Browse Topic: Protective systems

Items (4,056)
ABSTRACT Ground combat vehicles can operate in regions characterized by various types and severities of injuries – resulting from improvised explosive devices (IEDs), gunfire or heat illness – as well as extreme climates such as desert environments. Because of the wounded warrior’s compromised physical condition, their thermal surroundings within the vehicle are especially important. This paper presents insights gleaned from the Army medical community, as well as a simple study of the effect of heat on soldiers in a ground combat vehicle using CFD / thermal modeling and simulation tools and methodologies. In particular, an Army-patented method for controlling body temperature via skin temperature feedback together with a cooling vest and pants ensemble is employed
Tison, NathanSmith, Rob E.
With the capability of predicting detailed injury of occupants, the Human Body Model (HBM) was used to identify potential injuries for occupants in car impact events. However, there are few publications on using HBM in the aviation industry. This study aims to investigate and compare the head, neck, lumbar spine and thoracic responses of the Hybrid III and the THUMS (Total Human Model for Safety) model in the horizontal 26g and vertical 19g sled tests required by the General Aviation Aircraft Airworthiness Regulations. The HIC of THUMS and Hybrid III did not exceed the requirements of airworthiness regulations. Still, THUMS had higher intracranial pressures and intracranial stresses, which could result in brain injury to the occupants. In vertical impact, the highest stress of the neck of THUMS appears at the cervical spine C2 and the upper neck is easily injured; in horizontal impact, the cervical spine C7 has the highest load, and the lower neck is easily injured. Due to the low
Shi, XiaopengDing, XiangheGuo, KaiLiu, TianfuXie, Jiang
ABSTRACT There have been several hundred rollovers in military vehicles in the last decade of deployment, of which approximately fifty percent are fall-based that occur during off-road operations. Off-road fall-based rollovers occur at lower speeds during road breakaway when the soft road gives way underneath the vehicle on one side as the soil is unable to support the vehicle load (Figure 1). A simulation-based study was conducted to explore potential off-road rollover mitigation benefits for the heavy vehicles with higher center of gravity such as MRAPs, MATV, and JLTV through the use of high performance active suspension systems. The study developed a system architecture based on the ElectroMechanical Suspension (EMS) technology and developed a medium fidelity MATLAB-Simulink-DADS model. Simulation results indicated substantial rollover mitigation benefits for MRAP/JLTV class vehicles, especially in road breakaway scenarios. Potential DoD beneficiaries include the Army and Marines
Beno, JosephBryant, AdamSingh, AmandeepKovnat, AlexanderHayes, RichardWeeks, Damon
ABSTRACT The diverse range of military vehicles and operational conditions share a number of powertrain objectives including high fuel efficiency and fuel adaptability to lessen the logistical impact of conflict; low heat rejection to minimize the cooling system losses, vulnerability and powertrain package space; tractive power delivery to provide superior mobility for the vehicle; and light weight to allow for more armor to be used and/or payload to be carried. This paper first provides an overview of the operational powertrain requirements of military vehicles. A review the processes used to integrate powertrain components into an optimized system specifically developed for modern combat vehicle applications is then provided, including an example of how the process was employed to develop an advanced powertrain for a tactical vehicle demonstrator based on military optimized off-the-shelf components. The paper concludes with a summary of some further military specific engine and
Hunter, Gary
ABSTRACT For millennia the horse was the primary mode of transportation for mounted soldiers. Ingress and egress from a horse’s back is straightforward, space claims are only related to the size of the saddle, and there were no confining walls to restrict what soldiers carried while on horseback. With the rise of the modern mechanized army, vehicle design became more complex. Critical to the effective design of vehicle interiors is an accurate model of the encumbered operator or passenger. Developments in three-dimensional (3d) scanning, computer-aided design (CAD) and other model creation capabilities make it possible to reproduce accurately the underlying human form and to add equipment encumbrances. This paper relates approaches taken in studies where Soldiers or aviators were modeled to define space requirements or reaches. Details of the modeling process, validation, and study results are given. Future research is discussed
Corner, Brian D.Gordon, Claire C.Zehner, GregoryHudson, JeffreyKozycki, Richard
ABSTRACT Structural optimization efforts for blast mitigation seek to counteract the damaging effects of an impulsive threat on critical components of vehicles and to protect the lives of the crew and occupants. The objective of this investigation is to develop a novel optimization tool that simultaneously accounts for both energy dissipating properties of a shaped hull and the assembly constraints of such a component to the vehicle system. The resulting hull design is shown to reduce the blast loading imparted on the vehicle structure. Component attachment locations are shown to influence the major deformation modes of the target and the final hull design
Tan, HuadeGoetz, JohnTovar, AndrésRenaud, John E.
