Browse Topic: Rollover accidents

Items (675)
ABSTRACT The performance of ground vehicles during a rollover event is an important safety and occupant protection requirement for military vehicles. Modeling and simulation is a very useful tool in study and investigation of vehicle rollover characteristics and countermeasure concepts. This study presents two methods of simulating the rollover events. The first one uses Full System Method (FSM), where all the components are modelled as is and are evaluated. The second method is a reduced order modelling method (ROMM) using integration of the resulted kinematics data from FSM into the vehicle model with occupant & restraints. The FSM & ROMM methods were applied to simulate two HMMMV rollover events, and the results from both methods show that simulation and test data agreed fairly well. Computational time reduced by the ROMM was about 53% of that of the FSM. ROMM approach not only saves significant computational time but also increases robustness of the simulation. Citation: V. Babu, J
Babu, V.Kang, J.Kankanalapalli, S.Sheng, J.Vunnam, M.Karwaczynski, S. K.Jessup, C.Duncan, M.Paulson, K.
ABSTRACT Unmanned ground vehicles (UGVs) that autonomously maneuver over off-road terrain are susceptible to a loss of stability through untripped rollovers. Without human supervision and intervention, untripped rollovers can damage the UGV and render it unusable. We create a runtime monitor that can provide protection against rollovers that is independent of the type of high-level autonomy strategy (path planning, navigation, etc.) used to command the platform. In particular, we present an implementation of a predictive system monitor for untripped rollover protection in a skid-steer robotic platform. The system monitor sits between the UGV’s autonomy stack and the platform, and it ensures that the platform is not at risk of rollover by intercepting mobility commands sent by the autonomy stack, predicting platform stability, and adjusting the mobility commands to avoid potential rollovers. We demonstrate our implementation through experiments with skid-steer UGVs in Gazebo simulation
Dietrich, ElizabethPohland, SaraGenin, DanielSchmidt, AuroraVallabha, GautamComposto, AnthonyRandolph, Marcus
ABSTRACT With the particular passage capability, all-terrain vehicle (ATV) has been widely used for off-road scenarios. In this research, we conduct a lateral sway stability analysis for the suspension mechanism of a general vehicle and establish a mathematical model of static and dynamic stability based on the maximum lateral sway angle and lateral sway acceleration, by considering the combined angular stiffness of independent suspension, angular stiffness of the lateral stabilizer bar and vertical stiffness of tires. 3D point cloud data of a terrain environment is collected using an RGB-Depth camera, and a triangular topography map is constructed. The results in ADAMS show that the proposed stability model can accurately predict the critical tipping state of the vehicle, and the method deployed for real-world terrain modeling and simulation analysis is generalizable for the stability assessment of the interaction between ATV and real-world terrain. Citation: H. Luo, Z. Chen, A
Luo, HaitaoChen, ZhiminNaveen, AryanLi, Bing
ABSTRACT As a continuation of previous collaborative efforts between several US Army organizations and industry leaders which led to the procurement of a National Stock Number (NSN) for a near commercial-off-the-shelf winter tire/wheel assembly for the High Mobility Multipurpose Wheeled Vehicle (HMMWV), this study investigates a low-cost, postproduction modification known as ‘siping’ which may incrementally improve standard tires deployed on the Joint Light Tactical Vehicle (JLTV) in cold regions. Data from engineering tests will quantify performance differences as well as driver feedback from the 11th Airborne Division Soldiers in Alaska show moderate improvement from cutting razor-thin grooves known as ‘sipes’ on conventional winter tire sets. However, Army winter performance specifications developed in 2021 from HMMWV testing quantify greater available improvement to traction available, necessitating further development for winter traction in the JLTV family of tire sets as well as
Witte, CliffordWelling, OrianParker, MichaelKamprath, Nathan
