Browse Topic: Protective systems
This SAE Recommended Practice describes the method for safe deployment of airbag modules in vehicles equipped with electrically actuated airbag systems for the purpose of disposal. It is intended to provide a procedure that does not require significant technical expertise, is easy to operate, and is readily available to be used by automobile dismantlers or vehicle shredders to deploy airbag modules prior to automobile reclamation
The rapid evolution of new technologies in the automotive sector is driving the demand for advanced simulation solutions, enabling faster software development cycles. Developers often encounter challenges in managing the vast amounts of data generated during testing. For example, a single Advanced Driver Assistance System (ADAS) test vehicle can produce several terabytes of data daily. Efficiently handling and distributing this data across multiple locations can introduce delays in the development process. Moreover, the large volume of test cases required for simulation and validation further exacerbates these delays. On-premises simulation setups, especially those dependent on High-Performance Computing (HPC) systems, pose several challenges, including limited computational resources, scalability issues, high capital and maintenance costs, resource management inefficiencies, and compatibility problems between GPU drivers and servers, all of which can impact both performance and costs
Head injuries from interior impacts during vehicle accidents are a significant cause of fatalities in India. Data from the National Crime Records Bureau (NCRB) for 2023 reveals that approximately 15% of the total 150,000 road fatalities were due to head impacts on vehicle interiors, resulting in about 22,500 deaths. Thus, head impact protection in a car crash is key during the design of vehicle interiors. IS 15223 and ECE-R21 provide specific guidelines for head impact testing of instrument panels and consoles in vehicles to ensure compliance with safety standards and minimize the risk of head injury during collisions. By systematically addressing each aspect of IS 15223 and ECE- R21 in the design, testing, and documentation phases, manufacturers can ensure that console armrests are optimized for safety. This approach not only helps meet regulatory standards but also enhances overall occupant protection in vehicles during collisions. The objective of this paper is to design a console
Dynamic Vehicle mass is one of the most critical parameters in automotive controls such as battery management, transmission shift scheduling, distance-to-empty predictions and most importantly, various active and passive safety systems. This work aims to find out dynamic Vehicle mass for Electric Vehicles in real time transient driving conditions. The work proposes a real-time approach in finding Dynamic vehicle mass where accumulated Energy based vehicle performance, an improvement to the vehicle dynamics equation, has been employed for consistent and accurate results. Factors affecting vehicle mass such as road grade, dynamic friction coefficient, driving pattern, wheel slip etc. have been considered for model optimization. Here recursive Bayesian state estimator has been used for finding vehicle mass as a constant state variable while time varying forgetting factors are used to nullify the impact of major losses. Algorithm is auto tuned using Machine Learning techniques to first
Innovators at NASA Johnson Space Center have developed an adjustable thermal control ball valve (TCBV) assembly which utilizes a unique geometric ball valve design to facilitate precise thermal control within a spacesuit. The technology meters the coolant flow going to the cooling and ventilation garment, worn by an astronaut in the next generation space suit, that expels waste heat during extra vehicular activities (EVAs) or spacewalks
ABSTRACT: Ground vehicle survivability and protection systems and subsystems are increasingly employing sensors to augment and enhance overall platform survivability. These systems sense and measure select attributes of the operational environment and pass this measured “data” to a computational controller which then produces a survivability or protective system response based on that computed data. The data collected is usually narrowly defined for that select system’s purpose and is seldom shared or used by adjacent survivability and protection subsystems. The Army approach toward centralized protection system processing (MAPS Modular APS Controller) provides promise that sensor data will be more judiciously shared between platform protection subsystems in the future. However, this system in its current form, falls short of the full protective potential that could be realized from the cumulative sum of sensor data. Platform protection and survivability can be dramatically enhanced if
ABSTRACT Fiber reinforced thermoset composites are well known for delivering 50% or more weight savings when compared with steel components while also providing strength, stiffness, and toughness. Nanoparticle additives have been shown to significantly increase the mechanical properties of thermoplastic and thermoset polymer matrices over the base matrix values. Extensive testing and characterization of composites containing graphene nanoplatelets (GnP) has been conducted and reported by XG Sciences’ (XGS) collaborators at the Michigan State University (MSU) Composite Materials and Structures Center. In a recent program with U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC), MSU investigated lightweight composites for blast and impact protection. High strain rate test facilities as well as high speed photography and non-destructive interferometry-based evaluation techniques were used to evaluate blast performance. The experimental results are presented
ABSTRACT A proposed new method of energy absorption in multilayered plates is to implement shear-thickening fluids between the plate layers to act as a damping mechanism. Research into the implementation of shear thickening fluids (STF) in Kevlar body armor has yielded positive results for ballistic loadings. The objective of this integrated computational materials engineering (ICME) study is to accurately model the behavior of shear thickening fluids using the discrete element method (DEM) to better understand shear-thickening mechanisms and how shear thickening fluids behave under high shear rates experienced during impulse loading. These results are implemented in a reduced order model of a multilayered plate to determine the effect of shear thickening fluids on energy absorption capabilities
ABSTRACT This paper focuses on the application of a novel Additive Molding™ process in the design optimization of a combat vehicle driver’s seat structure. Additive Molding™ is a novel manufacturing process that combines three-dimensional design flexibility of additive manufacturing with a high-volume production rate compression molding process. By combining the lightweighting benefits of topology optimization with the high strength and stiffness of tailored continuous carbon fiber reinforcements, the result is an optimized structure that is lighter than both topology-optimized metal additive manufacturing and traditional composites manufacturing. In this work, a combat vehicle driver’s seatback structure was optimized to evaluate the weight savings when converting the design from a baseline aluminum seat structure to a carbon fiber / polycarbonate structure. The design was optimized to account for mobility loads and a 95-percentile male soldier, and the result was a reduction in