ABSTRACT The modeling of a buried charge is a very complex engineering task since many Design Variables need to be considered. The variables in question are directly related to the method chosen to perform the analysis and the process modeled. In order to have a Predictive Tool two main objectives have to be carried out, the first is a verification of the numerical approach with experimental data, the second objective is a sensitivity study of the numerical and process parameters. The emphasis of the present study covers the second objective. To perform this task a comprehensive sensitivity study of fourteen Design Variables was completed which required 1000+ computational hours. The modeling approach that was chosen was the Discrete Particle Method (DPM) to model the Soil and HE and the Finite Element Method for the Structure. The basis for the study was a blast event applied to a model of the TARDEC Generic Vehicle Hull. The Response Parameter was chosen to be the Total Blast Impulse
Jensen, Morten RikardSmith, Wilford
ABSTRACT This paper reviews the Army Generic Hull [1-5] as a vital developmental tool for underbody blast modeling and simulation applications. Since 2010, it has been used extensively to help calibrate and validate various numerical software codes and methodologies. These are being used extensively today in the development of underbody armor, as well as mine blast subsystems such as seats, to protect both military vehicles and their occupants. In the absence of easily shareable information in this domain due to data classification, this specially formulated product is a valuable part of any toolset for underbody blast development and product design. Citation: K. Kulkarni, S. Kankanalapalli, V. Babu, J. Ramalingam, R. Thyagarajan, “The Army Generic Hull As A Vital Developmental Tool For Underbody Blast Applications,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 16-18, 2022
Kulkarni, KumarKankanalapalli, SanjayBabu, VenkateshRamalingam, JaiThyagarajan, Ravi
ABSTRACT The presented work discusses how to make a V/L analysis of a vehicle based on an RHA equivalence. It is shown how the approach works using small examples and an impact of an M1 helmet. Further, different V/L analyses of the GAZ-2975 vehicle are displayed. Considered Response parameters are the VAA damage maps, Expected Protection Capability plot, and damage area fractions. Explicit Finite Element models are used to find the critical RHA equivalent armor thickness at normal impact. It is done with terminal ballistic models for three materials; RHA, Aluminum 5083-H116, and Armox 500T. The values found are used in a V/L analysis. A sensitivity study of eight relevant V/L design parameters is carried out on the driver side section of the GAZ-2975 vehicle with an EPC value as the response parameter. Citation: Morten Rikard Jensen, Steven Grate, “Procedure for Fast Ballistic Vulnerability Simulation of Armored Vehicles Supported by Finite Element Results and an Extensive Numerical
Jensen, Morten RikardGrate, Steven
ABSTRACT The armor research and development community needs a more cost-effective, science-based approach to accelerate development of new alloys (and alloys never intended for ballistic protection) for armor applications, especially lightweight armor applications. Currently, the development and deployment of new armor alloys is based on an expert-based, trial-and-error process, which is both time-consuming and costly. This work demonstrates a systematic research approach to accelerate optimization of the thermomechanical processing (TMP) pathway, yielding optimal microstructure and maximum ballistic performance. Proof-of-principle is being performed on titanium alloy, Ti-10V-2Fe-3Al, and utilizes the Hydrawedge® unit of the Gleeble 3800 System (a servo-hydraulic thermomechanical testing device) to quickly evaluate mechanical properties and simulate rolling schedules on small samples. Resulting mechanical property and microstructure data are utilized in an artificial intelligence (AI
Lillo, ThomasChu, HenryAnderson, JeffreyWalleser, JasonBurguess, Victor
ABSTRACT Non-combat tactical vehicle incidents such as rollover are one of the major causes of soldier injuries and deaths. Rollover incidents are usually associated with multiple impacts which result in complex interactions between occupants and hard structural components. Detailed information of occupant responses in such rollover incidents are lacking, and to design effective occupant protection system and safety restraints systems, understanding the vehicle to occupant interaction is essential. The performance of ground vehicles during a rollover event is an important safety and occupant protection requirement for military vehicles. Modeling and simulation are a very useful tool in study and investigation of vehicle rollover characteristics and countermeasure concepts. The main goal of this research is to develop an M&S model of a HMMWV full vehicle system and evaluate the effectiveness of the different restraints systems in a lateral 25 mph rollover tests and its effect on
Babu, VenkateshKang, JianKankanalapalli, SanjaySheng, JimVunnam, MadanKarwaczynski, Sebastian K.Jessup, ChrisDuncan, Mike
ABSTRACT Over the course of typical survivability analyses for underbody blast events, a multitude of individual cases are examined where charge size, charge location relative to the vehicle, and vehicle clearance from the ground are varied, so as to arrive at a comprehensive assessment. While multi-physics computational tools have reduced the expense and difficulty of testing each loading case experimentally, these tools still often require significant execution and wall-clock times to perform the simulations. In efforts to greatly reduce the time required to conduct a holistic survivability analysis, Fast Running Models (FRMs) have been implemented and validated to act as a surrogate for the computationally expensive finite element tools in use today. Built using a small set of simulations, FRMs generate loading data in a matter of seconds, representing a significant improvement in survivability analysis turnaround time