ABSTRACT TARDEC researched head impact protective, energy attenuating materials for use in U.S. Army Ground System Vehicle (GSV) applications. The purpose of the project is to reduce potential head impact related mounted crew injuries and deaths which may occur during underbody blast, crash and rollover events. Commercial-off-the-shelf materials were evaluated for their energy attenuating performance. Exposed surface materials in combination with core material were also researched and evaluated. Baseline vehicle testing was conducted to understand the current head impact criterion. The results of this effort identified solutions which may potentially meet the needs of the Army to reduce head impact related injuries which may occur during crash, rollover and blast events. TARDEC used the knowledge gained from this project to create performance specification requirements for interior head impact protective components and materials for use in U.S. Army vehicles
Klima, JulieMarquardt, Rebecca
ABSTRACT The need for up-armored vehicles has increased over the years. This has put a greater emphasis on suspensions that can provide improved ride and handling capabilities while facing the additional weight. One of the challenges with these vehicles traditionally has been increased likelihood of rollover. Increased rollover is due to high center of gravity, kinematics of the overloaded suspension, and the low damping that is needed to satisfy 6-Watt ride speed performance criteria. The Lord magneto-rheological (MR) suspension system addresses these issues by improving the ride quality and handling characteristics thereby increasing safety and mission effectiveness. During handling maneuvers, algorithms inside the controller unit apply corrective forces to minimize peak roll angle and peak roll rate. The benefit of this has been tested on a vehicle comparing the stock passive dampers to the MR dampers over NATO Lane change events. Furthermore, the controller has the capability to
Hildebrand, StephenMargolis, DonaldMathew, AbrahamMattson, Michael
ABSTRACT Many rollover prevention algorithms rely on vehicle models which are difficult to develop and require extensive knowledge of the vehicle. The Zero-Moment Point (ZMP) combines a simple vehicle model with IMU-only sensor measurements. When used in conjunction with haptic feedback, ground vehicle rollover can be prevented. This paper investigates IMU grade requirements for an accurate rollover prediction. This paper also discusses a haptic feedback design that delivers operator alerts to prevent rollover. An experiment was conducted using a Gazebo simulation to assess the capabilities of the ZMP method to predict vehicle wheel lift-off and demonstrate the potential for haptic communication of the ZMP index to prevent rollover. Citation: K. Steadman, C. Stubbs, A. Baskaran, C. G. Rose, D. Bevly, “Teleoperated Ground Vehicle Rollover Prevention via Haptic Feedback of the Zero-Moment Point Index,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium
Steadman, KathleenStubbs, ChandlerBaskaran, AvinashRose, Chad G.Bevly, David
ABSTRACT Non-combat tactical vehicle incidents such as rollover are one of the major causes of soldier injuries and deaths. Rollover incidents are usually associated with multiple impacts which result in complex interactions between occupants and hard structural components. Detailed information of occupant responses in such rollover incidents are lacking, and to design effective occupant protection system and safety restraints systems, understanding the vehicle to occupant interaction is essential. The performance of ground vehicles during a rollover event is an important safety and occupant protection requirement for military vehicles. Modeling and simulation are a very useful tool in study and investigation of vehicle rollover characteristics and countermeasure concepts. The main goal of this research is to develop an M&S model of a HMMWV full vehicle system and evaluate the effectiveness of the different restraints systems in a lateral 25 mph rollover tests and its effect on
Babu, VenkateshKang, JianKankanalapalli, SanjaySheng, JimVunnam, MadanKarwaczynski, Sebastian K.Jessup, ChrisDuncan, Mike
ABSTRACT Teleoperated ground vehicles are an integral part of the U.S. Army and Marine Corps long range vision and a key transition technology for fully autonomous vehicles. However, the combination of marginally-stable vehicle dynamics and limited perception are a key challenge facing teleoperation of such platforms at higher speeds. New technologies for enhancing operator perception and automatically detecting and mitigating rollover risk are needed to realize sufficient safety and performance in these applications. This paper presents three rollover mitigation concepts for high speed teleoperation of heavy tactical vehicles, including model-predictive warning, negative obstacle avoidance, and reactive brake controls. A modeling and simulation approach was used to evaluate these concepts within the Autonomous Navigation Virtual Environment Laboratory (ANVEL). Vehicle models for both the M1078 cargo truck and RG-31 MRAP were used throughout concept evaluation over terrain ranging from
Lo, Jia-HsuanEye, SeanRohde, Steve M.Rohde, Mitchell M.
