Browse Topic: Rollover accidents
Letter from the Special Issue Editors
ABSTRACT As a continuation of previous collaborative efforts between several US Army organizations and industry leaders which led to the procurement of a National Stock Number (NSN) for a near commercial-off-the-shelf winter tire/wheel assembly for the High Mobility Multipurpose Wheeled Vehicle (HMMWV), this study investigates a low-cost, postproduction modification known as ‘siping’ which may incrementally improve standard tires deployed on the Joint Light Tactical Vehicle (JLTV) in cold regions. Data from engineering tests will quantify performance differences as well as driver feedback from the 11th Airborne Division Soldiers in Alaska show moderate improvement from cutting razor-thin grooves known as ‘sipes’ on conventional winter tire sets. However, Army winter performance specifications developed in 2021 from HMMWV testing quantify greater available improvement to traction available, necessitating further development for winter traction in the JLTV family of tire sets as well as
This SAE Standard establishes the maximum gradient rating during hopper discharge of self-propelled, driver-operated sweepers and scrubbers as defined by SAE J2130-1 and SAE J2130-2.
The objective of this work is to capture the final deformed shape of a vehicle after a rollover caused by a corkscrew event (ramp). With this study, it will be possible to understand the vehicle structural behavior during this event and be able to improve the vehicle safety in this specific condition. For this proposal, it will be presented a virtual methodology using available commercial CAE tools and perform a crashworthiness analysis of the desired event. The first step is to capture the dynamic event through a Multibody analysis that represents the interaction among the vehicle tire, suspension components (Springs, Dampers, Jounce Bumper, Bushings, Stabilizer Bar etc.), vehicle structural stiffness, mass, center of gravity and inertias when exposed to a corkscrew standard ramp, that initiates the rollover event. This methodology will represent with fidelity all dynamic aspects of rollover event before the vehicle touches the ground. At this point, comparison of the analysis
This SAE Recommended Practice describes the test procedures for conducting quasi-static modular body strength tests for ambulance applications. Its purpose is to establish recommended test practices which standardize the procedure for Type I and Type III bodies, provide ambulance builders and end-users with testing procedures and, where appropriate, provide acceptance criteria that, to a great extent, ensures the ambulance structure meets the same performance criteria across the industry. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included.
The scope of this document is to provide an overview of the techniques found in the published literature for rollover testing and rollover crashworthiness evaluation at the vehicle and component levels. It is not a comprehensive literature review, but rather illustrates the techniques that are in use or have been used to evaluate rollover crashworthiness-related issues.
Aiming at the problem of poor robustness after the combination of lateral kinematics control and lateral dynamics control when an autonomous vehicle decelerates and changes lanes to overtake at a certain distance. This paper proposes a trajectory determination and tracking control method based on a PI-MPC dual algorithm controller. To describe the longitudinal deceleration that satisfies the lateral acceleration limit during a certain distance of lane change, firstly, a fifth-order polynomial and a uniform deceleration motion formula are established to express the lateral and longitudinal displacements, and a model prediction controller (MPC) is used to output the front wheel rotation angle. Through the dynamic formula and the speed proportional-integral (PI) controller to control and adjust the brake pressure. Based on simulation to optimize the best lane change completion time coefficient at different longitudinal lane change speeds, the relationship between the vehicle collision
The tank truck has a wide range of application. When the liquid in the tank is not fully loaded, the lateral movement of the liquid in the tank will shift the center of gravity of the tank truck and make the vehicle less safe. It is easy to roll over when the tank truck is turning. This study combines the vehicle dynamic characteristics and geographic information, which gives the driver safe speed and safe braking distance tips before turning, to reduce the traffic accidents caused by driver's misjudgment. The dynamic model of the tank truck is established, through collecting the real-time information of the vehicle, the vehicle load and braking torque are calculated by the relevant dynamic model. The system needs to measure the deviation of the center of gravity in the tank truck movement process, and the deviation of the center of gravity has a great influence on the safety speed. The vehicle center of gravity position model is established, the sensor in the tank truck is used to