Li, LiangjunStowe, NicholasVlahopoulos, NickolasMohammad, SyedBarker, CraigThyagarajan, Ravi
ABSTRACT The primary focus of this effort is to evaluate the roof liner technology’s ability to reduce the head injury criteria (HIC) and head acceleration to mitigate vertical impact related injures to mounted crew injures which may occur during top and bottom threat events. In an effort to reduce the likelihood of head injury during top and bottom threat attacks, an adequate roof liner is needed to reduce the force exerted on the solider. The roof liners were able to pass all system level tests. The successful system level testing confirmed the blast mat technology’s TRL-6 recommendation. Citation: J. Klima, “Developing Performance and Operating Requirements for Energy Attenuating (EA) Roof Liner for all U.S. Army Military Vehicles”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 10-12, 2021
Klima, Julie
ABSTRACT The study describes the development of a plug-in module of the realistic 3D Digital Human Modeling (DHM) tool RAMSIS that is used to optimize product development of military vehicle systems. The use of DHM in product development has been established for years. DHM for the development of military vehicles requires not only the representation of the vehicle occupants, but also the representation of equipment and simulation of the impact of such equipment on the Warfighter. To simulate occupants in military vehicles, whether land or air based, realistically, equipment must become an integral part of the extended human model. Simply attaching CAD-geometry to one manikin’s element is not sufficient. Equipment size needs to be scalable with respect to anthropometry, impact on joint mobility needs to be considered with respect to anatomy. Those aspects must be integrated in posture prediction algorithms to generate objective, reliable and reproducible results to help design engineers
Kuebler, ThorstenWirsching, HansBarnes, David
ABSTRACT This study applies an augmentation to systems engineering methodology based on the integration of adaptive capacity, which produces enhanced resilience in technological systems that operate in complex operating environments. The implementation of this methodology enhances system resistance to top-level function failure or accelerates the system’s functional recovery in the event of a top-level function failure due to functional requirement shift, evolutions, or perturbations. Specifically, this study employs a methodology to integrate adaptive resilience and demonstrates key aspects of its implementation in a relevant explosive reactive armor (ERA) system case study. The research and resulting methodology supplements and enhances traditional systems engineering processes by offering systems designers a method to integrate adaptive capacity into systems, enhancing their resilient resistance, or recovery to top-level function failure in complex operating environments. This
Cannon, Joseph
ABSTRACT Ballistic validation testing typically involves firing multiple shots at a nominal velocity and ensuring the target stops every round with only partial penetrations, no completes. This testing is specified as a consequence of the binary nature of the test, and the need to meet a particular probability of penetration at a specified velocity with a certain confidence level. This legacy process has significant shortcomings owing to both the test procedures involved as well as the nature of the statistical interpretation of the results. This paper describes an alternative test and analysis procedure that produces the required level of performance and confidence information at a specified velocity, as well as the confidence over a wide range of other velocities and performance levels. In addition, this procedure eliminates many of the shortcomings associated with the legacy “no penetration” test protocol, and requires no more shots at the target. Citation: J. Eridon, S. Mishler
Eridon, JamesMishler, Scott
ABSTRACT With US military casualties mounting due to Improvised Explosive Devices (IEDs) and other roadside bombs, improving the protective capabilities of armored vehicles for service personnel is of paramount importance. Accurate numerical simulations of the blast event provide a means to quickly and economically evaluate the blast-protection performance of armored vehicles, and to develop improved blast countermeasures. This effort developed computational simulations of a system intended to mitigate blast accelerations to a level where the acceleration is no longer a lethal threat to the occupants of an armored vehicle. The hypothesis is that through the manipulation of the mass ratio, stiffness and damping properties of a dual-hull system, the capability of current Mine Resistant Ambush Protected (MRAP) vehicles can be greatly improved. The results show that, in comparison to the standard single-hull vehicle, the dual-hull vehicle reduces head injury criteria by 95.7%, neck
Schaffner, GrantMiller, Adam
ABSTRACT The objective of this study was to optimize the occupant restraint systems (including both seatbelt and airbag) in a light tactical vehicle under frontal crash conditions through a combination of sled testing and computational modeling. Two iterations of computational modeling and sled testing were performed to find the optimal restraint design solutions for protecting occupants represented by three size of ATDs (namely Hybrid-III 5th percentile female ATD, 50th percentile male ATD, and 95th male ATD) and two military gear configurations, namely improved outer tactical vest (IOTV) and SAW Gunner configuration using a tactical assault panel (TAP). The sled tests with the optimized seatbelt and airbag designs provided significant improvement on the head, neck, chest, and femur injury risks compared to the baseline tests. This study demonstrated the benefit of adding a properly designed airbag and advanced seatbelt to improve the occupant protection in frontal crashes for a light
Hu, JingwenOrton, NicholeChen, CongRupp, Jonathan D.Reed, Matthew P.Gruber, RebekahScherer, Risa
