Browse Topic: Side impact crashes

Items (949)
Side crashes are generally hazardous because there is no room for large deformation to protect an occupant from the crash forces. A crucial point in side impacts is the rapid intrusion of the side structure into the passenger compartment which need sufficient space between occupants and door trim to enable a proper unfolding of the side airbag. This problem can be alleviated by using the rising air pressure inside the door as an additional input for crash sensing. With improvements in the crash sensor technology, pressure sensors that detect pressure changes in door cavities have been developed recently for vehicle crash safety applications. The crash pulses recorded by the acceleration based crash sensors usually exhibit high frequency and noisy responses. The data obtained from the pressure sensors exhibit lower frequency and less noisy responses. Due to its ability to discriminate crash severities and allow the restraint devices to deploy earlier, the pressure sensor technology has
Bhagat, MilindNarale, NaganathMahajan, AshutoshWayal, VirendraJadhav, Swapnil
The objective of the present study is to examine trends in occupant kinematics and injuries during side impact tests carried out on vehicle models over the period of time. Head, shoulder, torso, spine, and pelvis kinematic responses are analysed for driver dummy in high speed side impacts for vehicle model years, MY2016-2024. Side impact test data from the tests conducted at The Automotive Research Association of India (ARAI) is examined for MY2016-2024. The test procedure is as specified in AIS099 or UNECE R95, wherein a 950kg moving deformable barrier (MDB) impacts the side of stationary vehicle at 50km/hr. An Instrumented 50th percentile male EUROSID-2 Anthropomorphic Test Device is positioned in the driver seat on the impacting side. Occupant kinematic data, including head accelerations, Head Injury Criterion (HIC15), Torso deflections at thorax and abdominal ribs, spine accelerations at T12 vertebra, and pelvis accelerations are evaluated and compared. The “peak” and “time to
Mishra, SatishBorse, TanmayKulkarni, DileepMahajan, Rahul
India has emerged as the world’s largest market for motorized two-wheelers (M2Ws) in 2024, reflecting their deep integration into the country’s transportation fabric. However, M2Ws are also a highly vulnerable road user category as according to the Ministry of Road Transport and Highways (MoRTH), the fatality share of M2W riders rose alarmingly from 27% in 2011 to 44% in 2022, underlining the urgency of understanding the circumstances that lead to such crashes. This study aims to investigate the pre-crash behavior and crash-phase characteristics of M2Ws using data from the Road Accident Sampling System – India (RASSI), the country’s only in-depth crash investigation database. The analysis covers 3,632 M2Ws involved in 3,307 crash samples from 2011 to 2022, representing approximately 5 million M2Ws nationally. Key variables examined include crash configuration, collision partner, road type, pre-event movement, travel speed, and human contributing factors. The study finds that straight
Govardhan, RohanPadmanaban, JeyaJethwa, Vaishnav
Occupant Safety systems are usually developed using anthropomorphic test devices (ATDs), such as the Hybrid III, THOR-50M, ES-2, and WorldSID. However, in compliance with NCAP and regulatory guidelines, these ATDs are designed for specific crash scenarios, typically frontal and side impacts involving upright occupants. As vehicles evolve (e.g., autonomous layouts, diverse occupant populations), ATDs are proving increasingly inadequate for capturing real-world injury mechanisms. This has led to the adoption of computational Human Body Models (HBMs), such as the Global Human Body Models Consortium (GHBMC) and Total Human Model for Safety (THUMS), which offer superior anatomical fidelity, variable anthropometry, active muscle behaviour modelling, and improved postural flexibility. HBMs can predict internal injuries that ATDs cannot, making them valuable tools for future vehicle safety development. This study uses a sled CAE simulation environment to analyze the kinematics of the HBMs
Raj, PavanRao, GuruprakashPendurthi, Chaitanya SagarNehe, VaibhavChavan, Avinash
With the fast development of computational analysis tools and capacities during the past ten years, complex and substantial computer-aided engineering (CAE) simulations are now economically possible. While the cost of crash tests has risen steadily, the fidelity and complexity, which numerical simulations could address, has multiplied keeping the cost of computational analysis more stable. The fundamental goal of CAE is to achieve significant reduction in the number of physical tests conducted during the product development process. However, validating the CAE model with physical tests is essential to ensure accuracy and reliability. Simulations performed using a validated CAE model could be used to make decisions like airbag deployment or high voltage shutdown without an actual physical test being conducted. This paper discusses validating an electric commercial vehicle CAE model during a side impact thus emphasizing the safety of a high voltage battery system. The critical parameters
Upendran, AnoopKnuth, JosephKrishnappa, GiriPunnaiappan, Arunsankar
