Browse Topic: Thermal management

Items (1,639)
This study presents a systematic CFD-based investigation of air-cooled lithium-ion battery pack thermal management using a novel U-shaped channel. The U-shaped domain was selected due to its ability to promote recirculation and uniform air distribution, which enhances cooling effectiveness compared to conventional straight and Z-type channels. A systematic parametric optimization of inlet position and airflow velocity was performed to minimize hotspot formation and improve temperature uniformity. Results reveal that shifting the inlet from 30 mm to 20 mm and increasing velocity from 2 m/s to 3 m/s reduced the maximum battery temperature by 3.46 K, from a baseline of 333 K to 329.54 K, while maintaining minimal pressure drop. These findings highlight that strategic control of inlet parameters can yield significant thermal improvements with high cost-effectiveness and geometric simplicity.
PC, MuruganJ, SivasankarW, Beno WincyG, Arun Prasad
The performance and longevity of lithium-ion (Li-ion) batteries in electric vehicles (EVs) are critically dependent on effective thermal management. As internal heat generation during charge and discharge cycles can lead to uneven temperature distribution, exceeding optimal operating limits (25 - 40°C) can significantly degrade battery performance and lifespan. This study presents a performance evaluation of a novel liquid-based Battery Thermal Management System (BTMS) featuring a dual-directional coolant channel configuration designed to enhance thermal uniformity and heat dissipation. The proposed configuration combines horizontal and vertical coolant passages in an indirect cooling layout to address the limitations of conventional serpentine-type channels. A comprehensive thermal analysis was carried out under realistic loading conditions using three coolant types: water, ethylene glycol- based G48, and graphene-enhanced water nanofluids. These were evaluated for thermal
Selvan, Arul MozhiPeriyasamy, MuthukumarR, ThiruppathiPrasad S, HariRaghav, RBoddu, Sriram Pydi Aditya
Electric Vehicles (EVs) are rapidly transforming the automotive landscape, offering a cleaner and more sustainable alternative to internal combustion engine vehicles. As EV adoption grows, optimizing energy consumption becomes critical to enhancing vehicle efficiency and extending driving range. One of the most significant auxiliary loads in EVs is the climate control system, commonly referred to as HVAC (Heating, Ventilation, and Air Conditioning). HVAC systems can consume a substantial portion of the battery's energy—especially under extreme weather conditions—leading to a noticeable reduction in vehicle range. This energy demand poses a challenge for EV manufacturers and users alike, as range anxiety remains a key barrier to widespread EV acceptance. Consequently, developing intelligent climate control strategies is essential to minimize HVAC power consumption without compromising passenger comfort. These strategies may include predictive thermal management, cabin pre-conditioning
Mulamalla, Sarveshwar ReddySV, Master EniyanM, NisshokAnugu, AnilE A, MuhammedGuturu, Sravankumar
In the context of electro-mobility for commercial vehicles, the failure analysis of a connector panel in a DCDC converter is crucial, particularly regarding crack initiation at the interface of busbar and plastic component. This analysis requires a thorough understanding of thermo-mechanical behavior under thermal cyclic loads, necessitating kinematic hardening material modeling to account for the Bauschinger effect. As low cycle fatigue (LCF) test data is not available for glass fiber reinforced polyamide based thermoplastic composite (PA66GF), we have adopted a novel approach of determining non-linear Chaboche Non-Linear Kinematic Hardening (NLK) model parameters from monotonic uniaxial temperature dependent tensile test data of PA66GF. In this proposed work a detailed discussion has been presented on manual calibration and Genetic Algorithm (GA) based optimization of Chaboche parameters. Due to lack of fiber orientation dependent test data for PA66GF, here von Mises yield criteria
Basu, ParichaySrinivasappa, Naveen
The intent of this report is to encourage that the thermal management system architecture be designed from a global platform perspective. Separate procurements for air vehicle, propulsion system, and avionics have contributed to the development of aircraft that are sub-optimized from a thermal management viewpoint. In order to maximize the capabilities of the aircraft for mission performance and desired growth capability, overall system efficiency and effectiveness should be considered. This document provides general information about aircraft Thermal Management System Engineering (TMSE). The document also discusses approaches to processes and methodologies for validation and verification of thermal management system engineering. Thermal integration between the air vehicle, propulsion system, and avionics can be particularly important from a thermal management standpoint. Due to these factors, this report is written to encourage the development of a more comprehensive system