A single-vehicle crash involving an SUV led to the study of the failure of the anti-sway bar linkage and tire pressure and their relative effects on the handling characteristics of the vehicle. The SUV, having been involved in a rollover, was found with the anti-sway bar drop link disconnected from the suspension lower A-arm assembly. Also, after the crash, the tire pressure in the front tires on the subject vehicle was measured to be above the value specified by the SUV manufacturer; however, the pressure for one of the rear tires was measured to be roughly half of the SUV manufacturer’s recommended pressure. The other rear tire was deflated. The testing described herein addresses the question of what effects the anti-sway bar drop link disconnection or reduced rear axle tire pressure would have on the SUV’s pre-accident handling and driveability. A procedure for evaluating vehicle understeer and oversteer characteristics as specified by SAE J266 was employed to evaluate the yaw and
The counterbalanced forklift truck in the high-speed emergency steers and other extreme conditions, the single side of forklift is off the ground, which will cause a rollover, and the larger safety accidents are likely to occur and even endanger the safety of drivers. Aiming at the problem of judging the safety domain in the process of forklift driving, this paper proposes a strategy for dividing the forklift’s driving state on the basis of the zero-moment point. The relationship between the zero-moment point’s lateral component and the forklift’s support plane is used as the basis for division. The forklift rollover process is divided into a safe stage, a controllable danger stage, and a critical rollover stage. In the safe stage, the cylinder does not provide support force, and in the controllable danger stage, the cylinder support force is adjusted on the basis of the model predictive control algorithm to adjust the forklift. The cylinder can be controlled to provide maximum support
This SAE Recommended Practice describes the test procedures for conducting simulated dynamic lateral rollover restraint system tests for heavy truck applications. Its purpose is to establish recommended test procedures that will standardize restraint system testing for heavy trucks. Descriptions of the test set-up, test instrumentation, photographic/video coverage, and the test fixtures are included.
The advancement in vision sensors and embedded technology created the opportunity in autonomous vehicles to look ahead in the future to avoid potential obstacles and steep regions to reach the target location as soon as possible and yet maintain vehicle safety from rollover. The present work focuses on developing a nonlinear model predictive controller (NMPC) for a high-speed off-road autonomous vehicle, which avoids undesirable conditions including stationary obstacles, moving obstacles, and steep regions while maintaining the vehicle safety from rollover. The NMPC controller is developed using CasADi tools in the MATLAB environment. The CasADi tool provides a platform to formulate the NMPC problem using symbolic expressions, which is an easy and efficient way of solving the optimization problem. In the present work, the vehicle lateral dynamics are modeled using the Pacejka nonlinear tire model. Further, a new algorithm is developed based on the box slope and box detection methods to
Full-scale instrumented vehicle dynamic brake testing of golf cars and Personal Transport Vehicles (PTVs) is presented and compared to the predictions generated by a previously described simple Matlab-based dynamic vehicle simulation program employing commonly used automotive vehicle modeling techniques. It is shown experimentally that many current golf car and PTV brake designs, which employ brakes on only the rear wheels, can lead to rollovers if the brakes are applied while traveling at high speed, on steep downhill slopes, and/or on low-friction surfaces and that this behavior is exacerbated by lateral forces such as steering inputs and road superelevation. After summarizing four rollover case studies, test-specific and parametric simulation results are compared to the results of full-scale on-site testing and are shown to provide accurate predictions of the resulting vehicle motions, including brake-induced yaw instability and subsequent rollover.