In the realm of automotive safety engineering, the demand for efficient and accurate crash simulations is ever-increasing. As finite element (FE) modeling of components becomes increasingly detailed and the availability of advanced material models improves, crash simulations for full vehicles can become time-consuming. Evaluating the crash performance of any vehicle subsystem requires structural simulations at different levels. While the design and configuration phase deals with a local simulation in representative load cases, full vehicle simulations are required later for a final digital proof of achieved requirements and development targets. This paper introduces a novel methodology for replacing full vehicle crash simulations, as required for a local view on the structural load path development, through segment-models. By adapting segment-model simulations, a significant reduction in computational time and resource usage is achieved, thereby optimizing CPU cluster performance and
Moncayo, DavidMalipatil, AnandPrasad, RakeshKunnath, Allwin
The proposal of GSR 16(E) in India promotes six airbags in passenger vehicles, aiming to enhance occupant safety. In parallel, the new Bharat New Car Assessment Program (BNCAP) outlines performance protocols that demand robust airbag deployment strategies to achieve a five-star safety rating. One of the critical challenges in meeting both regulatory and consumer safety expectations is the optimal packaging of the airbag Electronic Control Unit (ECU) and its associated impact sensors. These must perform reliably across regulatory tests, BNCAP protocols, and real-world accident scenarios. The location of side acceleration ‘g’ side impact sensors—whether mounted on the side sill, B-pillar, C-pillar, or door structures—is pivotal to achieving consistent and timely side airbag deployment. These sensors must also demonstrate immunity to false triggers or missed events in both static and dynamic misuse and abuse conditions. Ensuring robust sensor performance under these varied conditions is
Kudale, ShaileshRao, Guruprakashwayal, VirendraGoswami, Tarun
Curtain airbags are the most effective protective systems to prevent severe/fatal head injuries in side collisions with narrow objects such as poles or trees. One of the important parameters of curtain airbags is the inflated zone i.e. the coverage area of the airbag, which decides the extent of head protection for occupants with different anthropometries in different seating rows. EuroNCAP first introduced the concept of Head Protection Device Assessment (HPDA) in 2015., In addition to the performance requirements in the dynamic test, EuroNCAP started assessing the deployed curtain airbag/s for its area coverage and verification of inflated zones for various anthropometries over occupant rows. In India, there is now a near total adoption of curtain airbags as standard fitment by the OEMs. Further, introduction of Bharat NCAP (BNCAP), a Perpendicular Pole Side Impact test is conducted for assessing the effectiveness of curtain airbags in a dynamic test, but currently, does not perform
Jaju, DivyanKulkarni, DileepMahajan, Rahul
The Ministry of Road Transport and Highways (MoRTH), Government of India, has established BHARAT NCAP to provide a fair, meaningful, and objective assessment of the crash safety performance of cars. This program evaluates vehicles across three key areas, including Child Occupant Protection (COP). A critical component of the COP assessment involves dynamic testing using Q-series child dummies representing a 1½-year-old (Q1.5) and a 3-year-old child (Q3). As per the BHARAT NCAP protocol, these dummies are placed in the second-row outboard seating position within Child Restraint Systems (CRSs) and subjected to two primary dynamic impact tests: Offset Deformable Barrier (ODB) conducted at a speed of 64 km/hr. and Mobile Deformable Barrier (MDB) Side Impact tests conducted at 50 km/hr. The dynamic assessment of these child dummies is primarily focused on the head, neck, and chest regions to evaluate the effectiveness of the CRSs and overall vehicle safety system in protecting young
Khopekar, MariaLakshminarayana, ApoorvaMohan, PradeepKurkuri, Mahendra
In emerging markets, especially in India and other similar countries, the growing traffic density on the roads leads to different types of accidents, including frontal head-on collisions, rear-end collisions, side-impact collisions, collisions with fixed objects such as electric poles, trees, road guard rails, road dividers, and accidents involving pedestrians, cyclists, and two-wheelers. These accidents could be due to over speeding, distracted driving, violation of traffic rules, and inadequate road infrastructure etc. Providing the necessary safety restraint systems (Airbags and Seat belts) in vehicles and ensuring their robust functionality in different real-world accident scenarios will be challenging for vehicle manufacturers. It is high time to redefine the traditional collision-sensing architecture strategies with a logical approach based on a thorough study of available accident data statistics, types of objects, and scenarios leading to severe accidents. Among these, rear-end
KOVALAM, SUNIL KUMAR
Addressing the critical need for lightweight and safe energy storage solutions in electric vehicles, this paper presents the design and optimization of a novel Composite Metal Hybrid (CMH) battery pack structure. A computer aided simulation using Abaqus software was performed to optimize the weight of battery pack. The structural integrity and crashworthiness of the optimized lightweight design were rigorously evaluated under various load cases like side impact (crush), shock loading and underfloor impact. Modal analysis and load tests addressed, demonstrate the CMH battery pack as a viable and promising lightweight solution for electric vehicle applications. Manufacturing aspects are also discussed to ensure feasibility and integration.
