Browse Topic: Restraint systems

Items (2,627)
Tippers transporting loose bulk cargo during prolonged descents are subject to two critical operational challenges: cargo displacement and rear axle lifting. Uncontrolled cargo movement, often involving loose aggregates or soil, arises due to gravitational forces and insufficient restraint systems. This phenomenon can lead to cabin damage, loss of control, and hazardous discharge of materials onto roadways. Simultaneously, load imbalances during descent can cause rear axle lift, increasing stress on the front steering axle, resulting in tire slippage and compromised maneuverability. This study proposes a dynamic control strategy that adjusts the tipper lift angle in real time to align with the descent angle of the road. By synchronizing the trailer bed angle with the slope of the terrain, the system minimizes cargo instability, maintains rear axle contact, and enhances braking performance, including engine and exhaust braking systems. Computational modelling is employed to assess the
Vijeth, AbhishekBhosle, Devidas AshokCherian, RoshniDash, Prasanjita
Research on the subjective items of airbag dangerous deployment in the 2024 version of C-NCAP regulations, which includes two aspects: the action of the airbag sweeping over the face and the speed of airbag deployment. This article starts from other aspects. On the one hand, when examining the action of airbags sweeping over the face, it is necessary to consider the acceleration index. Based on the head injury index of the front dummy in collision in C-NCAP, the injury index of face - sweeping risk is defined; On the other hand, the force level of facial injury should also be examined, and the definition and experimental methods should be discussed based on the force level that the head can withstand. Added airbag deployment hazard assessment for the HIII 5 female dummy.
Tian, WeiXue, KaileWang, Qinggui
Rollover protective structures (ROPS) that absorb energy during vehicle rollovers play a crucial role in providing integrated passive safety for operators restrained by seat belts. These protective structures, integrated into the vehicle frame, are designed to absorb high-impact energy and deform in a controlled manner without intruding into the occupant’s safe zone. This research focuses on the detailed analytical design procedure and performance evaluation criteria of the two-post open ROPS used on motor graders against lateral loads. An experimental test on a standard tubular square hollow section (SHS) column subjected to lateral load has demonstrated a significant correlation between the post-yield behavior of plastic hinge development and energy absorption, compared with results from various formulations adopted in finite element analysis (FEA). To reduce design iteration time and the cost of physical destructive testing, the complete equipment experimental setup is virtually
J., Avinash
Accurate prediction of the ultimate breakage pressure load for pyro-inflator housing is a critical aspect of inflator development. In this study, the tensile test of a specimen, from its initial shape to fracture, is simulated to verify the material properties of the inflator housing. The numerical results demonstrate high accuracy, with the tensile force–displacement curve, maximum tensile force, necking in the concentrated instability zone, fracture location, and inclined angle all closely matching the experimental data. Following material correlation, the ultimate breakage load of the inflator housing under hydrostatic burst test conditions is calculated using an explicit solver. A stress tensor state analysis method is proposed to define the ultimate load based on the onset of plastic instability in the thickness direction at the top center of the inflator. Compared to experimental results, the accuracy of the ultimate breakage pressure prediction using this method is 99.04%, while
Wang, Cheng
Recent studies have investigated head injury metrics, including mild traumatic brain injury (mTBI), or concussion risks, in low- to moderate-speed rear-end collisions, with linear and angular head accelerations contributing to the risk of developing a concussion. The present study analyzes head acceleration values in rear-end collisions at an impact severity of 5–30 km/h delta-V. Biomechanical data was obtained from HIII 50th percentile male anthropomorphic test devices (ATDs) seated in the target subject vehicles and utilizing safety restraints and head rests. Concussion risks were calculated from resultant linear and angular head accelerations recorded in the ATDs, and a linear regression model was used to determine what, if any, relationship existed between these head injury metrics and impact severity. The results indicate that there is a significant and positive relationship between head acceleration metrics and impact severity, particularly in the sagittal plane, with F-values
Garcia, BeatrizEmanet, Hatice SeydaHoffman, Austin
This SAE Recommended Practice describes the test procedures for conducting rear impact occupant restraint and equipment mounting integrity tests for ambulance patient compartment applications. Its purpose is to describe crash pulse characteristics and establish recommended test procedures that will standardize restraint system and equipment mount testing for ambulances. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included.