ABSTRACT There have been several hundred rollovers in military vehicles in the last decade of deployment, of which approximately fifty percent are fall-based that occur during off-road operations. Off-road fall-based rollovers occur at lower speeds during road breakaway when the soft road gives way underneath the vehicle on one side as the soil is unable to support the vehicle load (Figure 1). A simulation-based study was conducted to explore potential off-road rollover mitigation benefits for the heavy vehicles with higher center of gravity such as MRAPs, MATV, and JLTV through the use of high performance active suspension systems. The study developed a system architecture based on the ElectroMechanical Suspension (EMS) technology and developed a medium fidelity MATLAB-Simulink-DADS model. Simulation results indicated substantial rollover mitigation benefits for MRAP/JLTV class vehicles, especially in road breakaway scenarios. Potential DoD beneficiaries include the Army and Marines
Beno, JosephBryant, AdamSingh, AmandeepKovnat, AlexanderHayes, RichardWeeks, Damon
This paper studies design parameters, selection of materials and structural analysis for an All-Terrain Vehicle (ATV) BAJA roll cage at the event site in any possible situation. SolidWorks 2022 was used for creating the prototype of the roll cage and then both static structural as well as dynamic crash analysis for the roll cage was done using Altair HyperWorks 2023 for various collisions like front, rear, side, rollover, torsional, front bump, rear bump, front roll over, side roll over and rear roll over. In addition to their corresponding deformation, Von Mises stresses were observed and a safety factor was calculated for these load cases which was found to be in the range of 1.5 to 3. Without reducing the roll cage’s strength, the roll cage designed for a four-wheel drive configuration is developed with driver comfort and safety in mind. Finding the optimal safety factor is the core objective of the analysis, as it ensures in any situation, the ATV’s roll cage will stay secure
L, Ravi KumarSanjay P, ChiranjeevT J, Pravin ChanderMoses J, JebishD, ParthesunG, Sureshmani
To investigate the rollover phenomena experienced by all-terrain vehicles (ATVs) during their motion caused by input from the road surface, a combined simulation using CarSim and Simulink has been employed to validate an active anti-rollover control strategy based on differential braking for ATVs, followed by vehicle testing. In the research process, a nonlinear three-degrees-of-freedom vehicle model has been developed. By utilizing a zero-moment point index as a rollover warning indicator, this approach could accurately detect the rollover status of the vehicle, particularly in scenarios involving low road adhesion on unpaved surfaces, which are characteristic of ATV operation. The differential braking, generating a roll moment by adjusting the amount of lateral force each braked tire can generate, was proved as an effective method to enhance rolling stability. Simulation and on-road testing results indicated that this control strategy effectively monitored the state of the ATV and
Hong, HanchiWang, Kuand’Apolito, LuigiQuan, KangningYao, Xu
Compared with urban areas, the road surface in mountainous areas generally has a larger slope, larger curvature and narrower width, and the vehicle may roll over and other dangers on such a road. In the case of limited driver information, if the two cars on the mountain road approach fast, it is very likely to occur road blockage or even collision. Multi-vehicle cooperative control technology can integrate the driving data of nearby vehicles, expand the perception range of vehicles, assist driving through multi-objective optimization algorithm, and improve the driving safety and traffic system reliability. Most existing studies on cooperative control of multiple vehicles is mainly focused on urban areas with stable environment, while ignoring complex conditions in mountainous areas and the influence of driver status. In this study, a digital twin based multi-vehicle cooperative warning system was proposed to improve the safety of multiple vehicles on mountain roads. First, implement
Tian, LihengYu, ZiruiChen, Xinguo
Due to the high center of gravity of medium-duty vehicles, rollover accidents can easily occur during high-speed cornering and lane changes. In order to prevent the deformation of the body structure, which would restrict the survival space and cause compression injuries to occupants, it is necessary to investigate methods for mitigating these incidents. This paper establishes a numerical model of right-side rollover for a commercial medium-duty vehicle in accordance with ECE R66 regulations, and the accuracy of the model is verified by experiment. According to the results, the material and size parameters of the key components of the right side pillar are selected as design variables. The response result matrix was constructed using the orthogonal design method for total mass, energy absorption, maximum collision acceleration, and minimum distance from the survival space. A multi-objective optimization of 25 sets of sample points was performed using a multi-factor weight analysis
Zhang, JiangfanZou, XiaojunYuan, Liu-kaiZhang, Tang-yunWang, TaoWang, Liangmo
Building upon prior research, this paper compares computer simulations to a previously conducted rollover crash test of a tractor-semitrailer. The effects of torsional stiffness were elucidated during the correlation of simulations to the rollover test. A commercially available vehicle dynamics and reconstruction software was used for the simulation. Unique aspects of the rollover crash test were modeled in the simulation. A tractor-semitrailer quarter-turn rollover crash test conducted by IMMI was reconstructed using impact and vehicle dynamics models within the simulation software HVE (Human, Vehicle & Environment). The SIMON (SImulation MOdel Non-linear) module and the DyMESH (Dynamic MEchanical SHell) module within HVE were used. During the IMMI test, onboard instrumentation recorded acceleration and roll rate data in six degrees of freedom to characterize both tractor and semitrailer dynamics before and during the rollover event. The roll angle and roll rate behavior of the HVE
Honeycutt, DanielRogers, GaryYang, ShuChinni, James
Gouges and scratches to rollover protection structures are informative to the reconstruction and analysis of real-world vehicle rollover crashes. Variations in ground surface composition can be correlated with accompanying witness marks on the vehicle rollover protection structure. This paper presents the results of rollover protection structure specimen tests using a variety of test speeds and surface compositions. The test results and analyses that follow are displayed for use in comparison to similar damage on subject crash vehicles. In addition, impact of steel rollover protection structures with various opposing ground surface materials can produce visible sparks in low light conditions. Tests were performed to show the ability of these structures to produce sparks from various surface impacts
Warner, Mark H.Swensen, GrantWarner, Wyatt Y.