Shah, Bijay KumarSingh, Pundan KumarG., Manikandan
This paper presents a novel structural solution for side impact protection of high-voltage battery packs in electric trucks. While electric vehicles offer benefits like zero emissions and independence from fossil fuels, in turn present challenges in meeting crashworthiness standards and safety regulations. The device addresses the critical need for effective battery protection & styling of battery electric vehicles. The integration of a hybrid corrugated panel system with plastic side fairings is innovative, combining crashworthiness with aerodynamic and aesthetic benefits. The crash protection features two hat-section steel channels at the top and bottom and corrugated steel sheet with alternating ridges is attached to these channels. Corrugated panels are enforced with help of backing strips. This assembly is mounted on shear plates at both ends, secured to the vehicle's frame rail. During a side impact event, the plastic side fairings absorb the initial impact, crumpling easily. If
Badgujar, PrathameshDevendra, AwachareHansen, Benjamin
Electric vehicles (EVs) are becoming more popular than Internal Combustion Engine (ICE) powered vehicles, but their battery and motor components elevate their Gross Vehicle Weight (GVW), posing unique collision risks. Manufacturers strategically mount the high voltage (HV) battery packs under the passenger compartment to lower the Centre of Gravity and shield them from the front impacts. However, side impacts remain a concern, as the battery deformation in such instances could trigger fires or explosions, endangering occupants. To address this, crashworthiness designs adhere to New Car Assessment Program (NCAP) standards, particularly against side pole impact and side mobile barrier impact. Unlike the frontal section of BIW, which typically has larger crush space to absorb the crash energy, extensive design attention is required to the vehicle's side structure to absorb pole impacts without transmitting excessive force to the battery pack. Utilizing aluminium extrusions and sheet
Nivesh, DharunNamani, PrasadRamaraj, Rajasekar
This SAE Recommended Practice describes the test procedures for conducting side impact occupant restraint and equipment mounting integrity tests for ambulance patient compartment applications. Its purpose is to describe crash pulse characteristics and establish recommended test procedures that will standardize restraint system and equipment mounting testing for ambulances. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included.
Truck Crashworthiness Committee
Current voluntary standards for wheelchair crashworthiness only test under frontal and rear impact conditions. To help provide an equitable level of safety for occupants seated in wheelchairs under side impact, we developed a sled test procedure simulating nearside impact loading using a fixed staggered loading wall. Publicly available side impact crash data from vehicles that could be modified for wheelchair use were analyzed to specify a relevant crash pulse. Finite element modeling was used to approximate the side impact loading of a wheelchair during an FMVSS No. 214 due to vehicle intrusion. Validation sled tests were conducted using commercial manual and power wheelchairs and a surrogate wheelchair base fixture. Test procedures include methods to position the wheelchair to provide consistent loading for wheelchairs of different dimensions. The fixture and procedures can be used to evaluate the integrity of wheelchairs under side impact loading conditions.
Boyle, KyleHu, JingwenManary, MiriamOrton, Nichole R.Klinich, Kathleen D.