ABSTRACT Improvised Explosive Devices (IEDs) and mines pose significant threat to military ground vehicles and soldiers in the field. Due to the severity of the forces exerted by a blast, ground vehicles may undergo multiple sub-events subsequent to an explosion, including local structural deformation of the floor, gravity flight and slam-down. The current method of choice to simulate the effect of a shallow-buried IED or mine on a Lagrangian vehicle model, is a fluid-structure interaction with the environment modelled with an Eulerian formulation (explosive, ground, air) [1]. This method, also called Arbitrary Lagrangian-Eulerian (ALE), is more expensive and involved than pure structural methods (usually pressure loads applied to the vehicle surface). However, it allows for taking into account the effect of the shape, type and size of the charge and the soil characteristics on the impulse transmitted to the vehicle. Three approaches are proposed to reduce the analytical simulation
Parthasarathy, MohanKosarek, Philip G.Santini, JulienThyagarajan, Ravi
ABSTRACT To reduce the hazard for service personnel involved in current field operations, it is necessary to improve the safety and structural integrity of transport vehicles subjected to buried explosive material. Numerical simulation of the detonation effects of an Improvised Explosive Device (IED) on a vehicle and its occupants can provide tremendous value in this effort. Such events involve a range of complex phenomena at various dimensional and temporal scales, and it is not practical to capture all physical phenomena with just one single numerical method. A practical solution to this problem is proposed using a combination of Smoothed Particle Hydrodynamics (SPH) and Finite Elements. Various numerical techniques have been proposed for simulating buried explosive over the past 30 years and this work has been previously described by many authors. However, the ability to define blast input parameters together with a soldier-centric simulation approach that includes human body and
Dooge, DanielDwarampudi, RameshSchaffner, GrantMiller, AdamThyagarajan, RaviVunnam, MadanmohanBabu, Venkatesh
ABSTRACT The CAMEL program focused on force protection and demonstrated the possibility to protect occupants through higher underbelly blast levels than normally or previously observed. This required a holistic vehicle systems engineering approach to mitigate blast injuries that both optimized existing systems as well as developed new technologies. The result was zero injury to all occupants as assessed by 5th, 50th, and 95th percentile encumbered ATDs during survivability blast testing. Twelve full scale objective-level blast tests were performed on over seventy fully-instrumented ATDs without a single lower-extremity injury. The lower limb protection was provided by an isolated floor system. This system was developed from the ground-up and occupant-out during the CAMEL program. This paper chronicles the CAMEL floor system’s creation, design, testing, and development process
Kwiatkowski, KevinWatson, ChristopherKorson, Chantelle
ABSTRACT Consumer demand and regulatory pressure have forced automakers to develop features designed to increase passenger car safety regardless of road surface or weather condition. In response, the intelligent tire, proposed in the APOLLO report, is introduced and the parameters useful for traction control system development are identified. Traction control system models are introduced and discussed. A simple vehicle model based on the quarter-car is presented, incorporating a traction control system and tire friction model. This model utilizes the LuGre friction model to relate tractive force to slip ratio and road surface friction level. A sliding-mode control strategy is chosen to model traction control behavior. Three case studies are conducted on two simulated road surfaces to show the interaction between estimated friction level in the sliding-mode control strategy and the tire friction model. To simulate the intelligent tire, where the road surface friction level is directly
Binns, RobertTaheri, SaiedFerris, John B.
ABSTRACT Survivability of a welded vehicle hull is directly tied to the performance of the grade of steel armor used. Selecting the highest performing grade of armor that can be welded into a specific location on a vehicle will improve survivability. While rolled homogeneous armor is the simplest to weld, challenges in welding high hard, and especially ultra high hard, are well known. Preventative measures to avoid weld cracking in vehicle structures can lead to increased costs during fabrication. Cracking of welds, both seen and unseen, in deployed vehicles directly impacts the survivability of the vehicle. Weld cracking during deployment further magnifies repair costs and leads to non-mission capable status. This analysis examines the weldability, ballistic/blast performance, and underlying metallurgy of Flash® Processed steels that have been tested by Army, Academia, and Industry. Citation: G. Cola, “Flash® 600 Ultra High Hard: Room-Temp ER120S-1 Weldability Tekken, H-Plate
Cola, Gary M
ABSTRACT The performance of ground vehicles during a rollover event is an important safety and occupant protection requirement for military vehicles. Modeling and simulation is a very useful tool in study and investigation of vehicle rollover characteristics and countermeasure concepts. This study presents two methods of simulating the rollover events. The first one uses Full System Method (FSM), where all the components are modelled as is and are evaluated. The second method is a reduced order modelling method (ROMM) using integration of the resulted kinematics data from FSM into the vehicle model with occupant & restraints. The FSM & ROMM methods were applied to simulate two HMMMV rollover events, and the results from both methods show that simulation and test data agreed fairly well. Computational time reduced by the ROMM was about 53% of that of the FSM. ROMM approach not only saves significant computational time but also increases robustness of the simulation. Citation: V. Babu, J
Babu, V.Kang, J.Kankanalapalli, S.Sheng, J.Vunnam, M.Karwaczynski, S. K.Jessup, C.Duncan, M.Paulson, K.
