engine converted to operate on hydrogen gas using direct injection. In this study, updated methods and investigations are presented for Hydrogen ICE including applicability of the Woschni heat transfer correlation, use of CFD thermal wall functions and a
Bell, David J.Shapiro, EvgeniyTurquand d Auzay, CharlesHernandez, IgnacioHynous, JanKohutka, JiriOsborne, RichardPenning, RichardTomiska, Zbynek
Thermal or infrared signature management simulations of hybrid electric ground vehicles require modeling complex heat sources not present in traditional vehicles. Fast-running multi-physics simulations are necessary for efficiently and accurately capturing the contribution of these electrical drivetrain components to vehicle thermal signature. The infrared signature and heat transfer simulation tool, “Multi-Service Electro-optic Signature” (MuSES), is being updated to address these challenges by expanding its thermal-electrical simulation capabilities, provide a coupling interface to system zero- and one-dimensional modeling tools, and model three-dimensional air flow and its convection effects. These simulation capabilities are used to compare the infrared signatures of a tactical ground vehicle with a traditional powertrain to a hybrid electric version of the same vehicle and demonstrate a reduction in contrast while operating under electrically powered conditions of silent watch and
Patterson, StevenEdel, ZacharyPryor, JoshuaRynes, PeteTison, NathanKorivi, Vamshi
Lightweight materials are essential in reducing the overall weight and improving the efficiency and performance of ICE and electric vehicles. The use of aluminum alloys is critical in transitioning to a more energy sustainable and environmentally friendly future. The accessible combinations of high modulus to density and strength to weight ratios, as well as their excellent thermal conductivity, make them an ideal solution for overall weight reduction in vehicles, thereby improving fuel efficiency and reducing emissions. Aluminum alloys with high strength and lifetime thermal stability have been industrialized for usage in brake rotor applications. Amongst the most used aluminum alloys with high thermal stability are 2618-T8 and 4032-T6 for use in aerospace and automotive industries, respectively. However, when it comes to prolonging the life of a product at temperatures that exceed 200°C, the properties of these alloys will quickly degrade within the first 300 hours of exposure
Duchaussoy, AmandineLorenzino, PabloFranklin, JackTzedaki, Maria
Electrified vehicle energy management plays a crucial role in the context of the European Green Deal by facilitating the transition toward sustainable mobility. The development of predictive and robust simulation tools is essential to implement and test different energy management strategies. This study aligns with this objective by presenting the development of an under-hood flows model designed for integration into a 1D vehicle simulator, which is used to perform vehicle simulations about longitudinal performances, energy consumption and range. Vehicle under-hood thermal management is inherently complex due to the interplay of internal flow dynamics and multiple heat transfer mechanisms. A purely 1D modeling approach lacks the spatial resolution required to capture detailed flow field characteristics, while a fully 3D CFD model is computationally prohibitive for scenarios requiring efficient simulations. To address this trade-off, a reduced-order model (ROM) approach is proposed. The
Miccio, StefanoGrattarola, FedericoBaratta, MirkoGiraudo, GabrieleFrezza, DavideBartolucci, Lorenzo
The internal combustion engine (ICE) is projected to remain the dominant technology in the transport sector over the short to medium term, and there exists significant potential for further improvements in fuel economy and emission reductions. One promising approach to enhancing the efficiency of spark ignition engines is the implementation of passive pre-chamber spark plugs. The primary advantages of pre-chamber-initiated combustion include the mitigation of knocking, an increase in in-cylinder turbulence, and a combustion process that is both faster and more stable compared to that achieved with conventional J-gap spark plugs. Additionally, the higher ignition energy provided by pre-chamber spark plugs enables operation under higher intake pressures, maintains similar exhaust gas recirculation rates, and supports leaner combustion conditions. These benefits are predominantly attributed to volumetric ignition via hot, reactive jets. However, the pre-chamber spark plug also presents
Korkmaz, MetinJuressen, Sven EricRößmann, DominikKapus, Paul E.Pino, Sandro
Turbocharging technique is a key technology for the development of hydrogen engines, allowing high lambda values to reach low NOx emissions. In ultra-lean mixture conditions, the thermal management of the lubricating oil and its cold condition becomes a crucial aspect that cannot be neglected. Accordingly, the impact of different lubricating oils and different lubricant thermal conditions is highlighted referring to the performance of a turbocharging system for automotive application. To this aim, an experimental campaign is conducted at the test bench for components of propulsion systems of the University of Genoa. Tests are performed on a turbocharger equipped with a variable geometry turbine under both steady and unsteady flow conditions, considering different positions of the turbine regulating device. A 4-cylinder engine head was coupled to the turbocharger in order to reproduce the pulsating flow related to the opening and closing of the engine valves. The influence of the