Tractor roll over is the most common farm-related cause of fatalities nowadays. ROPS (Roll-Overprotective Structures) are needed to prevent serious injury and death. It creates a protective zone around the operator when a rollover occurs. In India the ROPS is getting mandatory across all HP ranges except narrow track. In the present study states the customized ROPS application for configurable design such as Automated safety zone for all homologation standards, ROPS A0-D excel calculator for selection of material at concept stage and bolt calculator for selection of size. For the above applications below aspects need to consider such as Tractor weight, Rear housing mounting, Operator seat index position (SIP), Seat reference points (SRP) and all ROPS homologation standards. This ROPS application is to reduce the timeline, manual error and ensure the reliability of the modular optimal design for various platforms and variants. Nowadays it is important to perform configurable design at
With the increasing adoption of electric vehicles in India, autos are also getting in the electrification race with lighter lithium-ion batteries and motor replacing the bulkier engine and transmission. This trend has led to a lighter vehicle which in-turn gives better mileage figures but at the loss of dynamic stability of the vehicle making them very unsafe. The current auto-rickshaws are using delta configuration that is more prone to the rollover while cornering. The three-wheeled configuration vehicle is less dynamically stable than the normal four-wheeled configurations. While working on prototype vehicle for Shell Eco-Marathon Asia [7] pro and cons for both configurations for a three-wheeled vehicle were considered and tadpole configuration was found to be more stable and better than current delta configuration. The most common scenario that can happen with these vehicles in rural India is that the driver negotiates a corner with high speed and the Auto-rickshaw overloaded with
In-phase rear-wheel steering, where rear wheels are steered in the same direction of front wheels, has been widely investigated in the literature for vehicle stability improvements along with stability control systems. Much faster response can be achieved by steering the rear wheels automatically during an obstacle avoidance maneuver without applying the brakes where safe stopping distance is not available. Sudden lane change movements still remain challenging for heavy articulated vehicles, such as tractor and semitrailer combinations, particularly on roads with low coefficient of adhesion. Different lateral accelerations acting on tractor and semi-trailer may cause loss of stability resulting in jackknifing, trailer-swing, rollover, or slip-off. Several attempts have been made in the literature to use active steering of semi-trailer’s rear wheels to prevent jackknifing and rollover. However, loss of stability in an articulated vehicle is usually caused by an oversteered tractor, and
By their nature as chaotic, high-energy events, rollovers pose a high risk of injury to unrestrained occupants, in particular through exposure to projected perimeter contact and ejection. While seat belts have long been accepted as a highly effective means of retaining and restraining occupants in rollover crashes, it has been suggested that technologies such as laminated safety glazing or rollover-activated side curtain airbags (RSCAs) could alternatively provide effective occupant containment. In this study, a full-scale dolly rollover crash test was performed to assess the occupant containment capability of laminated side glazing and RSCAs in a high-severity rollover event. This allowed for the analysis of unrestrained occupant kinematics during interaction with laminated side glazing and RSCAs and evaluation of failure modes and limitations of laminated glazing and RSCAs as they relate to partial and complete ejection of unrestrained occupants. The dolly rollover was performed with
Occupant ejection has been identified as a safety problem for decades, particularly in rollover crashes. While field accident studies have repeatedly demonstrated the effectiveness of seat belts in mitigating rollover ejection and injuries, the use of laminated glass in side window positions has been suggested as a means to mitigate occupant ejection. Limited data is available on the field performance of laminated glass in preventing ejection. This study utilized 1997-2015 NASS-CDS data to investigate the reliability of the glazing coding variables in the database and determine if any conclusions can be drawn regarding the effect of different side window glazing types on occupant ejection. An initial query was run for 1997-2016 model year vehicles involved in side impacts to evaluate glazing coding within NASS-CDS. Sixteen individual cases were identified where the first-row side window glass was coded as both laminated and as in-place and holed, out-of-place and not holed, out-of
Obesity rates are increasing among the general population. This study investigates the effect of obesity on ejection and injury risk in rollover crashes through analysis of field accident data contained in the National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) database. The study involved front outboard occupants of age 15+ years in 1994+ model year vehicle rollover crashes. Occupants were sorted into two BMI groups, normal (18.5 kg/m2 ≤ BMI < 25.0 kg/m2) and obese (BMI ≥30 kg/m2). Complete and partial ejection risks were first assessed by seating location relative to roll direction and belt use. The risk of serious-to-fatal injuries (MAIS 3+F) in non-ejected occupants were then evaluated. The overall risk for complete ejection was 2.10% ± 0.43% when near-sided and 2.65% ± 0.63% when far-sided, with a similar risk for both the normal and obese BMI groups. Complete ejection was highest for unbelted occupants, irrespective of BMI, and uncommon for belted occupants
Items per page:
50
1 – 50 of 673