Utilization of fiber-reinforced composite laminates to their full potential requires consideration of angle-ply laminates in structural design. This category of laminates, in comparison with orthotropic laminates, imposes an additional degree of challenge, due to a lack of material principal axes, in determination of elastic laminate effective properties if the same has to be done experimentally. Consequentially, there is a strong inclination to resort to the usage of “CLPT” (Classical Laminated Plate Theory) for theoretically estimating the linear elastic mechanical properties including the cross-correlation coefficients coupling normal and shear effects. As an angle-ply laminate is architecturally comprised of layers of biased orthotropic laminas (based on unidirectional or woven bidirectional fibers), an essential prerequisite for the application of CLPT is an a-priori knowledge of elastic mechanical properties of a constituent lamina. It is natural to expect that the properties of
Tanaya, SushreeDeb, Anindya
Sled crash tests are an important tool to develop automotive restraint systems. Compared with full-scale crash tests, the sled test has a shorter development cycle of the restraint system and lower cost. The objective of the present study is to create a cost-effective sled test methodology, calculate the optimal static yaw angle and loading curves, and analyze the motion response and injuries of the dummy in the small overlap crash test. The effectiveness of the proposed methodology was verified under two typical small overlap frontal crash modes: “energy-absorption” and “sideswipe”. The results show that with the calculated yaw angle α, the HIC was different from the small overlap crash model, but all remaining indices were within 5% of the injury criteria. All International Organization for Standardization (ISO) values between the combined accelerations of all parts of the dummy and those of the basic model exceeded 0.75, and some values were above 0.8. Therefore, the proposed sled
Yu, LiuChen, JianzhuoWan, Ming XinFan, TiqiangYang, PeilongNie, ZhenlongRen, LihaiCheng, James Chih
This paper focuses on the design optimization of a commercial electric bus body frame with steel-aluminum heterogeneous material orienting the performances of strength, crashworthiness and body lightweight. First, the finite element (FE) model of the body frame is established for static and side impact analysis, and the body frame is partitioned into several regions according to the thickness distribution of the components. The thicknesses of each region are regarded as the variables for the sensitivity analysis by combining the relative sensitivity method and the Sobol index method, and nine variables to which the performance indexes are more sensitive are selected as the final design variables for design optimization. Then the surrogate models are developed, and in order to improve the accuracy of the surrogate models, a model-constructing method called the particle swarm optimization BP neural network (PSO-BP) data regression prediction is proposed and formulated. In this method
Yang, XiujianTian, DekuanCui, YanLin, QiangSong, Yi
In addition to electric vehicles (EVs), hydrogen fuel cell systems are gaining attention as energy-efficient propulsion options. However, designing fuel cell vehicles presents unique challenges, particularly in terms of storage systems for heavy hydrogen tanks. These challenges impact factors such as NVH (noise, vibration, and harshness) and safety performance. This study presents a topology optimization study for Hydrogen Energy Storage System (HESS) tank structure in Class 5 trucks, with a focus on enhancing the modal frequencies. The study considers a specific truck configuration with a HESS structure located behind the crew cab, consisting of two horizontally stacked hydrogen tanks and two tanks attached on both sides of the frame. The optimization process aimed to meet the modal targets of this hydrogen tank structure in the fore-aft (X) and lateral (Y) directions, while considering other load cases such as a simplified representation of GST (global static torsion), simplified
Yoo, Dong YeonChavare, SudeepViswanathan, SankarMouyianis, Adam
Driving speed affects road safety, impacting crash severity and the likelihood of involvement in accidents on highway bridges. However, their impacts remain unclear due to inconsistent topography and consideration of crash types. This study aimed to identify the status of accidents and factors associated with accidents occurring on bridges along the Mugling to Narayanghat highway segment in Nepal. The study area involves the selected highway segment stretching from Aptari junction (CH: 2+42) to Mugling junction (CH: 35+677). Spanning 33.25 km, the road traverses through both hilly and Terai regions. The study employs descriptive and correlation statistics to analyze crash data from 2018 to 2023, aiming to achieve its research objectives. The study reveals overspeeding as the primary cause of crashes, notably head-on and rear-end collisions. Two-wheelers frequently exceed the speed limit of 40 km/h limit (29–88 km/h), and four-wheelers do similarly (18–81 km/h), leading to overspeeding
Giri, Om PrakashShahi, Padma BahadurKunwar, Deepak Bahadur
In the automotive industry, a good vehicle is one that not only provides comfort and adequate on-road performance but also ensures safety for its users. Therefore, various standards have been created to qualify and ensure that cars meet minimum requirements. Assays include frontal and side impact tests. However, physical tests end up being costly if performed frequently, and thus, increasing the correlation between these and computational simulations has been explored in recent years. Within the computational scope, given the nonlinear nature of the functions involved in such studies, the use of metaheuristics (MH) with constraint handling techniques (CHT) has been employed to obtain better results for such scenarios. In this work, three MH algorithms are used: Archimedean Optimization (AOA), Sine-Cosine Algorithm (SCA), and Dung Beetle Optimization (DBO). They are coupled with CHTs of the penalty methods (PM) type in their most basic character, such as Static Penalty Method (SPM