ABSTRACT Optical distortion measurements for transparent armor (TA) solutions are critical to ensure occupants can see what is happening outside a vehicle. Unfortunately, optically transparent materials often have poorer mechanical properties than their opaque counterparts which usually results in much thicker layups to provide the same level of protection. Current standards still call for the use of a double exposure method to manually compare the distortion of grid lines. This report presents provides a similar method of analysis with less user input using items typically available in many mechanics labs: machine vision cameras and digital image correlation software. Citation: J. M. Gorman, “An Easier Approach to Measuring Optical Distortion in Transparent Armor”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 11-13, 2020. The views presented are those of the author and do not necessarily represent the views of DoD or
ABSTRACT In monolithic protection materials, a threat increase correlates to an increased material thickness. This is evident in V50 armor material specifications, such as Rolled Homogeneous Armor (RHA) MIL-DTL-12560K. This relationship translates to combat system level weight; the higher the performance, the higher the material weight, the higher the system weight. For ground combat systems, the total platform weight indicates relative protection. Hence, the M1 Abrams weight and protection level is greater than the Bradley Family of Vehicles, and the Bradley weight and protection level is greater than the M113. The weight procurement dollarization impacts are known during developmental efforts, but weight relationships also impact training and sustainment costs. Thus armor based weight changes have at least three cost relationships: procurement, training, and sustainment. These cost relationships are useful to understand in the context of the Army’s annual budget cycle. Citation: RA
ABSTRACT The main aspect of this investigation is the fast calculation of jet break-up from incoherent shape charge effects on targets. Several examples are used to verify force protection with Hard Kill Active Protection Systems. The first example showed how SC3D can be used to estimate the RHA equivalence of a layered armor recipe against a shape charge threat at standoff. The RHA equivalence can then be used in traditional vulnerability assessments. In the second example, a stochastic analysis was done of an Early Initiated Normal Jet event against a target vehicle to evaluate occupant survivability. Although Monte Carlo was used to calculate vulnerability, this was representative of a singular, deterministic HK-APS intercept of a threat (Pk given an intercept). In the third example, an additional layer of stochastic analysis evaluated probability of intercept, accounting for Circle Error Probable of a threat as it is intercepted by an APS along a protection hemisphere. The
ABSTRACT The Optical Warhead Lethality Sensor Suite (OWLSS) was designed specifically for tracking dense, fast fragment fields generated in warhead arena testing. OWLSS is an optimized hardware/software solution for measuring correlated properties of detonating warhead fragment distributions. The OWLSS automated track algorithm returns time-dependent 3D position, velocity, size, aerodynamic drag, and mass estimates for each fragment tracked. These data products fill a significant gap in our ability to characterize munitions for weapon effectiveness modeling. Furthermore, the system is modular and can be reconfigured for many tracking applications. In this paper, we present an overview of legacy arena measurement techniques, an overview of the OWLSS optical tracking approach, and we discuss how OWLSS can be employed to collect test data needed to improve the survivability of armored vehicles. Citation: J. P. Burke, Jr, J. Roe, S. F. Henke, B. P. Walker, W. Koons, “An Enhanced Optical
ABSTRACT Motorized ground forces spend considerable resources in equipping for situational awareness capabilities. Given requirements spanning command, control, surveillance, and reconnaissance of a battlefield, there has been no single mast technology that can support each of these with elevated sensors and weapons. A tough, extremely low weight modular mast system has been designed to be quickly attached or removed from a ground vehicle to provide different operational capabilities depending on the payload. The design allows for easy modification to fit functional needs on different vehicles and platforms. At the heart of the technology is a proprietary super-fiber pressurized tube which elevates the payload on a column of moderate gas pressure eliminating cumbersome hydraulic/mechanical systems. An internal, simple alignment system and gyroscope-maintained verticality allow a stable, elevated platform without introducing instability to the vehicle. The system is capable of
ABSTRACT As U.S. Army leadership continues to invest in novel technological systems to give warfighters a decisive edge for mounted and dismounted operations, the Integrated Visual Augmentation System (IVAS) and other similar systems are in the spotlight. Continuing to put capable systems that integrate fighting, rehearsing, and training operations into the hands of warfighters will be a key delineator for the future force to achieve and maintain overmatch in an all-domain operational environment populated by near-peer threats. The utility and effectiveness of these new systems will depend on the degree to which the capabilities and limitations of humans are considered in context during development and testing. This manuscript will survey how formal and informal Human Systems Integration planning can positively impact system development and will describe a Helmet Mounted Display (HMD) case study
ABSTRACT In order to defeat under body blast events and improve crew survivability, a monocoque aluminum cab structure has been designed as a drop on solution based on the current M1151A1 (HMMWV) chassis. The structure is comprised of all 5083-H131 Aluminum alloy armor plates with various thicknesses. The structure design consists of the following new features: (1) Robust joining design utilizing interlocking ballistic joints and mechanical interlocking features, (2) unique B-pillar gusset design connects roof & floor with B-pillar & tunnel, and (3) “Double V” underbody shaping design. The TARDEC designed, integrated & built vehicle achieved no crew core body injuries for a vehicle of this weight class and demonstrated meeting the crew survivability objective when subjected to a 2X blast during the live fire underbody blast tests. These efforts help to not only baseline light tactical vehicle capabilities, but also validate the possibility of meeting aggressive blast objectives for
Items per page:
50
1 – 50 of 4075