The design and analysis of the roll cage for the ATV car are the subjects of this report. The roll cage is one of the key elements of an ATV car. It is the primary component of an ATV, on which the engine, steering, and gearbox are mounted. The vehicle's sprung mass is beneath the roll cage. The initiation of cracks and the deformation of the vehicle are caused by forces acting on it from various directions. Stresses are consequently produced. FEA of the roll cage is used in this paper in an effort to identify these areas. We have performed torsional analysis as well as front, rear, side impact, and rollover crash analyses. These analyses were all completed using ANSYS Workbench 2020 R1. The design process complies with all guidelines outlined in the SAE rule book of E-Baja
Ayyakkannu, VadivelSri Ram, P.Vijayakumar, Vishnu
Heavy Commercial Road Vehicles (HCRVs) may be more susceptible to rollover incidents due to their higher centre of gravity position than passenger vehicles, and rollover is one of the significant causes of HCRV accidents. Therefore, variation in vehicle roll behaviour becomes crucial to the safety of an HCRV. Toe misalignment is a commonly observed phenomenon in HCRVs, and studying its impact on roll behaviour is important. In this study, the impact of the symmetric toe and thrust misalignment on the roll behaviour of an HCRV is analysed using IPG TruckMaker®, a vehicle dynamics simulation software. A ramp steer manoeuvre was used for the simulations, and the toe misalignment on a wheel was chosen from the range [-0.21°, 0.21°]. Variation in roll behaviour was quantified using the steering wheel angle at which one-wheel lift-off (OWL) occurred (SWAL). Additionally, an analytical model was formulated to predict OWL and the model predictions were compared with the results from IPG
Chandran, AmarchandGrandhe, RoshanMukhopadhyay, ArkoSharma, MitanshuShankar Ram, C S
Letter from the Special Issue Editors
Mueller, BeckyBautsch, BrianMansfield, Julie
Computational and experimental studies have been undertaken to investigate injurious head-first impacts (HFI), which can occur during automotive rollovers. Recent studies assume a torso surrogate mass (TSM) boundary condition, wherein the first or first two thoracic vertebrae are potted and constrained to only move in the vertical loading direction. The TSM boundary condition has not been compared with a full body (FB) model computationally or experimentally for HFI. In this study, the Global Human Body Models Consortium 50th percentile male detailed human body model (M50-O, Version 6.0) was applied to compare the kinematic, kinetic, and injury response of an HFI with a TSM boundary condition (M50-TSM), and a full body boundary condition (M50-FB). Impacts (to M50-TSM and M50-FB) were simulated between the head and a rigid plate using a commercial FE code (LS-DYNA). The impact velocity of 3.1 m/s corresponded to the onset of spinal injury in diving reconstructions, and the impact
Morgan, M.I.Corrales, M.Cripton, P.Cronin, D.S.
To investigate the effect of a tire blowout (TBO) on the dynamics of the vehicle comprehensively, a three-dimensional full-vehicle multibody mathematical model is developed and integrated with the nonlinear Dugoff’s tire model. In order to ensure the validity of the developed model, a series of standard maneuvers is carried out and the resulting response is verified using the high-fidelity MSC Adams package. Consequently, the in-plane, as well as out-of-plane dynamics of the vehicle, is extensively examined through a sequence of TBO scenarios with various blown tires and during both rectilinear and curvilinear motion. Moreover, the different possible inputs from the driver, the road bank angle, and the antiroll bar have been accounted for. The results show that the dynamic behavior of the vehicle is tremendously affected both in-plane and out-of-plane and its directional stability is degraded. It has been also found that a vehicle subjected to a TBO accident is prone to a fatal
Al Quran, MahdiRa’ouf Mayyas, Abdel
Making manned and remotely-controlled wheeled and tracked vehicles easier to drive, especially off-road, is of great interest to the U.S. Army. If vehicles are easier to drive (especially closed hatch) or if they are driven autonomously, then drivers could perform additional tasks (e.g., operating weapons or communication systems), leading to reduced crew sizes. Further, poorly driven vehicles are more likely to get stuck, roll over, or encounter mines or improvised explosive devices, whereby the vehicle can no longer perform its mission and crew member safety is jeopardized. HMI technology and systems to support human drivers (e.g., autonomous driving systems, in-vehicle monitors or head-mounted displays, various control devices (including game controllers), navigation and route-planning systems) need to be evaluated, which traditionally occurs in mission-specific (and incomparable) evaluations. To support the use of comparable test conditions, a set of combat-relevant driving courses
Green, Paul
This SAE Standard establishes the maximum gradient rating during hopper discharge of self-propelled, driver-operated sweepers and scrubbers as defined by SAE J2130-1 and SAE J2130-2
MTC2, Sweeper, Cleaner, and Machinery