Truck Crashworthiness Committee
This SAE Recommended Practice describes the test procedures for conducting side impact occupant restraint and equipment mounting integrity tests for ambulance patient compartment applications. Its purpose is to describe crash pulse characteristics and establish recommended test procedures that will standardize restraint system and equipment mounting testing for ambulances. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included.
Truck Crashworthiness Committee
This study aims to develop a lightweight bus passenger seat frame by conducting structural nonlinear finite element analysis (FEA) on various thickness combinations of seat frame components to identify the optimal configuration. The thicknesses of critical structural members that primarily bear the load when force is applied to the seat frame were selected as independent variables, while stress on each component and compliance with ECE R14 seatbelt anchorage displacement regulations were set as dependent variables. A regression analysis was performed to calculate the importance of each component and analyze the influence of each design variable on the dependent variables. Strain gauges were attached to critical areas of the actual seat frame to conduct a seatbelt anchorage test, and simulations under identical conditions were performed using the nonlinear FEA software (LS-DYNA) to validate the reliability of the analysis results. The optimized seat frame exhibited a maximum stress of
Ko, Yeong GookCho, Kyu ChunLee, Ji SunKang, Ki Weon
Basic structures of vehicle frames、aircraft fuselages and ship hulls are made of beams、columns and trusses. If Acoustic Black Holes(ABH) are carefully arranged alongside with the wave propagation paths in those structures, the wave propagation paths could be changed at NVH engineers’ will and the structure vibrations can be reduced. Two kinds of ABHs are used in this paper: one is ABH made of Polyurethane(PU), other one is ABH composed of several steel plate 1D ABH stacked up in parallel. Three structures are used to test the effectiveness of ABHs for vibration reductions: a squared hollow sectional steel commonly used in motorcoach/bus chassis and frame structures, a simple frame for motorcoach airbag suspension and a 12m chassis structure. The attached ABHs show a great vibration attenuation in terms of transfer functions on the basic structure element for a motorcoach. The lateral, vertical and longitudinal transfer functions for steel ABHs were greatly reduced from 13.2~14.7 dB
Xu, ChuanyanWang, JianjunXing, QisenChen, HengbinHuang, Xianli
This SAE Recommended Practice describes the test procedures for conducting frontal impact occupant restraint and equipment mounting integrity tests for ambulance patient compartment applications. Its purpose is to describe crash pulse characteristics and establish recommended test procedures that will standardize restraint system and equipment mounting testing for ambulances. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included.
Truck Crashworthiness Committee
This specification establishes the DV/PV performance and validation requirements for frontal airbag modules, namely driver, passenger, and knee airbags. In cases where airbag designs fall outside the scope of this standard, the Responsible Vehicle Engineering Organization (RVEO) is the final arbiter of all performance requirements within this specification. Additional system level requirements may be introduced by the RVEO but are outside the scope of this specification.