AC-9 Aircraft Environmental Systems Committee
Automotive headlamps in Battery Electric Vehicles (BEVs) are exposed to a wide range of environmental and operational conditions that influence their thermal behaviour. Factors such as solar radiation, ambient temperature, lighting features, and nearby heat sources can significantly impact headlamp temperatures, potentially leading to issues like condensation, material degradation, and reduced optical performance. Accurate thermal modelling using Computational Fluid Dynamics (CFD) is essential during the design phase, but its effectiveness depends heavily on the fidelity of boundary conditions, which are often based on internal combustion engine (ICE) vehicle data. This study investigates the thermal behaviour of BEV headlamps under real-world conditions, focusing on parking and charging scenarios. Temperature measurements were taken at various locations on the lens and housing of a Jaguar I-Pace using thermocouples. The results show that lighting features, particularly the high beam
Nangunuri, Vishnu TejaKapadia, VatsalKovacs, GaborAhmad, Waqas
Battery Electric Vehicles (BEVs) necessitate highly efficient thermal management strategies, as cabin heating directly consumes energy from the finite traction battery, potentially reducing driving range significantly. Early-stage design evaluations of warmup performance commonly rely on one-dimensional (1D) simulations due to their computational speed and efficiency. The accuracy and predictive capability of these models are critically dependent on how well they represent blower operation and account for temperature-induced variations in air density. This fidelity is essential because engineers depend on warmup simulations to set HVAC targets that will deliver real-world comfort and defrost performance within stringent range constraints. Earlier, warmup simulations employed a Constant Mass Flow (CMF) approach, which simplifies computations by assuming a fixed air density at a standard reference temperature. However, this approach contrasts with real-world blower behavior, where
Subramanian, Karthik
Turbochargers play a crucial role in modern engines by increasing power output and fuel efficiency through intake air compression, thereby improving volumetric efficiency by allowing more air mass into the combustion chamber. However, this process also raises the intake air temperature, which can reduce charge density, lead to detonation, and create emissions challenges—such as smoke limits in diesel engines and knock in gasoline spark-ignited (GSL) engines. To mitigate this, intercoolers are used to cool the compressed air. Due to packaging constraints, intercoolers are typically long and boxy, limiting their effectiveness, especially at low vehicle speeds where ram air flow is minimal. This study investigates the use of auxiliary fans to enhance intercooler performance. Two methodologies were adopted: 1D simulation using GT-Suite and experimental testing on a vehicle under different fan configurations—no fan, single fan, and dual fans (positioned near the intercooler inlet and outlet
Patra, SomnathHibare, NikhilGanesan, ThanigaivelGharte, Jignesh Rajendra
The legislation of CEV Stage V emission norms has necessitated advanced Diesel Particulate Filter calibration strategies to ensure optimal performance across diverse construction equipment applications in the Indian market. Considering the various duty cycles of cranes, backhoe loaders, forklifts, compactors, graders, and other equipment, different load conditions and operational environments require a comprehensive strategy to enhance DPF efficiency, minimize regeneration frequency, and maintain compliance with emission standards. The DPF, as an after-treatment system in the exhaust layout, is essential for meeting emission standards, as it effectively traps particulate matter. Regeneration occurs periodically to burn the soot particles trapped inside the DPF through ECU management. Therefore, understanding soot loading and in-brick DPF temperature behavior across various applications is key. This paper explores the challenges in DPF calibration for CEV Stage V and provides a
Mohanty, SubhamChaudhari, KuldeepakPatil, LalitMahajan, AtishMadhukar, Prahlad