The objective of this work is to capture the final deformed shape of a vehicle after a rollover caused by a corkscrew event (ramp). With this study, it will be possible to understand the vehicle structural behavior during this event and be able to improve the vehicle safety in this specific condition. For this proposal, it will be presented a virtual methodology using available commercial CAE tools and perform a crashworthiness analysis of the desired event. The first step is to capture the dynamic event through a Multibody analysis that represents the interaction among the vehicle tire, suspension components (Springs, Dampers, Jounce Bumper, Bushings, Stabilizer Bar etc.), vehicle structural stiffness, mass, center of gravity and inertias when exposed to a corkscrew standard ramp, that initiates the rollover event. This methodology will represent with fidelity all dynamic aspects of rollover event before the vehicle touches the ground. At this point, comparison of the analysis
Tedim Terra, RafaelSantiago, KlemerSantos, AlexSobral Genaro, PieroCapusso, Rafael
This SAE Recommended Practice describes the test procedures for conducting quasi-static modular body strength tests for ambulance applications. Its purpose is to establish recommended test practices which standardize the procedure for Type I and Type III bodies, provide ambulance builders and end-users with testing procedures and, where appropriate, provide acceptance criteria that, to a great extent, ensures the ambulance structure meets the same performance criteria across the industry. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included
Truck Crashworthiness Committee
Unstable articulated vehicles pose a serious threat to the occupants driving them as well as the occupants of the vehicles around them. Articulated vehicles typically experience three types of instability: snaking, jack-knifing, and rollover. An articulated vehicle subjected to any of these instabilities can result in major accidents. In this study a Nonlinear Model Predictive Control (NMPC) that applies brake-based torque vectoring on the trailer is developed to improve the articulated vehicle stability. The NMPC formulation includes tire saturation and applies constraints to prevent rollover. The controller output is a left and right brake force allowing the longitudinal velocity change to be incorporated into the model. Simulations were conducted to instigate snaking and jack-knifing and show the NMPC controller result compared to a simple proportional controller. The NMPC controller can prevent these instabilities and improves the overall handling and safety of the articulated
Catterick, JamieBotha, TheunisEls, Schalk
Several accidents on the highways are due to strong crosswind conditions. The effectiveness of wind-break fences on a sudden strong crosswind has been investigated for a generic truck model. Two wind-break fences have been designed for stretching the rise time of aerodynamic loads. The dynamic response of the vehicle to crosswind while exiting a tunnel is simulated. Moving mesh CFD simulations and vehicle dynamics simulations are used to assess the effectiveness of the fences based on a safety index and the maximum lateral displacement of the vehicle. The proposed fences mitigate sudden aerodynamic loads and avoid the rollover of the vehicle
Semeraro, Francesco FabioCioffi, AntonioPellegrino, EmanueleSchito, PaoloVignati, Michele
In this article, safe driving methods for large articulated vehicles passing roundabouts are presented using the design of experiment (DOE) method. First, the roundabout driving safety evaluation based on the rollover propensity index calculated with the tire loads was performed through various PC-Crash simulation analysis. And, using the Taguchi method, which is a representative DOE method, major factors affecting the rollover index were set by type and the sensitivity analysis results were quantitatively obtained. Finally, safe driving methods at roundabouts for large articulated vehicles through systematic reduction of rollover propensity were presented, demonstrating that they can be directly applied to advanced driver assist systems
Han, Inhwan
Vehicle rollovers are complex events that can be difficult to reconstruct. The goal of this study was to explore whether different vehicle trip models could identify when during the trip phase a vehicle possesses the dynamic conditions needed to rollover. We used three sport utility vehicles (SUVs) with either absent or disabled electronic stability control to conduct six tests involving a steer-induced control loss on a large flat concrete surface. Vehicle kinematics were measured using a GPS speed sensor, tri-axial accelerometers, tri-axial angular rate sensors, and both drone- and land-based video cameras. Four vehicle trip metrics were derived and evaluated using the vehicle dynamics between steer onset and the end of the trip phase. During three tests, one or more of the vehicle’s tires lifted off the ground but the vehicle did not roll. In the other three tests, the vehicle rolled. All four metrics showed differences between the non-rollover and rollover tests, with one metric
Young, ColeKing, DavidSiegmund, Gunter
To solve the contradiction between model complexity and the warning accuracy of the algorithm of the vehicle rollover warning, a rollover state warning method based on the secondary predictive zero-moment point position for vehicles is proposed herein. Taking a sport utility vehicle(SUV) as the research object, a linear three-degrees-of-freedom vehicle rollover dynamics model is established. On the basis of the model, the lateral position of the zero-moment point and its primary and secondary rates of change are calculated. Then, the theoretical solution of time-to-rollover of the vehicles is deduced from the lateral position of the secondary predictive zero-moment point. When the rollover warning index, the lateral position of the zero-moment point, is greater than the set threshold, the active anti-rollover control system will be triggered. The active anti-rollover braking control system adopts a hierarchical control strategy. Taking the rollover warning index as the control target
