Browse Topic: Heat exchangers
This ARP provides the definition of terms commonly used in aircraft environmental control system (ECS) design and analysis. Many of the terms may be used as guidelines for establishing standard ECS nomenclature. Some general thermodynamic terms are included that are frequently used in ECS analysis, but this document is not meant to be an inclusive list of such terms
Automotive cooling module system consists of condenser, radiator and intercooler which is used for thermal management of vehicle. Condenser helps to reject cabin heat, radiator to reject engine heat and intercooler rejects charged air heat to ambient. CRFM (Condenser, Radiator and Fan module) is conventionally packaged under the bonnet of passenger vehicle. Fan circulate airflow through heat exchangers and has primary role of airflow delivery. While performing vehicle level thermal management duty, fan noise is generated from CRFM and fan noise is considered as an important design attribute of CRFM. Many researchers have done fan noise simulation at component level and very limited literatures at vehicle (system) level simulation are available. Customer perceives noise from outside of the vehicle and it is important to predict fan noise at vehicle level at various operating speeds. Such simulations are transient in nature and modeling complexity demands high computational cost. Current
Deutronic is not alone in developing and integrating thermal-management solutions to meet the specific demands of off-highway EVs. Modine, for example, in 2023 launched a new edition of its EVantage battery thermal-management system with a liquid-cooled condenser (L-CON BTMS) that combines proprietary heat-exchanger technology with smart controls and electronics. The system is designed to withstand harsh environments found in mining, construction, agriculture, specialty and transportation applications, according to Mike Kis, Director of Advanced Thermal Systems at Modine
The transition towards battery electric vehicles (BEVs) has increased the focus of vehicle manufacturers on energy efficiency. Ensuring adequate airflow through the heat exchanger is necessary to climatize the vehicle, at the cost of an increase in the aerodynamic drag. With lower cooling airflow requirements in BEVs during driving, the front air intakes could be made smaller and thus be placed with greater freedom. This paper explores the effects on exterior aerodynamics caused by securing a constant cooling airflow through intakes at various positions across the front of the vehicle. High-fidelity simulations were performed on a variation of the open-source AeroSUV model that is more representative of a BEV configuration. To focus on the exterior aerodynamic changes, and under the assumption that the cooling requirements would remain the same for a given driving condition, a constant mass flow boundary condition was defined at the cooling airflow inlets and outlets. A parametric
The efficiency of a solar panel depends on the amount of solar radiation it receives and its surface temperature. However, during the conversion process, some of the solar radiation is converted into heat, which can increase the temperature of the solar panel’s junction, reducing its performance. This decrease in efficiency can be attributed to the decrease in output efficiency that occurs when the surface temperature of the solar panel increases. Therefore, maintaining a suitable temperature range is crucial to improving the efficiency of the photovoltaic (PV) panel. Various cooling methods, including the use of phase change materials (PCM), have been developed to control the temperature of the PV module. To test the effectiveness of PCM in cooling the solar PV module, we conducted an experiment that involved setting up a heat exchanger system and analyzing its performance. Our analysis revealed a significant improvement of 1.01 % decrement in the temperature of solar cell and the
The complexities of electric-vehicle HVAC require new sensing solutions. An expert at TDK explains. A common criticism of electric vehicles (EVs) is that extremes of heat and cold adversely affect their performance, particularly range. OEMs have been aware of the issue and have innovated and iterated technologies to solve it. EVs increasingly are being engineered with sophisticated heating, cooling and ventilation (HVAC) systems based on some of the most advanced and robust sensors and actuators available. These systems mitigate against the effects of thermal extremes that, admittedly, still challenge IC-engine vehicles on an infrequent basis. But there are tradeoffs. The ICE vehicle's HVAC is a relatively simple affair involving air cooling, a coolant (water ethylene glycol, or WEG), heaters, and heat exchangers (including air conditioners). HVAC systems for EVs by necessity are far more complex. Understanding the details is important to designing an effective system