In high-performance charging systems, managing higher currents is crucial for efficient battery charging. Elevated battery temperature is the main challenge for limiting the duration and effectiveness of high-current charging. Our proposal of control system addresses these barriers by optimizing charging time by maintaining optimal temperature ranges for the battery. This is achieved through innovative preconditioning solutions that are incorporated with active Battery cooling configurations. Our system features a unique preconditioning approach with dedicated active cooling circuit for the battery which will provide cooling to battery even though cabin HVAC (Heat Ventilation & Air-conditioning unit) is switched off. The active liquid cooling system ensures effective temperature management without additional energy consumption, while the dedicated Battery active liquid cooling system provides enhanced cooling capabilities for more demanding scenarios and preconditioning. By integrating
Badgujar, Pankaj RavindraBhosale, SubhashDave, Rajeev
With advancements in model accuracy and computational power, system simulation is increasingly integrated into development tools as a “virtual test bed” alongside experimental testing. However, virtual vehicle and powertrain thermal models still face challenges, particularly in ensuring accuracy across systems developed by various internal and external sources. These models, often built using different software platforms, are difficult to validate consistently, especially when integrated in a Co-simulation environment. This integration can degrade the overall accuracy of the Vehicle Simulation Platform, reducing the return on investment in model development. To address these limitations, this paper proposes the use of machine learning-based feature importance techniques at the vehicle-level simulation stage. Feature importance helps identify the most influential variables affecting system outputs. By focusing calibration and validation efforts on these key variables, the approach aims
Srinivasan, RangarajanSarapalli Ramachandran, RaghuveeranAshok Bharde, PoojaSaravanan, Vivek
With the increasing tonnage of electric heavy commercial vehicles, there is a growing demand for higher power and torque-rated traction motors. As motor ratings increase, efficient cooling of the EV powertrain system becomes critical to maintaining optimal performance. Higher heat loads from traction motors and inverters pose significant challenges, necessitating an innovative cooling strategy to enhance system efficiency, sustainability, and reliability. Battery-electric heavy commercial vehicles face substantial cooling challenges due to the high-pressure drop characteristics of conventional traction system cooling architectures. These limitations restrict coolant flow through key powertrain components and the radiator, reducing heat dissipation efficiency and constraining the operating ambient temperature range. Inefficient cooling also leads to increased energy consumption, impacting the overall sustainability of electric mobility solutions. This paper presents a novel approach of
Dixit, SameerPatil, BhushanGhosh, Sandeep
The electric vehicle (EV) industry is relentlessly pursuing advancements to enhance efficiency, extend driving range and improve overall performance. A notable limitation of conventional EVs is their fixed-voltage battery architecture, which necessitates compromises in powertrain design and can result in suboptimal efficiency under varying driving conditions. The Dynamic Voltage EV System (DVEVS) presents a transformative solution, allowing the battery pack to dynamically reconfigure its cells between series and parallel connections. This review explores the core principles of DVEVS, including battery topology, power-electronics-based switching, and the integration of hybrid energy storage solutions such as electric double-layer capacitors (EDLCs). We explore the foundational concepts of battery reconfiguration, delve into specific implementation strategies such as power-electronics-based switching and hybrid energy storage systems and address the critical need for adaptive thermal
Amberkar S, SunilRaool, Anuj RajeshM G, ShivanagRajapuram, Bheema Reddy
This study focuses on enhancing energy efficiency in electric vehicle (EV) thermal management systems through the development and optimization of control logic. A full vehicle thermal management system (VTMS) was modeled using GT-Suite software, incorporating subsystems such as the high voltage battery (HVB), Electric powertrain (EPT), and an 8-zone cabin. Thermal models were validated with experimental data to ensure accurate representation of key dynamics, including coolant to cell heat transfer, cell-to-ambient heat dissipation, and internal heat generation. Control strategies were devised for Active Grille Shutter (AGS) and radiator fan operations, targeting both cabin cooling and EPT thermal regulation. Energy consumption was optimized by balancing aerodynamic drag, fan power, and compressor power across various driving conditions. A novel series cooling logic was also developed to improve HVB thermal management during mild ambient conditions. Simulation results demonstrate