USCAR
Real-world data show that abdominal loading due to a poor pelvis-belt restraint interaction is one of the primary causes of injury in belted rear-seat occupants, highlighting the importance of being able to assess it in crash tests. This study analyzes the phenomenon of submarining using video, time histories, and statistical analysis of data from a Hybrid III 5th female dummy seated in the rear seat of passenger vehicles in moderate overlap frontal crash tests. This study also proposes different metrics that can be used for detecting submarining in full-scale crash tests. The results show that apart from the high-speed videos, when comparing time-series graphs of various metrics, using a combination of iliac and lap belt loads was the most reliable method for detecting submarining. Five metrics from the dynamic sensors (the maximum iliac moment, maximum iliac force drop in 1 ms, time for 80% drop from peak iliac force, maximum pelvis rotation, and lumbar shear force) were all
Jagtap, Sushant RJermakian, Jessica SEdwards, Marcy A
The development of autonomous driving technology will liberate the space in the car and bring more possibilities of comfortable and diverse sitting postures to passengers, but the collision safety problem cannot be ignored. The aim of this study is to investigate the changes of injury pattern and loading mechanism of occupants under various reclined postures. A highly rotatable rigid seat and an integrated three-point seat belt were used, with a 23g, 50kph input pulse. Firstly, the sled test and simulation using THOR-AV in a reclined posture were conducted, and the sled model was verified effective. Based on the sled model, the latest human body model, THUMS v7, was used for collision simulation. By changing the angle of seatback and seat pan, 5 seat configurations were designed. Through the calculation of the volunteers' pose regression function, the initial position of THUMS body parts in different seat configurations was determined. The responses of human body parts were output
Yang, XiaotingWang, QiangLiu, YuFei, JingWang, PeifengLi, ZhenBai, Zhonghao
In the pre-crash emergency braking scenario, the occupant inside the vehicle will move forward due to inertia, deviating from the standard upright seating position for which conventional restraint systems are designed. Previous studies have mainly focused on the influence of out-of-position (OOP) displacement on occupant injuries in frontal collisions, and provided solutions such as active pretensioning seatbelts (APS). But little attention has been paid to the influence of OOP on whiplash injury during a subsequent rear-end collision. To investigate the forward OOP impact on whiplash injuries and the effectiveness of APS in this accident scenario, a vehicle interior model with an active human body model (AHBM) was setup in the MADYMO simulation platform. Different braking strengths (0.8g and 1.1g), APS triggering times (from 0.2s before to 0.2s after the braking initiation) and pretensioning forces (from 100N to 600N) were input to the simulation matrix. The occupant’s forward OOP
Fei, JingQiu, HangWang, PeifengLiu, YuCheng, James ChihZhou, QingTan, Puyuan
The integrated vehicle crash safety design provides longer pre-crash preparation time and design space for the in-crash occupant protection. However, the occupant’s out-of-position displacement caused by vehicle’s pre-crash emergency braking also poses challenges to the conventional restraint system. Despite the long-term promotion of integrated restraint patterns by the vehicle manufacturers, safety regulations and assessment protocols still basically focus on traditional standard crash scenarios. More integrated crash safety test scenarios and testing methods need to be developed. In this study, a sled test scenario representing a moderate rear-end collision in subsequence of emergency braking was designed and conducted. The bio-fidelity of the BioRID II ATD during the emergency braking phase is preliminarily discussed and validated through comparison with a volunteer test. The final forward out-of-position displacement of the BioRID II ATD falls within the range of volunteer
Fei, JingWang, PeifengQiu, HangLiu, YuShen, JiajieCheng, James ChihZhou, QingTan, Puyuan
With the increasing adoption of Zero-Gravity Seats in intelligent cockpits, there is a growing concern over the safety of occupants in reclined postures during collisions. The newly released anthropomorphic test device (ATD), THOR-AV, has modified the neck, spine, and pelvis structures to better match reclined postures. This study aims to investigate the changes in kinematic response and injury metrics for occupants in reclined postures, through high-speed frontal sled tests utilizing the THOR-AV. The tests were conducted using an adjustable rigid seat with a zero-gravity characteristic and an integrated three-point seat belt. Six tests were performed across four seat configurations: Standard, Semi-Reclined, Reclined, and Zero-gravity postures. The input acceleration pulse for these tests was derived from the equivalent double trapezoidal waveform of the Mobile Progressive Deformable Barrier (MPDB) test. Data from sensors and high-speed video were collected for analysis. The results