ABSTRACT: Ground vehicle survivability and protection systems and subsystems are increasingly employing sensors to augment and enhance overall platform survivability. These systems sense and measure select attributes of the operational environment and pass this measured “data” to a computational controller which then produces a survivability or protective system response based on that computed data. The data collected is usually narrowly defined for that select system’s purpose and is seldom shared or used by adjacent survivability and protection subsystems. The Army approach toward centralized protection system processing (MAPS Modular APS Controller) provides promise that sensor data will be more judiciously shared between platform protection subsystems in the future. However, this system in its current form, falls short of the full protective potential that could be realized from the cumulative sum of sensor data. Platform protection and survivability can be dramatically enhanced if
ABSTRACT Ballistic protection requirements often call out a minimum probability of no penetration against a projectile fired at a specified velocity with a required confidence level. For example, 90% confidence of 90% probability of protection at 2,900 fps. This paper describes a potential testing algorithm to maximize confidence in the resulting test data, and validation of the algorithm through Monte Carlo simulation. The algorithm uses a two-step process – a brief initial V50 test, followed by testing at velocities calculated to maximize the likelihood of validating the ballistic requirement within a given number of shots. The algorithm is based on straightforward confidence calculations based on the generalized likelihood ratio, does not require the generation of a zone of mixed results, and eliminates the velocity tolerance commonly used to discriminate valid and invalid shots. Monte Carlo simulations indicate that the algorithm may bias the confidence calculations. Citation
Eridon, James
ABSTRACT This paper focuses on the application of a novel Additive Molding™ process in the design optimization of a combat vehicle driver’s seat structure. Additive Molding™ is a novel manufacturing process that combines three-dimensional design flexibility of additive manufacturing with a high-volume production rate compression molding process. By combining the lightweighting benefits of topology optimization with the high strength and stiffness of tailored continuous carbon fiber reinforcements, the result is an optimized structure that is lighter than both topology-optimized metal additive manufacturing and traditional composites manufacturing. In this work, a combat vehicle driver’s seatback structure was optimized to evaluate the weight savings when converting the design from a baseline aluminum seat structure to a carbon fiber / polycarbonate structure. The design was optimized to account for mobility loads and a 95-percentile male soldier, and the result was a reduction in
Hart, Robert JPerkins, J. ScottBlinzler, BrinaMiller, PatrickShen, YangDeo, Ankit
ABSTRACT The main aspect of this investigation is the fast calculation of jet break-up from incoherent shape charge effects on targets. Several examples are used to verify force protection with Hard Kill Active Protection Systems. The first example showed how SC3D can be used to estimate the RHA equivalence of a layered armor recipe against a shape charge threat at standoff. The RHA equivalence can then be used in traditional vulnerability assessments. In the second example, a stochastic analysis was done of an Early Initiated Normal Jet event against a target vehicle to evaluate occupant survivability. Although Monte Carlo was used to calculate vulnerability, this was representative of a singular, deterministic HK-APS intercept of a threat (Pk given an intercept). In the third example, an additional layer of stochastic analysis evaluated probability of intercept, accounting for Circle Error Probable of a threat as it is intercepted by an APS along a protection hemisphere. The
Bernardo, AlexBuckley, Pat
ABSTRACT A proposed new method of energy absorption in multilayered plates is to implement shear-thickening fluids between the plate layers to act as a damping mechanism. Research into the implementation of shear thickening fluids (STF) in Kevlar body armor has yielded positive results for ballistic loadings. The objective of this integrated computational materials engineering (ICME) study is to accurately model the behavior of shear thickening fluids using the discrete element method (DEM) to better understand shear-thickening mechanisms and how shear thickening fluids behave under high shear rates experienced during impulse loading. These results are implemented in a reduced order model of a multilayered plate to determine the effect of shear thickening fluids on energy absorption capabilities
Bennett, AlyssaVlahopoulos, NickolasJiang, WeiranCastanier, MatthewThyagarajan, RaviShurin, Scott
ABSTRACT Seatbelt-mounted airbag is a new type of occupant restraint system, in which the airbag is integrated into the seatbelt and hence can be easily and quickly implemented into the current tactical vehicles without significant vehicle structure or interior changes. The objective of this study was to develop, optimize, and demonstrate seatbelt-mounted airbag designs for reducing occupant injury risks in a light tactical vehicle under frontal crashes. A total of 19 sled tests and over 30 FE simulations were performed to find the optimal seatbelt-mounted airbag designs for protecting occupants represented by three sizes of ATDs and two military gear configurations. Various lap-belt-mounted airbag and shoulder-belt-mounted airbag designs were evaluated for driver, front-seat passenger, and rear-seat passenger locations in a tactical vehicle. The test and simulation results showed that the optimized designs substantially reduced the occupant injury risks to the head, neck, and chest