Chothave, AbhijeetKumar, DipeshGummadi, GopakishoreKhan, ParvejThiyagarajan, RajeshPandey, RishabhS, AnanthAnugu, AnilMulamalla, SarveshwarGangwar, Adarsh
Meeting the stringent emissions norms of CEV stage V for medium BMEP engines, CI engines present significant challenges. These stringent norms call for a highly efficient DPF. With the increasing demands for high-performance DPFs, the issue of soot accumulation and cleaning presents significant hurdles for DPF longevity. This paper explores the potential of passive DPF regeneration, which leverages naturally occurring exhaust gas conditions to oxidize accumulated soot, offering a promising approach to minimize fuel penalty and system complexity compared to active regeneration methods. The study investigates engine calibration techniques aimed at enhancing passive regeneration performance, emphasizing the optimization of thermal management strategies to sustain DPF temperatures within the passive regeneration range. Furthermore, the paper aims to expand the applicability of passive regeneration across diverse engine loads common in off-highway applications with effective passive
Saxena, HarshitGandhi, NareshLokare, PrasadShinde, PrashantPatil, AjitRaut, Ashish
This definitive study investigates the variation of churning losses occurring with hypoid ring and pinion gear sets and factors that determine energy dissipation in these mechanisms. An in-depth investigation confirms that viscosity is critical, particularly because of its significant temperature-dependent variations. Furthermore, the study rigorously analyzes the data's experimental parameters to examine churning losses. These losses result from the interaction between the rotating gears and the lubricating oil, contributing to notable inefficiencies in the overall drivetrain. A robust and highly effective model has been developed to address this issue comprehensively. It accounts for variable oil viscosity with temperature and integrates key empirical parameters that reflect observed behaviours in gear systems. The study employs a multidimensional approach to examine how oil density impacts hydrodynamic resistance, which is key to understanding lubricant flow under varying conditions
Khan, Aliya JavidPraveen, AbhinavKanagaraj, PothirajJain, Saurabh KumarAP, Baaheedharan
The rising demand for electric vehicles (EVs) has pushed automakers to prioritize visual brand consistency across both EVs and internal combustion engine (ICE) vehicles. A main design factor which is influenced by this trend is the front grille. In order to achieve uniform aesthetic looks, passenger car manufacturers often reduce the front grille openings and limit airflow. This closed grille style is common in electric vehicle. However, this creates challenges for internal combustion engine (ICE) vehicles with snorkel-type air intake systems, leading to reduced airflow and higher temperatures in the engine bay and intake air which eventually gets sucked in the engine resulting in low volumetric efficiency. Maintaining a cooler intake air is vital for ICE performance. Adjusting snorkel position and airflow patterns in low temperature zones ensures the engine receives air at low temperatures. This improves the combustion efficiency, throttle response and eventually it reduces the risk
Sonone, Sagar DineshSingh, Nil KanthKolhe, Vivek MKulkarni, ChaitanyaMalekar, Hemant A
Global emission norms are getting very strict due to combat the harmful pollutants from internal combustion engine. Hence internal combustion engine (ICE)-based agricultural tractors need to introduce complex after-treatment systems and fuel optimization to provide same or higher value to farmers as cost of these systems drive the overall cost of the product. Engineers around the world are building Electric vehicles to combat the problem and has range issues due to design constraints & Hybrid tractors have emerged as a promising intermittent solution. It helps in combining the advantages of respective ICE and electrification solutions while reducing overall vehicle emissions and enhances operational flexibility. This paper presents a modular thermal modes system developed for a hybrid electric tractor platform where a downsized diesel engine operates at optimal efficiency DC generator used to charge the battery & DC converter is used to charge the auxiliary battery. Battery which is
K, SunilD, MariNatarajan, SaravananKumawat, Deepakrojamanikandan, ArumughamK, MalaV, SridharanMuniappan, BalakrishnanMakana, Mohan