Wang, QiangLiu, YuFei, JingYang, XiaotingWang, PeifengBai, Zhonghao
Rear impacts make up a significant portion of crashes in the United States. To date, regulations on rear impacts have focused on fuel system integrity and seat performance, while most research has focused on seat performance in relation to occupants’ injuries, with some analyses of crash severity and seat belt effects. The performance of seats and seat belts may vary depending on the size of the occupant. Understanding how occupant characteristics, as well as crash scenarios, affect injury outcomes can show opportunities for further enhancements in rear impact occupant protection. This paper presents analyses using survey weighted logistic regression models to understand the factors affecting serious injury outcomes (i.e., MAIS 3+) in rear impacts, exploring the potential for improving occupant outcomes. Three separate models are evaluated, focusing on 1) overall injury level, 2) head, neck, and cervical-spine injuries, and 3) thorax, abdomen, thoracic- and lumbar-spine injuries for
Greib, JoshuaJurkiw, ReneeKryzaniwskyj, TanjaOwen, SusanVan Rooyen, PaulWhelan, StaceyWilliamson, John
Vehicle restraint systems, such as seat belts and airbags, play a crucial role in managing crash energy and protecting occupants during vehicle crashes. Designing an effective restraint system for a diverse population is a complex task. This study demonstrates the practical implementation of state-of-the-art Machine Learning (ML) techniques to optimize vehicle restraint systems and improve occupant safety. An ML-based surrogate model was developed using a small Design of Experiments (DOE) dataset from finite element human body model simulations and was employed to optimize a vehicle restraint system. The performance of the ML-optimized restraint system was compared to the baseline design in a real-world crash scenario. The ML-based optimization showed potential for further enhancement in occupant safety over the baseline design, specifically for small-female occupant. The optimized design reduced the joint injury probability for small female passenger from 0.274 to 0.224 in the US NCAP
Lalwala, MiteshLin, Chin-HsuDesai, MeghaRao, Shishir
The effect of seat belt misuse and/or misrouting is important to consider because it can influence occupant kinematics, reduce restraint effectiveness, and increase injury risk. As new seatbelt technologies are introduced, it is important to understand the prevalence of seatbelt misuse. This type of information is scarce due to limitations in available field data coding, such as in NASS-CDS and FARS. One explanation may be partially due to assessment complexity in identifying misuse and/or misrouting. An objective of this study was to first identify types of lap-shoulder belt misuse/misrouting and associated injury patterns from a literature review. Nine belt misuse/misrouting scenarios were identified including shoulder belt only, lap belt only, or shoulder belt under the arm, for example, while belt misrouting included lap belt on the abdomen, shoulder belt above the breasts, or shoulder belt on the neck. Next, the literature review identified various methods used to assess misuse
Gu, EmilyParenteau, Chantal
Plasticized polyvinyl chloride (PVC) has many applications in automotive industry including electrical harnesses, door handles, seat and head rest covers, and instrument panel (IP) and other interior trim. In IP applications, the PVC skin plays a critical role in passenger airbag deployment (PAB) by tearing along the scored edge of the PAB door and allowing the door to open and the airbag to inflate to protect the occupant. As part of the IP, the PVC skin may be exposed to elevated temperatures and ultraviolet (UV) radiation during the years of the vehicle life cycle which can affect the PVC material properties over time and potentially influence the kinematics of the airbag deployment. Chemical and thermal aging of plasticized PVC materials have been studied in the past, yet no information is found on how the aging affects mechanical properties at high rates of loading typical for airbag deployment events. This paper compares mechanical properties of the virgin PVC-based IP skin
G, KarthiganSavic, VesnaRavichandran, Gowrishankar