Hu, JingwenOrton, NicholeBoyle, KyleAshok, NikhilKlima, JulieStaniak, CeliaScherer, RisaReed, Matthew
ABSTRACT Optical distortion measurements for transparent armor (TA) solutions are critical to ensure occupants can see what is happening outside a vehicle. Unfortunately, optically transparent materials often have poorer mechanical properties than their opaque counterparts which usually results in much thicker layups to provide the same level of protection. Current standards still call for the use of a double exposure method to manually compare the distortion of grid lines. This report presents provides a similar method of analysis with less user input using items typically available in many mechanics labs: machine vision cameras and digital image correlation software. Citation: J. M. Gorman, “An Easier Approach to Measuring Optical Distortion in Transparent Armor”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 11-13, 2020. The views presented are those of the author and do not necessarily represent the views of DoD or
Gorman, James M.
ABSTRACT In monolithic protection materials, a threat increase correlates to an increased material thickness. This is evident in V50 armor material specifications, such as Rolled Homogeneous Armor (RHA) MIL-DTL-12560K. This relationship translates to combat system level weight; the higher the performance, the higher the material weight, the higher the system weight. For ground combat systems, the total platform weight indicates relative protection. Hence, the M1 Abrams weight and protection level is greater than the Bradley Family of Vehicles, and the Bradley weight and protection level is greater than the M113. The weight procurement dollarization impacts are known during developmental efforts, but weight relationships also impact training and sustainment costs. Thus armor based weight changes have at least three cost relationships: procurement, training, and sustainment. These cost relationships are useful to understand in the context of the Army’s annual budget cycle. Citation: RA
Howell, Ryan A.
ABSTRACT In order to reduce the frequency and severity of warfighter head, neck, and spine injuries associated with military vehicle underbody IED and AVL blasts, crash, and rollover, Hy-Tek Manufacturing Co. Inc. (HMC) has designed, fabricated, tested, and optimized its Vehicle Roof Inflatable Impact Bladder (VRIIB). Comprised of two (2) thin and impermeable airbags separated by semi-rigid force distribution plates; the VRIIB is designed to be mounted on the interior roof panel of military combat vehicles in a deflated state. During IED or AVL detonation, the VRIIB inflates by means of a COTS airbag inflator to provide a significant reduction in the rate at which a warfighter’s head or neck decelerates against the rigid vehicle roof panel. The VRIIB is designed to remain inflated and functional for a protracted period of time after its initial actuation in order to protect vehicle mounted warfighters from follow-on blast related roof impacts, subsequent vehicle rollover and/or vehicle
Middlebrook, DonaldJude, JohnPeck, Jason
ABSTRACT Military vehicles in the field are often required to perform severe emergency maneuvers to avoid obstacles and/or escape enemy fire. This paper proposes a combined direct yaw control (DYC) and emergency roll control (ERC) system to mitigate rollover in the studied military vehicle. The DYC uses a differential braking strategy to stabilize the vehicle yaw moment and is intended to reduce the risk of untripped rollovers and also help prevent the vehicle from skidding out, thus allowing the driver to maintain control of the vehicle. The ERC uses actuators located near the vehicle suspension to apply an upward force to the vehicle body to counter the roll angle. An off-road tire model was used with the overall vehicle model in commercially available vehicle simulation software to simulate emergency maneuvers on various driving surfaces. Simulation results show that the proposed control strategy helps prevent both tripped and untripped rollovers on various driving surfaces
Hopkins, BradTaheri, SaiedAhmadian, MehdiReid, Alexander
ABSTRACT In this paper a new bolt attachment method was explored, where the attaching bolts were divided into two sets. The first set of bolts was tightened and was used to connect the underbody plate to the hull under ordinary operations. The second set of bolts connecting the plate and the hull were not tightened and had some extra axial freedom. Under blast loading, the first set of bolts would break due to high tensile and shear loads, but the second set of bolts would survive due to extra axial freedom which allows the plate and the hull vibrate and separate from each other to a certain extent. A simulation model was developed to verify this concept. Three underbody plate-hull connection approaches were simulated and analyzed: 1) all tightened bolts, 2) some bolts not fully seated, 3) all bolts not fully seated. The simulation results show that with option 1), 100% of the bolts broke under the blast loading. With option 2) the not fully seated bolts survived and continued to
Kang., JianLiedke, MarkMason, James