Souza Silva, PauloDezan, Daniel JonasFerreira, Wallace Gusmão
The undercarriage is a critical component in machines such as crawlers, excavators, and compact track loaders. It includes vital elements such as the track frame, chain guides, rollers, track chains, idlers, carrier rollers, final drive, and sprockets. Among all these machines, crawler dozers encounter harsh environments with various ground conditions. During operations, the chains are subjected to traverse and side loads, which cause the chains to tend to slip out of the bottom rollers. The chain guide plays a crucial role in assisting and maintaining the chain in the correct position. The forces acting on chain guides are influenced by factors such as track chain tension, roller wear, chain link wear, and counter-rotation (where one track moves forward while the other moves in reverse). Among all the load cases, there are two critical load cases which are vital to be studied in order to determine the required number of chain guides along with other attributes like profile or section
Masane, NishantBhosale, DhanajiSarma, Neelam K
With the current trend of including the evaluation of the risk of brain injuries in vehicle crashes due to rotational kinematics of the head, two injury criteria have been introduced since 2013 – BrIC and DAMAGE. BrIC was developed by NHTSA in 2013 and was suggested for inclusion in the US NCAP for frontal and side crashes. DAMAGE has been developed by UVa under the sponsorship of JAMA and JARI and has been accepted tentatively by the EuroNCAP. Although BrIC in US crash testing is known and reported, DAMAGE in tests of the US fleet is relatively unknown. The current paper will report on DAMAGE in NCAP-like tests and potential future frontal crash tests involving substantial rotation about the three axes of occupant heads. Distribution of DAMAGE of three-point belted occupants without airbags will also be discussed. Prediction of brain injury risks from the tests have been compared to the risks in the real world. Although DAMAGE correlates well with MPS in the human brain model across
Prasad, PriyaBarbat, Saeed D.Kalra, AnilDalmotas, Dainius J.
At the dawn of battery electric vehicles (BEVs), protection of automotive battery systems as well as passengers, especially from severe side impact, has become one of the latest and most challenging topics in the BEV crashworthiness designs. Accordingly, two material-selection concepts are being justified by the automotive industry: either heavy-gauge extruded aluminum alloys or light-gauge advanced high-strength steels (AHSSs) shall be the optimal materials to fabricate the reinforcement structures to satisfy both the safety and lightweight requirements. In the meantime, such a justification also motivated an ongoing C-STARTM (Cliffs Steel Tube as Reinforcement) Protection project, in which a series of modularized steel tube assemblies, were demonstrated to be more cost-efficient, sustainable, design-flexible, and manufacturable than the equivalent extruded aluminum alloy beams as BEV reinforcement structures. Tangent to this comparative study, the present work shed some light on the
Hu, JunSun, YetingYu, MiaoWang, Yu-WeiThomas, Grant
Occupant protection in side impacts, in particular for near-side occupants, is a challenge due to the occupant’s close proximity to the impact. Near-side occupants have limited space to ride down the impact. Curtain and side airbags fill the gap between occupant and the side interior. This analysis was conducted to provide insight on the characteristics of side impacts and the relevancy of currently regulated test configurations. For this purpose, 2007-2015 NASS-CDS and 2017-2021 CISS side crash data were analyzed for towed light vehicles. 2008 and newer model year vehicle data was selected to ensure that most vehicles were equipped with side/curtain airbags. The results showed that side impacts accounted for approximately 26.7% of the vehicles involved and 18.9% of the vehicles with at least one seriously injured occupant. Most side impacts involved damage to the front and front-to-center of the vehicle. For seriously injured (MAIS 3+F) occupants, impacts to the occupant compartment
Parenteau, ChantalAult, B. NicholasToomey, DanielKrishnaswami, RamBurnett, Roger
This work aims to perform the optimization of the iron-aluminum lightweight body frame of a commercial electric bus orienting the static performance (e.g., strength and stiffness), side-impact safety, and possible reduction in mass. Firstly, both the static and side-impact finite element (FE) models are established for the electric bus body frame. The body frame is partitioned according to the deformation and the thickness of the square tube beams, and the contribution is analyzed by the relative sensitivity and the Sobol index methods. The thickness of the tube beams in the nine regions is selected as the design optimization variables. After data sampling by the Hamersley method and conducting design of experiments (DOE), the surrogate models for optimization are fitted by the least square method. A multi-objective optimization problem is formulated by selecting the mass of the overall body frame, the maximum vehicle stress and the intrusion of the upper part of the collision area as
Yang, XiujianTian, Dekuan