The primary function of an Airbag Control Module (ACM), referred to as the Sensing and Diagnostic Module (SDM) by General Motors (GM), is to detect crashes, discriminate crashes, evaluate crash severities, deploy the appropriate restraints, including airbags and pretensioners, and perform system diagnostics. A secondary function of the SDM is to act as an Event Data Recorder (EDR) which records data during the time periods just prior to (pre-crash) and during a crash event. This data consists of restraint and vehicle system data which is collected, processed, and stored in the EDR. Data stored in the EDR is intended to be retrieved after a crash. This data provides operational information on the vehicle’s occupant protection system and other vehicle systems to assess system performance, aid in crash reconstruction, and support improved vehicle safety. A series of vehicle test maneuvers were conducted while injecting a non-deployment crash pulse directly into the SDM to cause the SDM to
Smyth, BrianCrosby, Charles LBickhaus, RyanSmith, JamesEdmunds, DustinFloyd, DonaldModi, VipulOutlaw, RaShawndra D.Wright, Jeff
The reclined seatbacks will be increasingly used with the advanced technologies of the intelligent automobile. The occupant collision protection must rise to the challenge facing to the new impact scenarios. It is necessary to understand the injury mechanisms of the reclined occupants in order to design the resistant system and testing protection regulations. In this study, simulation tests were conducted for the Frontal Full Width Impact (FRB) and the Mobile Progressive Deformable Barrier Frontal Impact (MPDB) as specified in the China New Car Assessment Programme (C-NCAP, 2021 version). The simulation used the biomechanical model of the 5th female occupant exhibiting the detailed anatomical structures and a seat model with large-angle seatback. The occupant injury risks and mechanisms with 25°, 45° and 60° seating postures were investigated by analyzing the kinematic and biomechanical parameters, and the influence of the seatback angle on occupant injury was discussed. The results
Wang, YanxinPan, RuyangLin, YuyangLiu, YutaoHe, LijuanWang, Zhenqiangzhu, heLiu, ChongLi, KunLv, Wenle
Sled crash tests are an important tool to develop automotive restraint systems. Compared with full-scale crash tests, the sled test has a shorter development cycle of the restraint system and lower cost. The objective of the present study is to create a cost-effective sled test methodology, calculate the optimal static yaw angle and loading curves, and analyze the motion response and injuries of the dummy in the small overlap crash test. The effectiveness of the proposed methodology was verified under two typical small overlap frontal crash modes: “energy-absorption” and “sideswipe”. The results show that with the calculated yaw angle α, the HIC was different from the small overlap crash model, but all remaining indices were within 5% of the injury criteria. All International Organization for Standardization (ISO) values between the combined accelerations of all parts of the dummy and those of the basic model exceeded 0.75, and some values were above 0.8. Therefore, the proposed sled
Yu, LiuChen, JianzhuoWan, Ming XinFan, TiqiangYang, PeilongNie, ZhenlongRen, LihaiCheng, James Chih
Headliners are one of the largest components inside an automobile, stretching from the front windshield to the rear windshield. Besides its aesthetic purpose, it contributes to multiple other purposes like housing different components, helps in NVH, defines the interior roominess, and plays a crucial role in defining the deployment of curtain airbag. The headliner also plays a role in meeting regulatory requirements like upward visibility and headroom requirements of the occupants. During the deployment of curtain airbag, it is important that the headliner-pillar interface aids in the easy opening of airbag, with the least hindrance. This is defined by multiple factors like the location of headliner-pillar interface, its distance from the airbag ramp bracket, the position of the inflator, the mountings of the headliner and pillar trims, to name a few. Also, during the deployment of the airbag, it is important that parts such as grabhandle, speaker grilles, etc which are fitted on the
Sabesan, Arvind KochiD., AnanthaKakani, Phani Kumar
This specification establishes the minimum required performance and validation for the seatbelt pyrotechnic pretensioners integrated into retractors, buckles, and/or anchors. It also includes pyro for switchable load limiters. This specification is intended to focus on the performance of the tensioner function integrated into the aforementioned devices and NOT the entirety of the device integrated into the vehicle. See Figure 1 in 2.2.
USCAR
This SAE Recommended Practice describes the method for safe deployment of airbag modules in vehicles equipped with electrically actuated airbag systems for the purpose of disposal. It is intended to provide a procedure that does not require significant technical expertise, is easy to operate, and is readily available to be used by automobile dismantlers or vehicle shredders to deploy airbag modules prior to automobile reclamation.