Marelli, SilviaUsai, VittorioCordalonga, Carla
BATSS project objective is to design a safe, effective and sustainable battery pack. To achieve this, the battery system (BS) will be mechanically, electrically and thermally optimized using cutting edge technology. Consequently, the battery system includes innovative 4695 cylindrical cells and advanced thermal management, carried out with the Miba FLEXCOOLER®. This work focuses on the BS thermal optimization using system simulation tools. First a simplified version of the BS is simulated with all physical phenomena involved in thermal behavior to identify first order parameters. It appears that various BS component and heat transfer can be neglected in comparison with the heat transfer due to cooling system. Then the simulation of the full battery system is conducted under nominal condition. Cooling system appears to be performant as it allows a controlled averaged temperature and very low cell-to-cell temperature variability. Finally, impact of both design and operating parameters is
Chevillard, StephanePopp, HartmutGalarza, IgorPetit, Martin
Battery management systems are among the key components in electric vehicles (EVs), which are increasingly replacing internal combustion engine (ICE) vehicles in the automotive industry. Battery management systems mainly focus on battery thermal management, efficiency, battery life and the safety conditions. Generally, lithium-ion batteries have been chosen in EV cars. Therefore, the internal resistance of Li-ion batteries plays a crucial role in the thermal behavior of the energy storage system. Most of the published studies rely on 0D-1D models to analyses single cell thermal behavior depending on the internal resistance at different ambient temperatures and charging/ discharging rates, and on the cooling system. However, these models, though fast, cannot provide detailed information about the temperature distribution within a cell or a module. Full 3D Computational Fluid Dynamics (CFD)- Conjugate Heat Transfer (CHT) simulations on the other hand, are very time consuming and require
Karaca, CemOlmeda, PabloMargot, XandraPostrioti, LucioBaldinelli, Giorgio
This research focuses on the thermal analysis of internal combustion engine pistons, evaluating the effects of high-temperature exposure during operation. A three-dimensional numerical study is conducted using OpenFOAM, modifying the software’s governing equations to analyze temperature distribution in different piston geometries. The study aims to assess the spatial temperature variation within the entire volume of the piston, providing a detailed understanding of heat transfer mechanisms. A multilayer approach is implemented, considering various configurations of ceramic coatings with distinct thermal and optical properties. The investigation incorporates an internal heat source model, where the heat absorption characteristics of the coating material influence the thermal behavior of the system. By evaluating aluminum- and titanium-based ceramic coatings, the study examines how semitransparency and heat radiation absorbance affect heat accumulation and transfer. The results highlight
Gutierrez, MarcosTaco, DianaBösenhofer, Markus
Velocity and temperature distributions in a Close Coupled Catalyst (CCC) were analyzed using two identical Computational Fluid Dynamics (CFD) setups, differing only in inflow boundary conditions: one pulsating and the other constant. The objective was to assess the validity of the common simplification of assuming constant inflow. While several studies have addressed this question, they have focused exclusively on naturally aspirated engines. This study examines a CFD domain featuring a turbine - resulting in fundamentally different flow conditions reaching the CCC substrate. The results demonstrate that exhaust pulsations lead to a more uniform flow within the CCC at a lower temperature. These findings, supported by existing literature, suggest that the assumption of constant inflow should be critically evaluated rather than assumed by default.
Bergman, MiriamKlövmark, HenrikLaurell, Mats
Wankel rotary engines generally present an unfavourable surface area-to-volume ratio that prevents them from obtaining the high efficiency needed for the currently challenging applications in the mobility sector. In a previous study, an optimisation of Wankel engine geometry was carried out in order to minimise the surface area-to-volume ratio, with the aim of reducing the overall heat loss during the combustion phase. The study reported a counterintuitive finding that the minimum surface area-to-volume ratio configuration actually produced the worst heat loss due to the unusual flow field inside the combustion chamber affecting the Reynolds and Nusselt numbers. The present study aims to provide insights into the surprising results using a detailed flow and heat transfer analysis by undertaking detailed CFD simulations for the most representative configurations in the previous study. The CFD results confirmed the findings of the previous study, showing that the modified Woschni model
Vorraro, GiovanniIm, Hong G.Turner, James
Items per page:
1 – 50 of 3365