Wang, HaiyangHou, LimingShangguan, Wen-Bin
Assessment of the physical evidence on a seat belt restraint system provides one source of data for determining an occupant’s seat belt use or non-use during a motor vehicle crash. The evidence typically associated with loading from a restrained occupant has been extensively researched and documented in the literature. However, evidence of loading to the restraint system can also be generated by other means, including the interaction of an unrestrained occupant with a stowed restraint system. The present study evaluates physical evidence on multiple stowed restraint systems generated via interaction with unrestrained occupants during a full-scale dolly rollover crash test of a large multiple passenger van. Unbelted anthropomorphic test devices (ATDs) were positioned in the driver and right front passenger seats and in all designated seating positions in the third, fourth, and fifth rows. Occupant kinematics during the dolly rollover were evaluated through on-board and off-board real
Miller, BruceDibb, AlanAllin, LeighCarhart, MichaelKrishnaswami, Ram
This paper will describe the development of a load estimation algorithm that is used to estimate the load parameters necessary to detect a vehicle’s proximity to rollover. When operating a vehicle near its handling limits or with large loads, vehicle rollover must be considered for safe operation. Vehicle mass and center of gravity (CG) height play a large role in a vehicle’s rollover propensity. Cargo and passenger vehicles operate under a range of load configurations; therefore, changes in load should be estimated. Researchers have often developed load estimation and rollover detection algorithms separately. This paper will develop a load estimation algorithm and use the load estimates and vehicle states to detect rollover. The load estimation algorithm uses total least squares and is broken into two parts. First, mass is estimated based on a “full-car” dynamic ride model. Next, the CG height and inertia are estimated using the previously estimated mass and a dynamic roll model
Hilyer, TrentonBevly, David M.
With the rapid development of the logistics and transportation industry, heavy-duty trucks play an increasingly important role in social life. However, due to the characteristics of large cargo loads, high center of mass and relatively narrow wheelbase, the driving stability of heavy trucks are poor, and it is easy to cause rollover accidents under high-speed driving conditions, large angle steering and emergency obstacle avoidance. To improve the roll stability of heavy trucks, it is necessary to design an active anti-rollover control system, through the analysis of the yaw rate and the load transfer rate of the vehicle, driving states can be estimated during the driving process. Under the intervention of the control system, the lateral transfer rate of heavy trucks can be reduced to correct the driving posture of the vehicle body and reduce the possibility of rollover accidents. At present, anti-rollover control system is mainly based on the differential brake, However, in actual
Zeng, QingyuOu, ChunguoChen, LingtaoZhu, ChaoqiTan, Gangfeng
Due to their large volume structure, when a heavy vehicle encounters sudden road conditions, emergency turns, or lane changes, it is very easy for vehicle rollover accidents to occur; however, well-designed suspension systems can greatly reduce vehicle rollover occurrence. In this article, a novel semi-active suspension adaptive control based on AdaBoost algorithm is proposed to effectively improve the vehicle rollover stability under dangerous working conditions. This research first established a vehicle rollover warning model based on the AdaBoost algorithm. Meanwhile, the approximate skyhook damping suspension model is established as the reference model of the semi-active suspension. Furthermore, the model reference adaptive control (MRAC) system is established based on Lyapunov stability theory, and the adaptive controller is designed. Finally, on the same road condition, the rollover warning control simulations are carried out under the following conditions: the 180-degree step
Tianjun, ZhuWan, HegaoWang, ZhenfengWei, MaXu, XuejiaoZhiliang, ZouSanmiao, Du
The scope of this document is to provide an overview of the techniques found in the published literature for rollover testing and rollover crashworthiness evaluation at the vehicle and component levels. It is not a comprehensive literature review, but rather illustrates the techniques that are in use or have been used to evaluate rollover crashworthiness-related issues
Impact and Rollover Test Procedures Standards Committee
Aiming at the problem of poor robustness after the combination of lateral kinematics control and lateral dynamics control when an autonomous vehicle decelerates and changes lanes to overtake at a certain distance. This paper proposes a trajectory determination and tracking control method based on a PI-MPC dual algorithm controller. To describe the longitudinal deceleration that satisfies the lateral acceleration limit during a certain distance of lane change, firstly, a fifth-order polynomial and a uniform deceleration motion formula are established to express the lateral and longitudinal displacements, and a model prediction controller (MPC) is used to output the front wheel rotation angle. Through the dynamic formula and the speed proportional-integral (PI) controller to control and adjust the brake pressure. Based on simulation to optimize the best lane change completion time coefficient at different longitudinal lane change speeds, the relationship between the vehicle collision