Inflatable Restraints Committee
Dynamic Vehicle mass is one of the most critical parameters in automotive controls such as battery management, transmission shift scheduling, distance-to-empty predictions and most importantly, various active and passive safety systems. This work aims to find out dynamic Vehicle mass for Electric Vehicles in real time transient driving conditions. The work proposes a real-time approach in finding Dynamic vehicle mass where accumulated Energy based vehicle performance, an improvement to the vehicle dynamics equation, has been employed for consistent and accurate results. Factors affecting vehicle mass such as road grade, dynamic friction coefficient, driving pattern, wheel slip etc. have been considered for model optimization. Here recursive Bayesian state estimator has been used for finding vehicle mass as a constant state variable while time varying forgetting factors are used to nullify the impact of major losses. Algorithm is auto tuned using Machine Learning techniques to first
Pandey, SuchitSarkar, PrasantaSawhney, ChandanKondhare, ManishJoshi, PawanCH, Sri Ram
With the capability of predicting detailed injury of occupants, the Human Body Model (HBM) was used to identify potential injuries for occupants in car impact events. However, there are few publications on using HBM in the aviation industry. This study aims to investigate and compare the head, neck, lumbar spine and thoracic responses of the Hybrid III and the THUMS (Total Human Model for Safety) model in the horizontal 26g and vertical 19g sled tests required by the General Aviation Aircraft Airworthiness Regulations. The HIC of THUMS and Hybrid III did not exceed the requirements of airworthiness regulations. Still, THUMS had higher intracranial pressures and intracranial stresses, which could result in brain injury to the occupants. In vertical impact, the highest stress of the neck of THUMS appears at the cervical spine C2 and the upper neck is easily injured; in horizontal impact, the cervical spine C7 has the highest load, and the lower neck is easily injured. Due to the low
Shi, XiaopengDing, XiangheGuo, KaiLiu, TianfuXie, Jiang
Extreme out-of-position pre-crash postures may need high-force pre-pretensioner (PPT) for effective repositioning (Mishra et al., 2023). To avoid applying a high force on the chest, we hypothesized that in case of these extreme postures the PPT may be activated in the absence of a pre-crash motion as a cautionary measure. Therefore, the aims of this study were: (1) to understand the effect of the PPT in repositioning a forward-leaning occupant in static conditions and (2) to characterize occupants’ kinematic variability during repositioning. Sixteen healthy volunteers (8 males, 8 females, 23.8 ± 4.2 years old) were seated with a 40° forward posture on a vehicle seat and restrained with a 3-point seat belt equipped with a PPT. Two PPT seatbelt conditions were examined: low PPT (100 N) and high PPT (300 N). Head and trunk rearward displacements relative to the initial forward-leaning position at 350 ms from PPT onset were collected with a 3D motion-capture system and compared between
Witmer, MaitlandGriffith, MadelineGraci, Valentina
Pelvic orientation in vehicles is crucial for preventing injuries and creating safer vehicles and restraint systems. A better understanding of pelvic orientation could provide more accurate anthropomorphic test device (ATD) models of underrepresented populations such as obese individuals, children, and small females. Sonomicrometry is the use of piezoelectric transducers that transmit ultrasound signals to each other to measure the distance between them. These signals may be aggregated using triangulation. In this experiment, ultrasound crystals were secured to the surface of a porcine surrogate to evaluate pelvic movement. This data was then processed using Sonometrics software to generate a 3D model of four static positions and three dynamic tests. The test was validated using a camera and a 3D measurement arm (CMM) to validate XYZ positions. This article discusses how this method could be helpful for developing more accurate ATD models, preventing fatalities in vehicle crashes.
Mrozek, AllisonSirhan, KaterenaMacDonald, RobertDannaoui, AbdulMazloum, AishaOchocki, Katarzyna‘Dale’ Bass , Cameron R.