ABSTRACT The objective of this study is to understand the occupant kinematics and injury risks in a light tactical vehicle under frontal crash conditions using a combination of physical tests and computer simulations. A total of 20 sled tests were conducted in a representative environment to understand occupant kinematics, and quantify the effects from occupant body size (5th/50th/95th), military gear (helmet/vest/varying gear configurations), seatbelt type (5point/3point), and advanced seatbelt features (pre-tensioner/load limiter) on occupant kinematics and injury risks in frontal crashes. These tests have been used to validate a set of finite element (FE) models of occupants, gear, and restraints. Kinematics exhibited often included submarining due to the lack of knee bolster and the added weight from the military gear. Body size, seatbelt type, and advanced belt features also showed significant effects on occupant kinematics
Hu, JingwenWood, LaurenOrton, NicholeChen, CongRupp, JonathanReed, MatthewGruber, RebekahScherer, Risa
ABSTRACT Through Army SBIR funding, NanoSonic has designed a next-generation multipurpose Spall Protective, Energy Absorbing (SPEA™) HybridSil® material that has the potential to provide vehicle occupants with pioneering combinatorial protection from 1) fragmentation behind-armor debris (BAD), 2) high velocity head / neck impact, and 3) fire during underbody blast, crash, and rollover events. This innovative multilayered ensemble consists of highly flame resistant, energy absorbing polyorganosiloxane foams, molded ultrahigh molecular weight polyethylene panels, and carbon fiber reinforced polymer derived ceramic composites. The technical foundation for this effort was provided through independent 1) MIL-STD-662 FSP ballistic testing with The Ballistics and Explosive Group at Southwest Research Institute (SwRI); 2) FMVSS 201U head impact testing with MGA Research Incorporation; and 3) ASTM E1354 fire resistance testing with the Fire Technology group at SwRI. Fragment simulating
Baranauskas, VinceKlima, Julie
ABSTRACT Occupant safety is a top priority of military vehicle designers. Recent trends have shifted safety emphasis from the threats of ballistics and missiles toward those of underbody explosives. For example, the MRAP vehicle is increasingly replacing the HMMWV, but it is much heavier and consumes twice as much fuel as its predecessor. Recent reports have shown that fuel consumption directly impacts personnel safety; a significant percentage of fuel convoys that supply current field operations experience casualties en route. While heavier vehicles tend to fare better for safety in blast situations, they contribute to casualties elsewhere by requiring more fuel convoys. This study develops an optimization framework that uses physics-based simulations of vehicle blast events and empirical fuel consumption data to calculate and minimize combined total expected injuries from blast events and fuel convoys. Results are presented by means of two parametric studies, and the utility of the
Hoffenson, StevenKokkolaras, MichaelPapalambros, PanosArepally, Sudhakar
ABSTRACT It is of considerable interest to developers of military vehicles, in early phases of the concept design process as well as in Analysis of Alternatives (AoA), to quickly predict occupant injury risk due to under body blast loading. The most common occupant injuries in these extremely short duration events arise out of the very high vertical acceleration of vehicle due to its close proximity to hot high pressure gases from the blast. The primary objectives of this paper are to conduct an extensive parametric study in a systematic manner so as (1) to determine if a single blast loading parameter is sufficient to adequately characterize the occupant injury, at least for the duration of typical blast events (0-20ms) and (2) to create look-up tables and/or an automated software tool that decision-makers can use to quickly estimate the different injury responses for both stroking and non-stroking seat systems in terms of such a parameter
Kulkarni, Kumar BRamalingam, JaisankarThyagarajan, Ravi
ABSTRACT Midé Technology Corporation (Midé), a Hutchinson company, in collaboration with The University of Texas at Austin (UTA), have investigated the potential for novel negative stiffness (NS)-based structures as blast resistant vehicle panels. Protecting vehicles from blast shockwaves would ideally minimize added weight and maximize reusability. Homogenous metal panels provide such protection but without the benefit of reusability, absorbing energy via plastic deformation, while also adding significant weight to a vehicle, thereby sacrificing mobility. Although various emergent approaches, including the use of hexagonal honeycombs and auxetic materials, have proved promising in terms of higher energy absorption per unit mass, such approaches also rely on plastic deformation additionally suffering from the drawback of occasionally transmitting a higher peak force as compared to the incident
Nersessian, NersesseKeegan, JaredCourt, JeffGunsbury, ConnorSeepersad, Carolyn
ABSTRACT Heavily armored vehicles contain a thick base armor, yet it is insufficient for protection against shaped charges of high explosive anti-tank warheads. Add on armors such as non-explosive reactive armors (NERA) and explosive reactive armors (ERA) have been developed to increase protection levels of armored vehicles. ERA elements are composed of plates and explosive materials. ERA requires a rugged enclosure that reduces the collateral damage during a ballistic event by controlling the effects of the ensuing blast. An attempt is made to simulate the enclosure tests and capture sandwich plate’s behaviors subjected to detonating energetic explosives by using LS-DYNA nonlinear explicit solver, widely used in simulating detonation, impact, ballistics, and other structural problems. Successful simulation of ERA enclosures will allow an evaluation of the influences of some of the parameters, such as thickness of plate and attack angle, and different materials to improve design
Babu, VenkateshVunnam, MadanKlann, Shawn C.Filar, Charles A.