Yin, JianChen, Xu JiaZu, BingfengXu, YuliangZhou, Jianwei
Tanker trucks are commonly used for transporting liquid material including chemical and petroleum products. On the one hand, tanker trucks are susceptible to rollover accidents due to the high center of gravity when they are loaded and due to the liquid sloshing effects when the tank is partially filled. On the other hand, tanker truck rollover accidents are among the most dangerous vehicle crashes, frequently resulting in serious to fatal driver injuries and significant property damage, because the liquid cargo is often hazardous and flammable. Therefore, effective schemes for tanker truck rollover avoidance are highly desirable and can bring a considerable amount of societal benefit. Yet, the development of such schemes is challenging, as tanker trucks can operate in various environments and be affected by manufacturing variability, aging, degradation, etc. This paper considers the use of Learning Reference Governor (LRG) for tanker truck rollover avoidance. The LRG is an add-on
Liu, KaiwenLi, NanKolmanovsky, IlyaRizzo, DeniseGirard, Anouck
The tank truck has a wide range of application. When the liquid in the tank is not fully loaded, the lateral movement of the liquid in the tank will shift the center of gravity of the tank truck and make the vehicle less safe. It is easy to roll over when the tank truck is turning. This study combines the vehicle dynamic characteristics and geographic information, which gives the driver safe speed and safe braking distance tips before turning, to reduce the traffic accidents caused by driver's misjudgment. The dynamic model of the tank truck is established, through collecting the real-time information of the vehicle, the vehicle load and braking torque are calculated by the relevant dynamic model. The system needs to measure the deviation of the center of gravity in the tank truck movement process, and the deviation of the center of gravity has a great influence on the safety speed. The vehicle center of gravity position model is established, the sensor in the tank truck is used to
Feng, JiamingTan, GangfengYe, MengChen, KailangHuang, Xin
A single-vehicle crash involving an SUV led to the study of the failure of the anti-sway bar linkage and tire pressure and their relative effects on the handling characteristics of the vehicle. The SUV, having been involved in a rollover, was found with the anti-sway bar drop link disconnected from the suspension lower A-arm assembly. Also, after the crash, the tire pressure in the front tires on the subject vehicle was measured to be above the value specified by the SUV manufacturer; however, the pressure for one of the rear tires was measured to be roughly half of the SUV manufacturer’s recommended pressure. The other rear tire was deflated. The testing described herein addresses the question of what effects the anti-sway bar drop link disconnection or reduced rear axle tire pressure would have on the SUV’s pre-accident handling and driveability. A procedure for evaluating vehicle understeer and oversteer characteristics as specified by SAE J266 was employed to evaluate the yaw and
Dunn, AshleyGuenther, DennisArnett, Michael
The counterbalanced forklift truck in the high-speed emergency steers and other extreme conditions, the single side of forklift is off the ground, which will cause a rollover, and the larger safety accidents are likely to occur and even endanger the safety of drivers. Aiming at the problem of judging the safety domain in the process of forklift driving, this paper proposes a strategy for dividing the forklift’s driving state on the basis of the zero-moment point. The relationship between the zero-moment point’s lateral component and the forklift’s support plane is used as the basis for division. The forklift rollover process is divided into a safe stage, a controllable danger stage, and a critical rollover stage. In the safe stage, the cylinder does not provide support force, and in the controllable danger stage, the cylinder support force is adjusted on the basis of the model predictive control algorithm to adjust the forklift. The cylinder can be controlled to provide maximum support
Xia, GuangLi, JiachengTang, XiwenZhang, YangZhao, Linfeng
This SAE Recommended Practice describes the test procedures for conducting simulated dynamic lateral rollover restraint system tests for heavy truck applications. Its purpose is to establish recommended test procedures that will standardize restraint system testing for heavy trucks. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included
Truck Crashworthiness Committee
The advancement in vision sensors and embedded technology created the opportunity in autonomous vehicles to look ahead in the future to avoid potential obstacles and steep regions to reach the target location as soon as possible and yet maintain vehicle safety from rollover. The present work focuses on developing a nonlinear model predictive controller (NMPC) for a high-speed off-road autonomous vehicle, which avoids undesirable conditions including stationary obstacles, moving obstacles, and steep regions while maintaining the vehicle safety from rollover. The NMPC controller is developed using CasADi tools in the MATLAB environment. The CasADi tool provides a platform to formulate the NMPC problem using symbolic expressions, which is an easy and efficient way of solving the optimization problem. In the present work, the vehicle lateral dynamics are modeled using the Pacejka nonlinear tire model. Further, a new algorithm is developed based on the box slope and box detection methods to