Drop tower testing was conducted using 50th percentile male PMHS at 15G peak acceleration in a rigid seat, with a seat pan-to-seatback angle of 90°. Subjects were instrumented with 6DOF motion blocks at T1, T4, T12, L3, and S1 to capture detailed vertebral body kinematics. Pressure sensors were also placed throughout the lumbar spine to estimate force in the intervertebral discs from S1-L2. PMHS were restrained using a pilot torso harness attached to the seat at the shoulders and lap belt, both pretensioned to 89 N. Reaction forces were measured in the seat using six-axis loads under the seat pan. Final positioning of the occupant was documented using a FARO arm point probe and laser scanner. To recreate the experimental setup, CAD models of the experimental fixture were meshed using a commercial FE modeling software (Hypermesh) and imported into LS-Dyna for incorporation with the THUMS model. The belt routing tool in LS-PrePost v4.9.12 was used to develop the torso harness and
DeWitt, Timothy R.Marcallini, Angelo M.Bolte IV, John H.Kang, Yun-Seok
This study compared modern vehicle and booster geometries with relevant child anthropometries. Vehicle geometries (seat length, seat pan height, shoulder belt outlet height, and roof height) were obtained for 275 center and outboard rear seating positions of US vehicles (MY 2009–2022). Measurements of 85 US boosters (pan height and pan length) and anthropometries of 80 US children between 4–14yo (seated height, thigh length, leg length, and seated shoulder height) were also collected. Comparisons were made between vehicles, boosters, and child anthropometries. Average vehicle seat lengths exceeded child thigh lengths (+9.5cm). Only 16.4% of seating positions had seat lengths less than the child thigh length mean+1SD. Even for children at least 145cm, only 18.8% had thigh lengths greater than the average vehicle seat length. Child thigh lengths were more comparable with average booster seat pan lengths for all multi-mode and high-back designs (-2.0cm) and low-back boosters (+3.1cm). The
Baker, Gretchen H.Connell, Rosalie R.Rhodes, Carrie A.Mansfield, Julie A.
The primary purpose of the active safety feature is to reduce the danger of a collision between the car and an obstruction. To improve occupant safety, active safety systems must be included on all new vehicles; nonetheless, not all incidents are preventable. The frequency of incidents on the road has recently increased in tandem with the number of cars, making it critical to investigate the crashworthiness of a vehicle because human life is at the top of the priority list. This study examines an occupant's responses prior to a crash event, as well as studies into how occupant posture influences injury data. Most of the existing research focuses on the pre-crash event or the occupant's optimal seated position. However, it is critical to understand an occupant's reflex or behavior during the pre-crash event, when the occupant is typically not in an appropriate seating posture due to the panic reflex. As a result, an occupant's reflex in a panic situation will change their seating
Shankara Murthy, SantoshSrinivasa, PraveenCK, UmeshPatil, ShubhamJois, Rahul
Forward-facing child restraint systems (FF CRS) and high-back boosters often contact the vehicle seat head restraint (HR) when installed, creating a gap between the back surface of the CRS and the vehicle seat. The effects of HR interference on dynamic CRS performance are not well documented. The objective of this study is to quantify the effects of HR interference for FF CRS and high-back boosters in frontal and far-side impacts. Production vehicle seats with prominent, removeable HRs were attached to a sled buck. One FF CRS and two booster models were tested with the HR in place (causing interference) and with the HR removed (no interference). A variety of installation methods were examined for the FF CRS. A total of twenty-four tests were run. In frontal impacts, HR interference produced small but consistent increases in frontal head excursion and HIC36. Head excursions were more directly related to the more forward initial position rather than kinematic differences caused by HR
Mansfield, Julie A.
ZF rethinks safety with new airbags, belt tensioner. ZF knows that the steering wheel remains one of the most relevant components in an automotive interior, because this is where drivers have direct contact to the vehicle. As steering wheels become adorned with more functions than some drivers know what to do with, ZF put Marc Schledorn in charge of the teams rethinking how the driver airbag could operate in a world with ever-busier steering wheels. The solution is a new type of steering wheel airbag that ZF Lifetec (ZF's renamed Passive Safety Systems division) announced in June. Instead of moving through a thermoplastic airbag cover mechanically fixed in the center of the wheel, Schledorn told SAE Media, the new design positions the airbag on the top side of the steering wheel and then expands through the upper rim of the wheel when needed.