The Insurance Institute for Highway Safety (IIHS) introduced its updated side-impact ratings test in 2020 to address the nearly 5,000 fatalities occurring annually on U.S. roads in side crashes. Research for the updated test indicated the most promising avenue to address the remaining real-world injuries was a higher severity vehicle-to-vehicle test using a striking barrier that represents a sport utility vehicle. A multi-stiffness aluminum honeycomb barrier was developed to match these conditions. The complexity of a multi-stiffness barrier design warranted research into developing a new dynamic certification procedure. A dynamic test procedure was created to ensure product consistency. The current study outlines the process to develop a dynamic barrier certification protocol. The final configuration includes a rigid inverted T-shaped fixture mounted to a load cell wall. This fixture is impacted by the updated IIHS moving deformable barrier at 30 km/h. The fixture represents the stiff
Mueller, BeckyArbelaez, RaulHeitkamp, EricMampe, Christopher
The design and analysis of the roll cage for the ATV car are the subjects of this report. The roll cage is one of the key elements of an ATV car. It is the primary component of an ATV, on which the engine, steering, and gearbox are mounted. The vehicle's sprung mass is beneath the roll cage. The initiation of cracks and the deformation of the vehicle are caused by forces acting on it from various directions. Stresses are consequently produced. FEA of the roll cage is used in this paper in an effort to identify these areas. We have performed torsional analysis as well as front, rear, side impact, and rollover crash analyses. These analyses were all completed using ANSYS Workbench 2020 R1. The design process complies with all guidelines outlined in the SAE rule book of E-Baja.
Ayyakkannu, VadivelSri Ram, P.Vijayakumar, Vishnu
Restraint systems in automotives are inevitable for the safety of passengers. Curtain airbag is one such restraint system in automotives that reduces the risk of injury to passengers during crash, without which head injury is inevitable during side crash of a vehicle. So successful deployment of curtain airbag (henceforth called as CAB) is very important in automotive safety during crash. This paper dwells about the optimization done in ramp bracket angle with successful deployment of curtain airbag. This optimization has paved the way for increasing the head-roominess by ~15% and to respect the safety and styling intent in the vehicle successfully. Providing a ramp bracket at the lower bottom side of CAB guides the airbag successfully during deployment. Ramp bracket angle plays a vital role in guiding the airbag inside the passenger’s cabin without any obstruction. This paper challenges the conventional ramp bracket angle followed for CAB deployment with an alternate angle and has
D, GowthamL, DharshanBornare, HarshadRitesh, KakadeDeoli, ManishBhaskararao, PathivadaGangapuram, SureshKakani, Phani Kumar
Government of India, in 2017, mandated a Side Impact Test (AIS 099 technically aligned to UN ECE Regulation No. 95.03 series of amendments) on M1 category Passenger Vehicles to ensure protection of occupants in lateral impact accident scenarios. Later, in 2022, a draft notification has been issued by the Government mandating installation of 6 airbags (2 Nos of thorax side airbags, 2 Nos of head protection or curtain airbags in addition to already mandated installation of Driver and Passenger Airbags) in all such passenger vehicles. However, the vehicles fitted with side thorax airbag and curtain airbags are proposed to be assessed as per AIS099 test only. Curtain Airbags are typically installed to protect occupant’s head from severe injuries in narrow object impacts simulated in Pole Side Impact Test Configurations. However, at present, India has not notified an equivalent standard to UN R135 demanding performance of the vehicle in pole side impact scenarios. Typically, OEMs may need
Jaju, DivyanKulkarni, DileepMahindrakar, RahulMahajan, Rahul
A research program has been launched in Iran to develop an evaluation method for comparing the safety performance of vehicles in real-world collisions with crash test results. The goal of this research program is to flag vehicle models whose safety performance in real-world accidents does not match their crash test results. As part of this research program, a metric is needed to evaluate the severity of side impacts in crash tests and real-world accidents. In this work, several vehicle-based metrics were analyzed and calculated for a dataset of more than 500 side impact tests from the NHTSA crash test database. The correlation between the metric values and the dummy injury criteria was studied to find the most appropriate metric with the strongest correlation coefficient values with the dummy injury criteria. Delta-V and a newly created metric T K 200 Y , which is an indicator of the kinetic energy transferred to occupants in a 200 ms time interval and in the lateral direction, were
Sadeghipour, Emad
The primary objective of this study was to evaluate the fatality risk of powered two-wheeler (PTW) riders across different impact orientations while controlling for different opponent vehicle (OV) types. For the crash configurations with higher fatality rate, the secondary objective was to create an initial speed–fatality prediction model specific to the United States. Data from the NHTSA Crash Reporting Sampling System and the Fatality Analysis Reporting System from 2017 to 2020 was used to estimate the odds of the different possible vehicle combinations and orientations in PTW–OV crashes. Binary logistic regression was then used to model the speed–fatality risk relationship for the configurations with the highest fatality odds. Results showed that collisions with heavy trucks were more likely to be fatal for PTW riders than those with other OV types. Additionally, the most dangerous impact orientations were found to be those where the PTW impacted the OVs front or sides, with
Terranova, P.Guo, F.Perez, Miguel A.
