Browse Topic: Electric drives

Items (529)
The automotive industry is undergoing a major shift from internal combustion engines to hybrid and battery electric vehicles, which has led to significant advancements and increased complexity in drivetrain design and thermal management systems. This complexity reflects the growing need to optimize energy efficiency, extend vehicle range, and ensure system reliability in modern electric vehicles. At the Institute of Automotive Engineering, a specialized synthesis tool for drivetrain optimization is used to identify the best drivetrain configurations based on specific boundaries and requirements. Building up on this toolchain a modular and adaptable thermal management framework has been developed, addressing another critical aspect of vehicle and drive development: efficient thermal circuit layout and its impact on energy consumption and overall system reliability. The thermal framework emphasizes the dynamic interactions between key components, such as electric machines, power
Notz, FabianSturm, AxelSander, MarcelKässens, ChristophHenze, Roman
This paper presents a coupled electromagnetic and thermal simulation of Permanently Excited Synchronous Machines (PMSM) in the context of virtual prototyping in a real-time Hardware-in-the-Loop (HiL) environment. Particularly in real-time simulations, thermal influences are often neglected due to the increased complexity of a coupled simulation. This results in inaccurate simulations and incomplete design optimizations. The objective of this contribution is to enable a precise and realistic real-time simulation that represents the electromagnetic as well as the thermal behavior. The electromagnetic simulation is executed used a Field-Programmable Gate Array (FPGA) and parameterized by Finite Element Analysis (FEA) results. The thermal model is based on a Lumped-Parameter-Thermal-Network (LPTN), which is based on physical laws, geometry parameters and material specifications. The simulation results are validated with testbench measurements to ensure the accuracy of the overall model. By
Jonczyk, FabianKara, OnurBergheim, YannickLee, Sung-YongStrop, MalteProchotta, FabianAndert, Jakob
The future of the internal combustion engine (ICE) is closely tied to its ability to achieve life cycle emissions comparable to those of pure battery electric vehicles (BEVs). To reach this goal, it is essential not only to utilize carbon-free fuels but also to enhance the hybridization of the powertrain to reduce fuel consumption. Additionally, it is crucial to minimize pollutant emissions to near-zero levels, necessitating the development of highly sophisticated exhaust aftertreatment systems. For Plug-In Hybrid Electric Vehicles (PHEVs), one particular use case is the High-Power Cold Start (HPCS). This scenario occurs when the transition from pure electric drive to ICE-assisted drive happens during a high load request, such as accelerating on a freeway ramp. This use case has been evaluated by CARB and in numerous other studies. However, in this paper, the authors aim to investigate which metallic substrate technology performs best during an HPCS. This condition differs
Montenegro, GianlucaOnorati, AngeloMarinoni, AndreaDella Torre, AugustoPace, LorenzoKonieczny, KatrinLaurell, MatsKlövmark, Henrik
The article introduces the air springs, CDC, rear-wheel steering system, braking system, front-wheel steering system, and electric drive system in the vehicle’s central coordinated motion control system. It explores achieving more comfortable shock absorption by adjusting the CDC (Continuously Variable Damping system) damping and other means. By combining open-loop and closed-loop rear-wheel steering control, the turning radius in small-radius steering mode is reduced by up to 10%, enabling crab-walking, optimizing the moose test entering speed up to 90.9 kph, and improving vehicle behavior on split-friction surfaces. Through the cooperation of IBS (Intelligent Brake System) and VMC, an extremely comfortable braking process is achieved.