An optimal engine lubrication system, encompassing engine oil and an oil cooler, is critical for thermal management and minimizing frictional losses. This system ensures adequate lubrication and cooling of engine components, thereby maintaining optimal performance. This study investigates the implications of oil cooler removal in a 45HP inline engine tractor. Various validation trials were conducted, including high ambient temperature tests under worst-case conditions, high coolant temperature scenarios, and a rigorous tractor killer test. In the latter, the tractor underwent 100 hours of operation on a PTO bench at maximum engine RPMs. Despite an observable increase in lubricant oil temperature during these tests, the tractor did not exhibit any component seizure or failure. The findings aim to determine whether the inclusion of an oil cooler is essential for the engine's operational reliability. This research offers valuable guidance for optimizing hardware selection and cost
Gupta, DeepakKumar, PankajSingh, ManjinderSingh, GagandeepKumar, MunishSingh, HarpreetSingh, Maninder
High Voltage cables and terminals are prone to high temperatures and rapid heat generation due to high current ratings, especially in electric vehicles (EVs). If the temperature exceeds a critical limit, danger may be posed to the components which are connected and the overall safety of the passengers. Traditionally, cooling methods are often energy-intensive and rely on active systems, which may not always be practical for high-power applications. Thus, a localized, fast, and reliable passive thermal management methodology that can be retrofitted into existing connector designs through modifications (e.g., enlargement and PCM integration) would provide significant safety enhancement. The material property of phase change materials, which possess high latent heat, has been used to maintain a steady temperature for a period of time. A dual PCM-layer has been incorporated into the design of the high-voltage connector to serve two purposes:1. The first PCM layer (PCM-1), with good
Neogi, AngshumanShinde, Shardul
The thermal management capability of power electronic (PE) systems has a critical impact on the performance and efficiency of electric, fuel cell, or hybrid vehicles. Bus bars, high resistance sensor devices, semiconductor switches, power capacitors are the primary components, which make a major contribution in total heat generation in electrical drive unit. As PE packaging sizes are projected to become smaller, the challenge of managing increased heat dissipation becomes more critical. This paper numerically compares six different cooling strategies to determine the best possible thermal management scenario. A coupled physics co-simulation framework is used to analyze a 35W motor inverter integrated with water cooled heat sink. A multi-physics finite element model, integrating fluid, electrical, and thermal fields, is employed to analyze heat generation within the PE system and the associated cooling mechanisms. The power losses from the inverter system are dynamically computed in 1-D
Singh, Praveen KumarNatarajan, NesamaniMurali, Sariki
The inclusion of the cabin in HVAC simulations gained more importance with the introduction of BEV’s. Thermal management and efficiency being in the forefront, exploration for the possible opportunities to reduce the energy consumption for meeting the comfort of passengers gained importance. The energy consumed by the Electric coolant or air heaters for heating the cabin at extreme cold ambient temperatures to deliver similar comfort to that of an ICE version is 2 to 3 times that of the energy required for cooling the cabin in a high ambient condition. Even during the sizing of HVAC system, if traditional method of ambient or fresh air conditions is considered for calculating the requirements, the result is we would require a product which will have unrealistic performance demand. Hence to explore different possibilities for studying the system, usage of recirculation air was considered as one of the options. This paper talks about the approach followed in creating the cabin model in
Veerla, EswarSubramanian, Karthik
The present work demonstrates a Fluid-Structure Interaction (FSI) based methodology that couples a Finite Volume Method (FVM) and Finite Element Method (FEM) based tools to estimate air guide deformation, thereby predicting accurate aerothermal performance. The method starts with a digital assembly step where the assembly shape and the induced stress due to assembly is predicted. A full vehicle Aerodynamic simulation is performed to extract the surface pressure on the air guide which is then used to estimate the extent of deformation of the air guides. Based on the extent a subsequent Aerodynamic simulation may be carried out to predict thermal efficiency. Comparison against pressure data and deflection data extracted from the wind tunnel experiments of vehicles has shown reasonable match demonstrating the accuracy and usefulness of the method.