Previous research papers presented methods for joining different aluminium or steel sheets of the same thickness using the friction stir welding process with flat tools. A novel variant of the friction stir welding process has been developed by the Materials Testing Institute of the University of Stuttgart, enabling the joining of aluminium and steel sheets of different thicknesses in order to further increase the lightweight potential of sheet metal components. Compared to the conventional welding method, the difference of this method relates to the stir welding tool used, which consists of a stepped welding pin and allows combined lap-and-butt joints to be produced. In this context, this paper aims to demonstrate the lightweight potential and the crash performance of Tailor Welded Blanks (TWBs) made from DX54(1 mm) and AL6016 - T4 (2 mm). For this purpose, the first step was to identify possible parts of car body structures that could be replaced by components made from these TWBs
Bachmann, MaximilianStöckl PhD, JohannesRiedmüller PhD, Kim RouvenLiewald, Mathias
Child occupants have not been studied in far-side impacts as thoroughly as frontal or near side crash modes. The objective is to determine whether the installation method of child restraint systems (CRS) affects far-side crash performance. Twenty far-side impact sled tests were conducted with rear-facing (RF) CRS, forward-facing (FF) CRS, high-back boosters, and belt only. Each was installed on second row captain’s chairs from a recent model year minivan. Common CRS installation errors were tested, including using the seat belt in Emergency Locking Mode (ELR) instead of Automatic Locking Mode (ALR), not attaching the top tether, and using both the lower anchors (LA) and seat belt together. Correct installations were also tested as a baseline comparison. Q3s and Hybrid III 6-year-old (6yo) anthropomorphic test devices (ATDs) were used. Lateral displacements of the CRS and head were examined as well as injury metrics in the head, spine, and torso. For RF CRS, the ELR belt installation
Mansfield, Julie
A fundamental study on the ductility of high strength steels under impact deformation is carried out to investigate the effect of the local ductility of various materials on crash performance. In this study, newly developed 980 and 1180 MPa grade steels are investigated to clarify their advantages in term of crash performance compared to conventional DP (Dual Phase) steels. The features of the developed steel, named as jetQ are higher yield strength and higher local ductility due to an optimized microstructure by the quenching and partitioning process (QP) [1, 2]. The bending test according to VDA 238-100 is performed while observing the fracture propagation during the bending test. Fracture strain in the tensile tests is evaluated by a three-dimensional shape measurement technique for the fracture surface. Both three-point bending tests and axial impact tests are performed to evaluate the crashworthiness of different types of steel. The three-point bending test simulates the
Sato, KentaroSakaidani, TomohiroToji, YukiTakajo, ShigehiroPaton, AdrianManuela, IrnichThiessen, Richard
Seat mounted side impact airbags (SIAB) along with side curtain airbags are now a standard passive safety equipment offered by nearly all original equipment manufacturers (OEM) to meet side protection requirements in many regions of the world. While the side curtain airbag is intended to reduce head injury, the SIAB protects the thorax and abdomen region of the driver or passenger in a side crash scenario. An optimized SIAB both in terms of design and deployment threshold has the potential to reduce occupant’s injury level and can prevent fatalities. Because of the limited space available between the occupant and the side structure of the vehicle, there are significant challenges posed for packaging a SIAB to provide adequate cushioning distance from the intruding parts of the vehicle side structure and spread the impact load over a larger area. Different regulatory requirements in different geographies add further challenges for a common design. Common design is not only cost
Shrivastava, AbhinavBehera, DhirenReddy, NiranjanAluru, Phani
Driver oblique far-side sled impacts were simulated with three surrogates. The EuroSID side impact dummy with rib extension (ES2re), the WorldSID side impact 50th percentile male dummy (WS50M), and the Global Human Body Modeling Consortium’s 50th percentile male human body (GHBM) models. The versions of the surrogates’ models were 7.0, 7.5.1, and 5.0, respectively. Surrogates were seated in the front left driver seat in a virtual generic crossover sled environment. The Finite Element (FE) based environment consisted of a driver seat, a center console, and a passenger seat. Two restraint systems were considered for each surrogate: belt only (BO) and belt plus a generic seat-mounted far-side impact airbag (BB). Surrogates were restrained using a 3-point belt that has a digressive shoulder force load limiter, and retractor, and anchor pretensioners. The far-side airbag used was a 37-liter in volume and has two chambers. Surrogate head excursions and injury indices for each surrogate were
El-Jawahri, Raed E.