Zhou, YuxingLi, Wen
In order to improve the output torque and power density of the in-wheel motor, a hybrid stator permanent magnet vernier motor (HSPMVM) is proposed based on the traditional single-tooth permanent magnet vernier motor (PMVM-I) and split-tooth permanent magnet vernier motor (PMVM-II). With the help of analytical method and finite element method, the three motors of PMVM-I, PMVM-II, and HSPMVM are compared and analyzed. It is proved that HSPMVM has higher output torque and lower torque ripple, and the amount of permanent magnet is also significantly reduced. In order to further improve the operating performance, the Halbach array is applied to the HSPMVM to form a new hybrid stator Halbach array permanent magnet vernier motor (HSHPMVM). The analysis results show that the HSHPMVM has a significant magnetic concentration effect, the torque is increased by 61.96%, and the torque ripple is reduced by 22.47%. The magneto-thermal two-way coupling analysis of HSHPMVM under rated conditions shows
Xiuping, WangJingquan, YuDong, XuChuqiao, ZhouChunyu, Qu
The recent addition of fully electric powertrains to propulsion system options has increased the relevance of sound and vibration from electric motors and gearboxes. Electrified beam axles require different metrics from conventional beam axles for noise and vibration because they have multiple sources of vibration energy, including an electric motor and a reduction gearbox. Improved metrics are also driven by the stiff suspension connections and lack of significant isolation compared to electric drive units. Blocked force is a good candidate because it can completely characterize the vibration energy transmitted into a receiver and is especially useful because it is theoretically independent of the vehicle-side structure. While the blocked force methodology is not new, its application to beam axles is relatively unexplored in the literature. This paper demonstrates a case study of blocked force measurement of an electrified beam axle with a leaf spring suspension. The axle was tested
Shaw, Matthew DGrimmer, Michael J
Electric motor whine is a significant source of noise in electric vehicles (EVs). To improve the noise, vibration, and harshness (NVH) performance of electric propulsion systems, it is essential to develop a physics-based, high-fidelity stator model. In this study, a machine learning (ML) model is developed using an artificial neural network (ANN) method to accurately characterize the material properties of the copper winding, varnish, and orthotropic stator laminate structure. A design of experiments (DOE) approach using Latin hypercube sampling of parameters is implemented after evaluating alternative surrogate models. A finite element (FE) model is constructed using the nominal stator design parameters to train the ANN model using 121 DOE variables and 72,000 data points. The ML-trained ANN model is then verified to predict the driving point frequency response function (FRF) spectrum with reasonable accuracy. Subsequently, modal tests are conducted on the electric stator, and the
Rao, Bhyri RajeswaraGSJ, GautamHe, Song
Electric drive units (EDU) of battery electric vehicles and electric drivetrain components of hybrid vehicles require significant development effort and planning to ensure that a refined NVH sound quality is achieved. New tools and methods are required to understand the NVH performance throughout the development process and to ensure that NVH risks can be quickly identified and mitigated within the correct EDU subsystems. This paper discusses the development of a methodology (EDSL – Electric Drive Sound Level) aimed at addressing this need. It also outlines how the EDSL process can be used to address radiated noise issues and understand the NVH performance of the various subsystems within an electrified drivetrain component. The first use of the EDSL methodology is to characterize component-level radiated noise test results and compare the different mechanical and electrical noise sources to targets. The results from this are used to guide EDU development in the appropriate areas
Pruetz, Jeffrey E.Steffens, ChristophFu, TongfangFord, Alex
To enhance the power density of the system and reduce production costs, the high-speed electric drive system featuring integrated design and control is poised to be the future development trend. However, the high speeds of motors and gear reducers can lead to challenges such as system reliability and issues related to NVH. This paper specifically addresses the NVH concerns associated with the in-wheel reducer and motor drive system (IWRMDS). First, a bench test scheme is established, and vibration and noise tests are conducted under a range of conventional operating conditions. The results indicate that at a torque of 200 Nm and a speed of 5500 rpm, the noise sound pressure level reaches 86.2 dB, highlighting significant vibration and noise issues within the system. Subsequently, Operational Deflection Shape (ODS) testing and analysis are performed on the system. It was discovered that the IWRMDS exhibits a relatively rich modal frequency spectrum, with the breathing mode being the
Huang, ChaoXiong, LuMeng, DejianGong, YuGuo, HanZhang, Mengyuan
Within the automotive industry’s shift to Battery Electric Vehicles, in order to meet the global zero emission target, thermal management systems are key aspects to address. For instance, vehicle cooling requirements are reinforced to take into account the cabin comfort as well as battery management performances. Consequently to the increased cooling requirements, the critical component that is the Electric Drive Compressor, must operate at higher speeds and refrigerant pressures to achieve these targets. This trend results in increased noise levels which might occur inside the car cabin and outside. In this paper, noise investigations were performed on different Battery Electric Vehicles to assess the behavior of the electric compressor within a temperature controlled environment. Then, the electric compressors alone were investigated on specific test benches with compressor load units. The vehicle level assessment highlighted significant noise differences between vehicles. Further
Bennouna, SaadYamayoshi, ItsukyoDel Valle, Edward
Permanent magnet synchronous motors (PMSM) are among the most promising motors in electric vehicles due to their high torque density and efficiency. This paper is devoted to detailed electromagnetic investigations of permanent magnet synchronous motor, accounting for specific rotor eccentricity and uneven magnetization. A series of simulations are performed for a 90 HP interior PMSM to investigate the changes in the radial and tangential forces when the rotor is perfectly aligned or with static, dynamic, and mixed eccentricities. Besides, the influence of uneven magnetization due to manufacturing, demagnetization, and magnet deterioration is discussed. The forces are then used to load a vibro-acoustic model to evaluate the impact on the noise, vibration, and harshness (NVH) performance and predict the radiated sound power level for the different conditions.
