Browse Topic: Heat exchangers
This Aerospace Recommended Practice (ARP) outlines the causes and impacts of moisture and/or condensation in avionics equipment and provides recommendations for corrective and preventative action.
The present work demonstrates a Fluid-Structure Interaction (FSI) based methodology that couples a Finite Volume Method (FVM) and Finite Element Method (FEM) based tools to estimate air guide deformation, thereby predicting accurate aerothermal performance. The method starts with a digital assembly step where the assembly shape and the induced stress due to assembly is predicted. A full vehicle Aerodynamic simulation is performed to extract the surface pressure on the air guide which is then used to estimate the extent of deformation of the air guides. Based on the extent a subsequent Aerodynamic simulation may be carried out to predict thermal efficiency. Comparison against pressure data and deflection data extracted from the wind tunnel experiments of vehicles has shown reasonable match demonstrating the accuracy and usefulness of the method.
The purpose of this document is to present test methods that can be utilized to evaluate the filtration and operating characteristics of filters that will be utilized in a cryogenic system. The methods presented herein are intended to supplement standard filter testing specifications to allow evaluation of filter performance characteristics in areas that could be affected by extreme low temperatures.
Zero emission vehicles are essential for achieving sustainable and clean transportation. Hybrid vehicles such as Fuel Cell Electric Vehicles (FCEVs) use multiple energy sources like batteries and fuel cell stacks to offer extended driving range without emitting greenhouse gases. Optimal performance and extended life of the important components like the high voltage battery and fuel-cell stack go a long way in achieving cost benefits as well as environmental safety. For this, energy management in FCEVs, particularly thermal management, is crucial for maintaining the temperature of these components within their specified range. The fuel cell stack generates a significant amount of waste heat, which needs to be dissipated to maintain optimal performance and prevent degradation, whereas the battery system needs to be operated within an optimal temperature range for its better performance and longevity. Overheating of batteries can lead to reduced efficiency and potential safety hazards
In automotive systems, efficient thermal management is essential for refining vehicle performance, enhancing passenger comfort, and reducing MAC Power Consumption. The performance of an air conditioning system is linked to the performance of its condenser, which in turn depends on critical parameters such as the opening area, radiator fan ability and shroud design sealing. The opening area decides the airflow rate through the condenser, directly affecting the heat exchange efficiency. A larger opening area typically allows for greater airflow, enhancing the condenser's ability to dissipate heat. The shroud, which guides the airflow through the condenser, plays a vital role in minimizing warm air recirculation. An optimally designed shroud can significantly improve the condenser's thermal performance by directing the airflow more effectively. Higher fan capacity can increase the airflow through the condenser, improving heat transfer rates. However, it is essential to balance fan
Thermal management is critical for modern vehicles, particularly for Zero Emission Vehicles (ZEVs), where maintaining optimal temperature ranges directly influences thermal system efficiency and vehicle range. Accurate prediction of underhood airflow behavior is essential for effective thermal management and also to estimate overall energy consumption by cooling system, with air-side dynamics playing a pivotal role in heat transfer over the heat exchangers of cooling package. Simulation tools like GT-Suite are indispensable for this purpose, enabling engineers to evaluate complex thermal interactions without the cost and time constraints of extensive physical testing. While 3D Computational Fluid Dynamics (CFD) models offer detailed insights into flow characteristics, they are computationally expensive and time consuming. In contrast, 1D models provide faster simulation times, making them ideal for system-level analysis and iterative design processes. However, 1D models inherently lack
This SAE Recommended Practice is applicable to all liquid-to-air, liquid-to-liquid, air-to-liquid, and air-to-air heat exchangers used in vehicle and industrial cooling systems.
By combining topology optimization and additive manufacturing, a team of University of Wisconsin-Madison engineers created a twisty high-temperature heat exchanger that outperformed a traditional straight channel design in heat transfer, power density and effectiveness.
This paper presents an advanced control system design for an engine cooling system in an internal combustion engine (ICE) vehicle. Building upon our previous work, we have derived models for crucial temperatures within the engine, including combustion wall temperature, coolant-out temperature, block temperature, as well as temperatures in external components such as heat exchangers and radiator. To accurately predict these temperatures in a rapid manner, we have utilized a lumped parameter concept with a mean-value approach. This approach allows for precise temperature estimation while maintaining computational efficiency. Given the complexity of the cooling system, we have proposed a linear time-varying (LTV) model predictive control (MPC) system to regulate the temperatures. This control system linearizes the model at each time step and applies linear MPC over the control and prediction horizons. By doing so, we effectively control the highly nonlinear and time-delayed system
The thermoelectric generator system is regarded as an advanced technology for recovering waste heat from automotive exhaust. To address the issue of uneven temperature distribution within the heat exchanger that limits the output performance of the system, this study designs a novel thermoelectric generation system integrated with turbulence enhancers. This configuration aims to enhance convective heat transfer at the rear end of the heat exchanger and improve overall temperature uniformity. A multiphysics coupled model is established to evaluate the impact of the turbulence enhancers on the system's temperature distribution and electrical output, comparing its performance with that of traditional systems. The findings indicate that the integration of turbulence enhancers significantly increases the heat transfer rate and temperature uniformity at the rear end of the heat exchanger. However, it also leads to an increase in exhaust back pressure, which negatively affects system
This ARP provides the definition of terms commonly used in aircraft environmental control system (ECS) design and analysis. Many of the terms may be used as guidelines for establishing standard ECS nomenclature. Some general thermodynamic terms are included that are frequently used in ECS analysis, but this document is not meant to be an inclusive list of such terms.
Automotive cooling module system consists of condenser, radiator and intercooler which is used for thermal management of vehicle. Condenser helps to reject cabin heat, radiator to reject engine heat and intercooler rejects charged air heat to ambient. CRFM (Condenser, Radiator and Fan module) is conventionally packaged under the bonnet of passenger vehicle. Fan circulate airflow through heat exchangers and has primary role of airflow delivery. While performing vehicle level thermal management duty, fan noise is generated from CRFM and fan noise is considered as an important design attribute of CRFM. Many researchers have done fan noise simulation at component level and very limited literatures at vehicle (system) level simulation are available. Customer perceives noise from outside of the vehicle and it is important to predict fan noise at vehicle level at various operating speeds. Such simulations are transient in nature and modeling complexity demands high computational cost. Current
Items per page:
50
1 – 50 of 1338