This SAE Recommended Practice describes common definitions and operational elements of Event Data Recorders. The SAE J1698 series of documents consists of the following: SAE J1698-1 - Event Data Recorder - Output Data Definition: Provides common data output formats and definitions for a variety of data elements that may be useful for analyzing vehicle crash and crash-like events that meet specified trigger criteria. SAE J1698-2 - Event Data Recorder - Retrieval Tool Protocol: Utilizes existing industry standards to identify a common physical interface and define the protocols necessary to retrieve records stored by light duty vehicle Event Data Recorders (EDRs). SAE J1698-3 - Event Data Recorder - Compliance Assessment: Defines procedures that may be used to validate that relevant EDR output records conform with the reporting requirements specified in Part 563, Table 1 during the course of FMVSS-208, FMVSS-214, and other applicable vehicle level crash testing.
Event Data Recorder Committee
To solve the problems of ethnic size difference and model simplification in existing research, three kinds of lower limb finite element models of adult male with percentile 5, 50 and 95 were established based on the size characteristics of Chinese human body.The bionic reliability of the models was verified according to three different lower limb biomechanical experiments. Through the simulation analysis of pedestrian lower limb with different percentiles in side impact, it was found that in the pedestrian low-speed side impact accident, the lower percentile human body has a higher risk of lower limb injury,especially the injury of knee joint. The soft foam structure can play a better cushioning and energy absorption role in the impact process. The response parameters decrease with the decrease of percentile.In addition,the soft foam can significantly reduce the risk of lower limb injuries when impacting the lower limbs laterally at low speed.
Chen, XinzheChen, JiqingLan, FengChongCheng, Renjie
This SAE Recommended Practice describes the dynamic and static testing procedures required to evaluate the integrity of the ambulance substructure, to support the safe mounting of an SAE J3027 compliant litter retention device or system, when exposed to a frontal, side or rear impact (i.e., a crash impact). Its purpose is to provide manufacturers, ambulance builders, and end-users with testing procedures and, where appropriate, acceptance criteria that to a great extent ensure the ambulance substructure meets the same performance criteria across the industry. Prospective manufacturers or vendors have the option of performing either dynamic testing or static testing. Descriptions of the test set-up, test instrumentation, photographic/video coverage, test fixture, and performance metrics are included.
Truck Crashworthiness Committee
This SAE Recommended Practice describes the dynamic testing procedures required to evaluate the integrity of patient compartment interior Storage Compartments such as cabinets, drawers, or refillable supply pouch systems when exposed to a frontal, side or rear impact (i.e., a crash impact). Its purpose is to provide component manufacturers, ambulance builders, and end-users with testing procedures and, where appropriate, acceptance criteria that, to a great extent, ensure interior Storage Compartments or systems meet the same performance criteria across the industry. Descriptions of the test set-up, test instrumentation, photographic/video coverage, test fixture, and performance metrics are included.
Truck Crashworthiness Committee
This SAE Recommended Practice describes the testing procedures required to evaluate the integrity of a ground ambulance-based patient litter, litter retention system, and patient restraint when exposed to a frontal, side or rear impact. Its purpose is to provide litter manufacturers, ambulance builders, and end-users with testing procedures and, where appropriate, acceptance criteria that, to a great extent ensures the patient litter, litter retention system, and patient restraint utilizes a similar dynamic performance test methodology to that which is applied to other vehicle seating and occupant restraint systems. Descriptions of the test set-up, test instrumentation, photographic/video coverage, test fixture, and performance metrics are included.
Truck Crashworthiness Committee
Items per page:
1 – 50 of 949