Hadjit, RabahKebir, AhmedFelice, Mario
The automotive industry continues to develop new powertrain and vehicle technologies aimed at reducing overall vehicle-level fuel consumption. While the use of electrified propulsion systems is expected to play an increasingly important role in helping OEMs meet fleet CO2 reduction targets, hybridized propulsion solutions will continue to play a vital role in the electrification strategy of vehicle manufacturers. Plug-in hybrid electric vehicles (PHEV) and range extender vehicles (REx) come with unique NVH challenges due to their different possible operation modes. First, the paper outlines different driveline and vehicle architectures for PHEV and REx. Given the multiple general architectures, as well as operation modes which typically accompany these vehicles, NVH characterizations and noise source-path analysis can be more complicated than conventional vehicles. In the following steps, typical NVH related challenges are highlighted and potential solutions for NVH optimization are
Wellmann, ThomasFord, AlexPruetz, Jeffrey
Electric vehicles (EVs) differ from internal combustion engine (ICE) vehicles in that they lack a conventional engine and feature an electric drive unit, leading to distinct dynamic behaviours in the powertrain. Additionally, the arrangement of auxiliary components in EVs often differs from that in traditional ICE vehicles, which can sometimes significantly impact safety ratings. This paper examines a case study of a critical failure during a crash test, where displacement of an engine mount arm caused substantial structural intrusion and reduced the vehicle’s safety rating. To address this issue and enhance crashworthiness, a “crash plate” was designed and integrated into the mount system. This solution effectively constrained the mount arm’s movement during impact, preventing the intrusion observed in previous tests. The paper provides a detailed analysis of the crash plate’s dimensions and its relationship to the engine mount, demonstrating its potential for broader application in
Hazra, SandipKhan, ArkadipMohare, Gourishkumar
Gear whine has emerged as a significant challenge for electric vehicles (EVs) in the absence of engine masking noise. The demand from customers for premium EVs with high speed and high torque density introduces additional NVH risks. Conventional gear design strategies to reduce the pitch-line velocity and increase contact ratio may impact EV torque capacitor or its efficiency. Furthermore, microgeometry optimization has limited design space to reduce gear noise over a wide range of torque loads. This paper presents a comprehensive investigation into the optimization of transfer gear blanks in a single-speed two-stage FDW electric drive unit (EDU) with the objective of reducing both mass and noise. A detailed multi-body dynamics (MBD) model is constructed for the entire EDU system using a finite-element-based time-domain solver. This investigation focuses on the analysis and optimization of asymmetric gear blank design features with three-slot patterns. A design-of-experiment (DOE
He, SongBahk, CheonjaeLi, BoDu, IsaacPatruni, Pavan KumarBaladhandapani, Dhanasekar
Pulse width modulation (PWM) and the corresponding modulation index (MI) value are of critical importance to the performance of electric drive systems for electric vehicle applications. For interior permanent magnet (IPM) machines, operating in overmodulation (OVM) and six-step modes increases the voltage output beyond the linear region, allowing the motor to achieve higher torque and power with reduced inverter loss. However, the resulting distorted current waveforms and higher current ripple harmonics lead to a notable increase in the motor noise. A multi-disciplinary approach has been developed to analyze the NVH performance of a three-phase 8-pole IPM motor when it operates in the OVM and six-step regions at high speed. The PWM current ripple harmonics induced by voltage-source inverters are predicted using different MIs and subsequently validated through experiments. The current ripple data are used for the prediction of dynamic electromagnetic (EM) forces in the OVM and six-step
He, SongChang, LeGong, ChengZhang, PengGSJ, Gautam
The wheel hub motor–driven electric vehicle, characterized by its independently controllable wheels, exhibits high torque output at low speeds and superior dynamic response performance, enabling in-place steering capabilities. This study focuses on the control mechanism and dynamic model of the wheel hub motor vehicle’s in-place steering. By employing differential torque control, it generates the yaw moment needed to overcome steering resistance and produce yaw motion around the steering center. First, the dynamic model for in-place steering is established, exploring the various stages of tire motion and the steering process, including the start-up, elastic deformation, lateral slip, and steady-state yaw. In terms of control strategy, an adaptive in-place steering control method is designed, utilizing a BP neural network combined with a PID control algorithm to track the desired yaw rate. Additionally, a control strategy based on tire/road adhesion ellipse theory is developed to
Huang, BinCui, KangyuZhang, ZeyangMa, Minrui