Dudekula, Ahammad BashaNaber, Jeffrey Donald
Full-scale instrumented vehicle dynamic brake testing of golf cars and Personal Transport Vehicles (PTVs) is presented and compared to the predictions generated by a previously described simple Matlab-based dynamic vehicle simulation program employing commonly used automotive vehicle modeling techniques. It is shown experimentally that many current golf car and PTV brake designs, which employ brakes on only the rear wheels, can lead to rollovers if the brakes are applied while traveling at high speed, on steep downhill slopes, and/or on low-friction surfaces and that this behavior is exacerbated by lateral forces such as steering inputs and road superelevation. After summarizing four rollover case studies, test-specific and parametric simulation results are compared to the results of full-scale on-site testing and are shown to provide accurate predictions of the resulting vehicle motions, including brake-induced yaw instability and subsequent rollover
Seluga, Kristopher J.Hartzsch, Jonathan
With the increasing adoption of electric vehicles in India, autos are also getting in the electrification race with lighter lithium-ion batteries and motor replacing the bulkier engine and transmission. This trend has led to a lighter vehicle which in-turn gives better mileage figures but at the loss of dynamic stability of the vehicle making them very unsafe. The current auto-rickshaws are using delta configuration that is more prone to the rollover while cornering. The three-wheeled configuration vehicle is less dynamically stable than the normal four-wheeled configurations. While working on prototype vehicle for Shell Eco-Marathon Asia [7] pro and cons for both configurations for a three-wheeled vehicle were considered and tadpole configuration was found to be more stable and better than current delta configuration. The most common scenario that can happen with these vehicles in rural India is that the driver negotiates a corner with high speed and the Auto-rickshaw overloaded with
KUMAR, NAVNEETKatiyar, Gracy
Tractor roll over is the most common farm-related cause of fatalities nowadays. ROPS (Roll-Overprotective Structures) are needed to prevent serious injury and death. It creates a protective zone around the operator when a rollover occurs. In India the ROPS is getting mandatory across all HP ranges except narrow track. In the present study states the customized ROPS application for configurable design such as Automated safety zone for all homologation standards, ROPS A0-D excel calculator for selection of material at concept stage and bolt calculator for selection of size. For the above applications below aspects need to consider such as Tractor weight, Rear housing mounting, Operator seat index position (SIP), Seat reference points (SRP) and all ROPS homologation standards. This ROPS application is to reduce the timeline, manual error and ensure the reliability of the modular optimal design for various platforms and variants. Nowadays it is important to perform configurable design at
k, HariharanRavi cEng, Praveenvivekanandan cEng, thirugnanam
In-phase rear-wheel steering, where rear wheels are steered in the same direction of front wheels, has been widely investigated in the literature for vehicle stability improvements along with stability control systems. Much faster response can be achieved by steering the rear wheels automatically during an obstacle avoidance maneuver without applying the brakes where safe stopping distance is not available. Sudden lane change movements still remain challenging for heavy articulated vehicles, such as tractor and semitrailer combinations, particularly on roads with low coefficient of adhesion. Different lateral accelerations acting on tractor and semi-trailer may cause loss of stability resulting in jackknifing, trailer-swing, rollover, or slip-off. Several attempts have been made in the literature to use active steering of semi-trailer’s rear wheels to prevent jackknifing and rollover. However, loss of stability in an articulated vehicle is usually caused by an oversteered tractor, and
Sahin, HasanAkalin, Ozgen
The study of heavy vehicles rollover prediction, especially in algorithm-based heavy vehicles active safety control for improving road handling, is a challenging task for the heavy vehicle industry. Due to the high fatality rate caused by vehicle rollover, how to precisely and effectively predict the rollover of heavy vehicles became a hot topic in both academia and industry. Because of the strong non-linear characteristics of Human-Vehicle-Road interaction and the uncertainty of modeling, the traditional deterministic method cannot predict the rollover hazard of heavy vehicles accurately. To deal with the above issues, this paper applies a probability method of uncertainty to the design of a dynamic rollover prediction algorithm for heavy vehicles and proposes a novel algorithm for predicting the rollover hazard based on the combined empirical model of reliability index and failure probability. Moreover, the paper establishes a classification model of heavy vehicles based on the
Zhu, TianjunYin, XiaoxuanWang, ZhenfengWang, DongLi, FeiWang, XinyuMa, WeiWang, Zheng
Items per page:
1 – 50 of 675