Gadasu, RavishastriChoudhury, SatyajitUmesh, Acharya VaibhavKumar, SaravananYenugu, SrinivasaZander, DanielBeesetti, SivaHattarke, Mallikarjun
Electric buses (e-buses) are essential to sustainable public transport, but their real-world efficiency and range are heavily affected by auxiliary systems, particularly the Heating, Ventilation, and Air Conditioning (HVAC) system. This study investigates how ambient temperature variations and HVAC loads influence energy consumption, range, and efficiency in e-buses operating under diverse climatic conditions. The methodology combines field data collection from urban e-buses across seasons—including extreme summer and winter—with controlled laboratory testing. Field measurements included ambient temperature, HVAC demand, vehicle speed, state of charge (SOC) variation, and energy consumption. These inputs were used to develop real-world duty cycles, replicating actual thermal loads, passenger profiles, idling periods, and driving patterns. In the laboratory, these cycles were simulated using a chassis dynamometer and environmental chamber, with HVAC systems tested at controlled ambient
Vishe, PrashantDalela, SaurabhSaraswat, ShubhamJoshi, Madhusudan
In the era of Software Defined Vehicles, the complexity and requirements of automotive systems have increased knowingly. EV Thermal management systems have become more complicated while having multiple functions and control strategies within software frameworks. This shift creates new challenges like increased development efforts and long lead time in creating an efficient thermal management system for Electric Vehicles (EV’s) due to battery charging and discharging cycles. For solving these challenges in the early stages of development makes it even more challenging due to the unavailability of key components such as fully developed ECU hardware, High voltage battery pack and the motor. To address this, a novel framework has been designed that combines virtual simulation with physical emulation at the same time, enabling the testing and validation of thermal control strategies without fully matured system and the ECU hardware. The framework uses the Speedgoat QNX machine as the
Chothave, AbhijeetS, BharathanS, AnanthGangwar, AdarshKhan, ParvejGummadi, GopakishoreKumar, Dipesh
The transition to TREM V emission norms presents significant challenges for naturally aspirated (NA) off-highway engines. Off-highway applications like construction and agriculture segments require high load variability and extended duty cycles with increased BMEP resulting in high PM emissions, and increased exhaust temperatures with lower lambda levels. Given the cost-competitive nature of the segment, it also requires designing leaner intake and exhaust system. To overcome above mentioned challenges, holistic calibration strategies need to be adapted during development phase. To meet TREM V emission norms, solutions like advanced combustion, high-pressure fuel injection, EGR (exhaust gas recirculation), and optimized calibration had to be explored along with aftertreatment systems like Diesel Particulate Filters and Diesel oxidation catalysts. Implementation of aftertreatment systems for TREM V pre-dominantly with naturally aspirated engines will result in challenges associated to
Patil, Madhavi M.Ravukutam Sr, AnikethRaghu, M YMadhukar, Prahlad
The performance and longevity of Li-ion batteries in electric vehicles are significantly influenced by the cell temperature. Hence, efficient thermal management techniques are essential for battery packs. Simulation based optimization approaches improves the efficiency of the battery pack thermal management during the early stage of product development. In this paper, a simulation-based methodology has been introduced to increase the heat transfer from/to coolant via cooling plate as well as to reduce the heat transfer from/to the external environment. The heat transfer coefficient between cooling plate and coolant needs to be enhanced to achieve efficient heat transfer through cooling plate, without exceeding the coolant pressure drop the target limit. A one-dimensional simulation methodology described in this work analyzed numerous design of experiments for coolant layout without performing CAD iteration loops and optimized the cooling channel width, height and number of channels to
U, ReghunathP S, Shebin
In CPCB-IV+ Emissions regulations NOx & PM are reduced by 90% from CPCB-II limits in the power band 56 < kW ≤ 560. Obvious technology approach adopted by industry to meet this requirement is the introduction of CRDI fuel injection system & DOC+SCR+ASC aftertreatment technology, leading to substantial modifications at both engine & genset level. This result into huge development expenditure, high incremental product cost, timelines and increased total cost of ownership. This paper describes the frugal technology approach to keep development cost, product cost, development time to the minimum using electronically governed, high pressure mechanical fuel injection equipment, with DOC+SCR+ASC without any external thermal management strategy while comfortably achieving target CPCB-IV+ emission levels. This integrated approach also helped in completing the entire development in < 12 months. 1D-thermodynamic & 3D-combustion simulation approach was adopted to predict the engine out emissions
Arde, VasundharaJuttu, SimachalamKadam, AtitGothekar, SanjeevKarthick, KVandana, SuryanarayanaThipse, SKendre, Mahadev
Items per page:
1 – 50 of 1639