The EU currently has very ambitious plans for the electrification of vehicles, particularly in the field of urban logistics. For example, the so-called “Transport White Paper” [1] aims to achieve essentially CO2-free logistics in major urban centers by 2030, while “Europe on the move” [2] has presented a series of legislative initiatives. The Strategic Research and Innovation Agenda for Transport proposes research priorities and actions to deploy innovative solutions, with a particular focus on the electrification of transport. Numerous advancements in electromobility have led to a growing number of vehicles available in various areas, particularly in urban logistics. New concepts like cargo bikes and micro-vehicles are being developed, but they cannot fully replace traditional light commercial vehicles. While some electrified options exist, they are often modified versions of existing platforms with internal combustion engines swapped for electric drives. The research work in this
Königshofer, ThomasTromayer, JürgenSchacht, Hans-JürgenWang, Eric
The main drivers for powertrain electrification of two-wheelers, motorcycles and ATVs are increasingly stringent emission and noise limitations as well as the upcoming demand for carbon neutrality. Two-wheeler applications face significantly different constraints, such as packaging and mass targets, limited charging infrastructure in urban areas and demanding cost targets. Battery electric two wheelers are the optimal choice for transient city driving with limited range requirements. Hybridization provides considerable advantages and extended operation limits. Beside efficiency improvement, silent and zero emission modes with solutions allowing fully electric driving, combined boosting enhances performance and transient response. In general, there are two different two-wheeler base categories for hybrid powertrains: motorcycles featuring frame-integrated internal combustion engine (ICE) and transmission units, coupled with secondary drives via chain or belt; and scooters equipped with
Schoeffmann, W.Fuckar, G.Hubmann, C.Gruber, M.
Variable Displacement Vane Pumps (VDVPs) are widely used in lubrication systems for engines, transmissions, and electric drive units. This study presents a Computational Fluid Dynamics (CFD) analysis of a rotational VDVP, coupled with an Oil Control Valve (OCV), to establish a feedback loop that regulates the eccentricity of the cam ring, and consequently, the pump’s outlet flow rate. In previous studies, Simerics-MP+ has been successfully utilized to model the VDVP without considering the OCV’s effect. The OCV consists of a solenoid valve coupled with a spring-loaded spool valve. Due to the absence of the actual valve geometry, the valve behavior in the CFD model is represented by a 2-D table that correlates the control chamber flow rate with both the supply and control pressures. The eccentricity of the cam ring is determined through an iterative process, balancing fluid torques from the vane chamber pressures and control chamber pressure, along with the spring torque. Simulation
Khatri, Rachit RajeshLiu, YuchanPasunurthi, Shyam SundarAhmed, RayhanStallmann, JohnYang, BoHuang, YuliSivaji, RangarajanScheffler, David
The driving capability and charging performance of electric vehicles (EVs) are continuously improving, with high-performance EVs increasing the voltage platform from below 500V to 800V or even 900V. To accommodate existing low-voltage public charging stations, vehicles with high-voltage platforms typically incorporate boost chargers. However, these boost chargers incur additional costs, weight, and spatial requirements. Most mature solutions add a DC-DC boost converter, which results in lower charging power and higher costs. Some new methods leverage the power switching devices and motor inductance within the electric drive motor to form a boost circuit using a three-phase current in-phase control strategy for charging. This approach requires an external inductor to reduce charging current ripple. Another method avoids the use of an external inductor by employing a two-parallel-one-series topology to minimize current ripple; however, this reduces charging power and increases the risk
Yuan, BaochengMa, YongXie, XiLiu, ShaoweiGuan, TianyuGe, KaiZheng, LifuXu, Xu
To effectively improve the performance of chassis control of a four in-wheel motor (IWM)-driven electric vehicles (EVs), especially in combing nonlinear observer and chassis control for improving road handling and ride comfort, is a challenging task for the IWM-driven EVs. Simultaneously, inaccurate state-based control and uncertainty with system input, are always existing, e.g., variable control boundary, varying road input or control parameters. Due to the higher fatality rate caused by variable factors, how to precisely chose and enforce the reasonable chassis prescribed performance control strategy of IWM-driven EVs become a hot topic in both academia and industry. To issue the above mentioned, the paper proposes a novel observer-based prescribed performance control to improve IWM-driven EVs chassis performance under the double lane change steering. Firstly, a nonlinear nine degree-of-freedom of full-car model is developed to describe vehicle chassis dynamics, and the proposed
Wang, ZhenfengLong, JiarongLi, ShengchongZhang, XiaoyangZhao, Binggen