ABSTRACT The inclusion of energy-absorbing (EA) seats in combat vehicles has been shown to greatly reduce the likelihood of upper-body injuries during mine blast events. A drop tower is one of the common low-cost methods of testing an energy-absorbing seat to determine the vehicle acceleration and associated level of blast that it can protect against. However, the lack of a standard drop tower test procedure for mine blast purposes means that different facilities perform tests and analyze and report results in an inconsistent manner. As a consequence, the reported performance of any given seat tested in a drop tower may not accurately reflect the degree to which it would protect a soldier during an actual blast event. This paper describes the nature of the problems associated with current drop tower testing, and proposes a solution to eliminate much of the ambiguity surrounding test results. We will describe proposed test and analysis methods that can lead to a more accurate and
Eridon, JamesCory, Josh
ABSTRACT One of the deadliest threats that ground combat vehicles regularly encounter is the Explosively Formed Penetrator (EFP). The extremely high impact velocities that are typical of EFPs necessitate extremely heavy armor, which is often impractical due to the corresponding compromise in mobility and reliability. One possible solution to this threat is to use granular ceramics as an alternative to current armor solutions. An evaluation of high-speed impacts into granular ceramics and extensive testing across a wide range of parameters provides data to support this proposal. These results demonstrate an impressive potential for granular ceramics in EFP protection kits with a substantial reduction in both cost and weight to achieve the same level of protection as plate or sheet materials. Citation: P. Kopinski, “Ceramic Particle Armor”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 13-15, 2019
Kopinski, Peter
ABSTRACT TARDEC researched head impact protective, energy attenuating materials for use in U.S. Army Ground System Vehicle (GSV) applications. The purpose of the project is to reduce potential head impact related mounted crew injuries and deaths which may occur during underbody blast, crash and rollover events. Commercial-off-the-shelf materials were evaluated for their energy attenuating performance. Exposed surface materials in combination with core material were also researched and evaluated. Baseline vehicle testing was conducted to understand the current head impact criterion. The results of this effort identified solutions which may potentially meet the needs of the Army to reduce head impact related injuries which may occur during crash, rollover and blast events. TARDEC used the knowledge gained from this project to create performance specification requirements for interior head impact protective components and materials for use in U.S. Army vehicles
Klima, JulieMarquardt, Rebecca
ABSTRACT Motorized ground forces spend considerable resources in equipping for situational awareness capabilities. Given requirements spanning command, control, surveillance, and reconnaissance of a battlefield, there has been no single mast technology that can support each of these with elevated sensors and weapons. A tough, extremely low weight modular mast system has been designed to be quickly attached or removed from a ground vehicle to provide different operational capabilities depending on the payload. The design allows for easy modification to fit functional needs on different vehicles and platforms. At the heart of the technology is a proprietary super-fiber pressurized tube which elevates the payload on a column of moderate gas pressure eliminating cumbersome hydraulic/mechanical systems. An internal, simple alignment system and gyroscope-maintained verticality allow a stable, elevated platform without introducing instability to the vehicle. The system is capable of
Townsend, Phillip L.Bhatnagar, VivekMartinez, RudyWarnakulasuriya, Frank
Abstract Present day Army ground vehicles are equipped with numerous communications (COMMS) and counter improvised explosive device (C-IED) antenna systems. These platforms often have numerous highly visible antennas to support the large bandwidth and high power requirements of military radios and jammers. Currently, the demand for additional spectrum functionality for a ground vehicle ultimately leads to another antenna crowding the surface of the vehicle and reducing the survivability by increasing its visual signature. The visual signatures of large legacy whip antennas not only reduce battlefield survivability but also hinder the mobility of the vehicle in tight urban theater scenarios. With so many antenna systems onboard, mutual and joint force interoperability is of grave concern as the cosite interference between antenna systems significantly reduces its communications range and could hamper jamming effectiveness. The goal of the Army initiated Embedded Platform Antenna System
Johnson, ShikikMizan, WaliulKabir, Nahid
Items per page:
1 – 50 of 4056