Browse Topic: Thermal management
In the electrical machines, detrimental effects resulted often due to the overheating, such as insulation material degradation, demagnetization of the magnet and increased Joule losses which result in decreased lifetime, and reduced efficiency of the motor. Hence, by effective cooling methods, it is vital to optimize the reliability and performance of the electric motors and to reduce the maintenance and operating costs. This study brings the analysis capability of CFD for the air-cooling of an Electric-Motor (E-Motor) powering on Deere Equipment's. With the aggressive focus on electrification in agriculture domain and based on industry needs of tackling rising global warming, there is an increasing need of CFD modeling to perform virtual simulations of the E-Motors to determine the viability of the designs and their performance capabilities. The thermal predictions are extremely vital as they have tremendous impact on the design, spacing and sizes of these motors.
Thermal Management System (TMS) for Battery Electric Vehicles (BEV) incorporates maintaining optimum temperature for cabin, battery and e-powertrain subsystems under different charging and discharging conditions at various ambient temperatures. Current methods of thermal management are inefficient, complex and lead to wastage of energy and battery capacity loss due to inability of energy transfer between subsystems. In this paper, the energy consumption of an electric vehicle's thermal management system is reduced by a novel approach for integration of various subsystems. Integrated Thermal Management System (ITMS) integrates air conditioning system, battery thermal management and e-powertrain system. Characteristics of existing integration strategies are studied, compared, and classified based on their energy efficiency for different operating conditions. A new integrated system is proposed with a heat pump system for cabin and waste heat recovery from e-powertrain. Various cooling
The rapid rise in electric vehicle (EV) adoption demands innovative thermal management solutions to boost battery performance and passenger comfort. This paper introduces a novel control strategy for simultaneous battery and cabin cooling in EVs, utilizing a two-stage fuzzy logic controller. The proposed system incorporates a detailed plant model to simulate real-world conditions and dynamically optimize compressor speed, ensuring energy-efficient thermal management. In the first stage, the fuzzy controller sets the initial compressor speed based on primary inputs such as battery and cabin temperatures. The second stage fine-tunes this speed by considering secondary parameters like condenser and chiller pressures, along with the power output ratio from the plant model. This multi-stage approach guarantees efficient cooling for both the battery and cabin while maintaining safe operating conditions. Our research showcases the efficacy of this control strategy in achieving optimal thermal
In Diesel engine exhaust after treatment system (ATS), Nitrogen Oxides (NOx) emissions control is achieved via Selective Catalytic Reduction (SCR) in which AdBlue or Diesel Exhaust Fluid (DEF) plays vital role. But AdBlue freezes below -11°C due to which in cold climate conditions system performance becomes critical as it affects efficiency as well as overall performance leading to safety and compliance with emission standards issue. So, it is essential to have a probabilistic thermal model which can predict the AdBlue temperature as per ambient temperature conditions. The present paper focuses on developing Bayesian Network (BN) based algorithm for AdBlue system by modelling probability of key factors influencing on its performance including AdBlue temperature, Ambient temperature, Coolant temperature, Coolant flow, Vehicle operating conditions etc. The BN Model predicts and ensures continuous learning and improvement of the system, based on operational data. Methodology proposed in
In automotive systems, efficient thermal management is essential for refining vehicle performance, enhancing passenger comfort, and reducing MAC Power Consumption. The performance of an air conditioning system is linked to the performance of its condenser, which in turn depends on critical parameters such as the opening area, radiator fan ability and shroud design sealing. The opening area decides the airflow rate through the condenser, directly affecting the heat exchange efficiency. A larger opening area typically allows for greater airflow, enhancing the condenser's ability to dissipate heat. The shroud, which guides the airflow through the condenser, plays a vital role in minimizing warm air recirculation. An optimally designed shroud can significantly improve the condenser's thermal performance by directing the airflow more effectively. Higher fan capacity can increase the airflow through the condenser, improving heat transfer rates. However, it is essential to balance fan
Items per page:
50
1 – 50 of 1608