Blanco, Sebastian
The descent phase of Indian Manned Space Mission culminates with a crew module impacting at a predetermined site in Indian waters. During water impact, huge loads are experienced by astronauts. This demands an impact attenuation system which can attenuate the impact loads and reduce the acceleration experienced by astronauts to safe levels. Current state of the art impact attenuation systems uses honeycomb core, which is passive and can only be used once (at touchdown impact) during the entire mission. Active and reusable attenuation systems for crew modules are still an unexplored territory. Three configurations of impact attenuators are selected for this study for the crew module configuration, namely, hydraulic damper, hydro-pneumatic damper and airbag systems. All the subsystems are mathematically modelled, and initial sizes are estimated using Genetic Algorithm and SQP optimization techniques. Semi-active control for Hydraulic and Hydro-Pneumatic dampers are implemented and
Avirah, Nohin KLakshman, Dasu Deva KarthikPotnuru, Sai SanthoshPramod, Athul PKurian, Sabin
The goal of this study was to gather and compare kinematic response and injury data on both female and male whole-body Post-mortem Human Surrogates (PMHS) responses to Underbody Blast (UBB) loading. Midsized males (50th percentile, MM) have historically been most used in biomechanical testing and were the focus of the Warrior Injury Assessment Manikin (WIAMan) program, thus this population subgroup was selected to be the baseline for female comparison. Both small female (5th percentile, SF) and large female (75th percentile, LF) PMHS were included in the test series to attempt to discern whether differences between male and female responses were predominantly driven by sex or size. Eleven tests, using 20 whole-body PMHS, were conducted by the research team. Preparation of the rig and execution of the tests took place at the Aberdeen Proving Grounds (APG) in Aberdeen, MD. Two PMHS were used in each test. The Accelerative Loading Fixture (ALF) version 2, located at APG’s Bear Point range
Pietsch, HollieCristino, DanielleDanelson, KerryBolte, JohnMason, MatthewKemper, AndrewCavanaugh, JohnHardy, Warren
The on-board emergency call system with accurate occupant injury prediction can help rescuers deliver more targeted traffic accident rescue and save more lives. We use machine learning methods to establish, train, and validate a number of classification models that can predict occupant injuries (by determining whether the MAIS (Maximum Abbreviated Injury Scale) level is greater than 2) based on crash data, and ranked the correlation of some factors affecting vehicle occupant injury levels in accidents. The optimal model was selected by the model prediction accuracy, and the Grid Search method was used to optimize the hyper-parameters for the model. The model is based on 2799 two-vehicle collision accident data from NHTSA CISS (The Crash Investigation Sampling System of NHTSA) traffic accident database.The results show that the model achieves high-precision prediction of occupant injury MAIS level (recall rate 0.8718, AUC(Area under Curve) 0.8579) without excluding vehicle model, and
Huida, ZhangLiu, YuRui, YangWu, XiaofanFan, TiqiangWan, Xinming
The Advanced Driver Assistance System (ADAS) is a comprehensive feature set designed to aid a driver in avoiding or reducing the severity of collisions while operating the vehicle within specified conditions. In General Motors (GM) vehicles, the primary controller for the ADAS is the Active Safety Control Module (ASCM). In the 2013 model year, GM introduced an ASCM utilizing the GM internal nomenclature of External Object Calculation Module (EOCM) in some of their vehicles produced for the North American market. Similar to the Sensing and Diagnostic Module (SDM) utilized in the restraints system, the EOCM3 LC contains an Event Data Recorder (EDR) function to capture and record information surrounding certain ADAS or Supplemental Inflatable Restraint (SIR) events. The ASCM EDR contains information from external object sensors, various chassis and powertrain control modules, and internally calculated data. This event data includes date and time, GPS location, driver inputs and vehicle
Bare, CleveSkiera, JasonSmyth, BrianBeetham, TommyFloyd, DonaldKoo, WinstonNewell, Devin
Items per page:
1 – 50 of 2627