Exhaust Gas Recirculation (EGR) coolers are widely used on diesel engines to reduce in-cylinder NOx formation. A common problem is the accumulation of a fouling layer inside the heat exchanger, mainly due to thermophoresis that leads to deposition of particulate matter (PM), and condensation of hydrocarbons (HC) from the diesel exhaust. From a recent investigation of deposits from field samples of EGR coolers, it was confirmed that the densities of their deposits were much higher than reported in previous studies. In this study, the experiments were conducted in order to verify hypotheses about deposit growth, especially densification. An experimental set up which included a custom-made shell and tube type heat exchanger with six surrogate tubes was designed to control flow rate independently, and was installed on a 1.9 L L-4 common rail turbo diesel engine. The test cycle and conditions were higher PM/ lower HC with 75°C coolant temperature for 1.5h, then lower PM/ higher HC with 75°C
Most of current jet aircraft circulate fuel on the airframe to match heat loads with available heat sink. The demands for thermal management in wide range of air vehicle systems are growing rapidly along with the increased mission power, vehicle survivability, flight speeds, and so on. With improved aircraft performance and growth of heat load created by Aircraft Mounted Accessory Drive (AMAD) system and hydraulic system, effectively removing the large amount of heat load on the aircraft is gaining crucial importance. Fuel is becoming heat transfer fluid of choice for aircraft thermal management since it offers improved heat transfer characteristics and offers fewer system penalties than air. In the scope of this paper, an AMESim model is built which includes airframe fuel and hydraulic systems with AMAD gearbox of a jet trainer aircraft. The integrated model will be evaluated for thermal performance. JP-8 fuel is recirculated on the airframe to maintain cooling the oil for AMAD
The purpose of this SAE Standard is to define a common set of thermodynamic test conditions to evaluate internal heat exchangers for use with R-134a and R-1234yf refrigerants in mobile air-conditioning systems. This SAE Standard can be used to test actual vehicle IHX designs or standardized IHX samples, which can be used for comparison based on a common length and shape
This paper explains about the design & development of IHX for HCVs segment and vehicle level validation to get the actual benefits with this technology. Moreover, the data observed during vehicle testing also indicates the improvement in AC System Performance. This experiment was done on HCV platform vehicle with multiple actual test conditions with two designs of IHX. Final result shows the optimized AC system design to achieve better efficiency
During the conventional brazing process of aluminium heat exchanger component (HEX), the temperature measurement of component in brazing furnace is a general requirement in order to control & achieve the required brazing temperature (around 590°C - 610°C) to ensure efficient brazing joints of the aluminium products. The temperature measurement & monitoring during brazing is usually done with the help of temperature sensors alongwith the data logging system, in fact this is currently a widely used method. However, there are many drawbacks in this type of method for which a suitable solution needs to be developed. In this study, a possible development of simulation tool on the basis of data from Al-Si phase diagram & Lever rule, predicting the temperature on the component during brazing using this tool & comparing w.r.t actual measured data are discussed in detail. As a part of further validation, the data from both the data-logger as well as the estimated temperature from the simulation
During thermal performance testing, achieving thermal balance between two fluid mediums of any heat exchanger is critical. Heat balance ratio (HBR) measures the heat transfer imbalance between two sides (source and sink) in a heat exchanger and also helps in ensuring accuracy of test data. There could be many factors which may lead to the imbalance in thermal performance of the sample under testing e.g. sensors accuracy, test operating range, sample orientation, hysteresis in the data acquisition systems etc. Therefore, a testing procedure needs to be established to achieve a better heat balance ratio as low as less than ±5%, which accounts for errors during instrumentation processes, flow losses & manual errors during testing. The current experimental study focuses on a typical coolant aluminium brazed heater core product which is used in automotive applications for passenger cabin heating during the cold climate conditions, windshield demisting and defrosting. In this study, three
Items per page:
50
1 – 50 of 1321