The design of drive units in electric vehicles (EVs) presents challenges due to the need to pass multiple linear and non-linear load cases. This can result in inefficient design. Therefore, optimization plays a critical role in improving the design efficiency. However, setting up the optimization process itself can be challenging, especially when dealing with complex design variables and different load cases that require the use of various computer-aided engineering (CAE) solvers. The drive unit, being a casting component, presents additional challenges in setting up Multidisciplinary Design Optimization (MDO) process. This paper introduces an efficient process for addressing these challenges by presenting a sample Multidisciplinary Design Optimization (MDO) problem. The problem involves the manipulation of discrete design variables, such as the number of ribs, and incorporates five different load cases that require the utilization of different CAE solvers. The proposed process
Chavare, SudeepBamane, SachinChen, ChiKim, Jong-EunLi, HaiyanBandi, Punit
Electric trucks, due to their weight and payload, need a different layout than passenger electric vehicles (EVs). They require multiple motors or multi-speed transmissions, unlike passenger EVs that often use one motor or a single-speed transmission. This involves determining motor size, number of motors, gears, and gear ratios, complicated by the powertrain system’s nonlinearity. The paper proposes using a stochastic active learning approach (Bayesian optimization) to configure the motors and transmissions for optimal efficiency and performance. Backwards simulation is applied to determine the energy consumption and performance of the vehicle for a rapid simulation of different powertrain configurations. Bayesian optimization, was used to select the electric drive unit (EDU) design candidates for two driving scenarios, combined with a local optimization (dynamic programming) for torque split. By optimizing the electric motor and transmission gears, it is possible to reduce energy
Chen, BichengWellmann, ChristophXia, FeihongSavelsberg, ReneAndert, JakobPischinger, Stefan
A first-order HEV fuel consumption model is developed by solving for the transition between electric drive at low and negative traction power and engine drive and charging at high traction power. Turning the engine on above the ‘breakeven power’ minimizes fuel consumption: indirect electric driving from engine charging is more efficient below it, and direct engine operation above it. This is derived analytically and observed in benchmarking data on different drive cycles. The engine breakeven bmep is a function of engine loss and electric round trip efficiency. The location of the breakeven power on the cumulative traction work vs. time distribution enables the estimation of the engine running time at high traction power levels and of the engine work needed for extended electric driving. The approach is generalized to HEVs with substantial transmission and driveline (T&D) losses, such as the ‘P2’ Rear Wheel Drive (RWD) hybrid vehicles, with a motor sandwiched between the engine and the
Phlips, Patrick
Following early adoption, the BEV market has shifted towards a mass market strategy, emphasizing on crucial attributes, such as system cost reduction and range extension. System efficiency is crucial in BEV product development, where efficiency metric influenced greatly vehicle range and cost. For instance, higher iDM efficiency reduces the need for larger battery, cutting cost, or extends range with the same battery size. BorgWarner adopted Digital Twin technology to optimize Integrated Drive Module (iDM) within a vehicle ecosystem. Digital Twin comprises high-fidelity physics based numerical tool suites offering greater degree of freedom to engineers in designing, sizing, optimizing a component versus system benefit tradeoff, thus enabling most efficient product design within economic constraints. BorgWarner’s Analytical System Development (ASD) plan used as framework provides a global unified process for tool development and validation, ensuring the digital print of a real product
Bossi, AdrienBourniche, EricLeblay, ArnaudDavid, PascalNanjundaswamy, Harsha
A battery electric vehicle (BEV) employs a traction inverter to control a traction motor. One popular configuration is to make a HV battery directly connected to the input of the motor inverter. As a result, the maximum motor voltage is limited by the state of charge (SOC) of the traction battery. When the battery voltage is low the maximum motor speed and power are limited. This voltage limitation can be solved by using a traditional boost converter-based inverter. However, this approach has several disadvantages. The motor winding terminals see a PWM voltage, which results in high frequency harmonics that lead to EMI, NVH and potential additional insulation stress. Also, there are PWM-induced common mode voltages that are known to produce bearing failures as well as EMI/EMC problems that are extremely difficult to eliminate. Finally, the topology is significantly more expensive due to the high number of active switching devices needed. To solve some of the limitations and issues
Ge, BaomingMunoz, Alfredo R.Jiang, Hong
The hybrid electric drive system has the potential to make a significant contribution to the energy sustainability of the automotive industry. This paper investigates the improved adaptive equivalent consumption minimization strategy (A-ECMS) for a multi-mode series-parallel hybrid electric vehicle. First, a basic ECMS algorithm for the series-parallel vehicle is established, which considers the instantaneous optimal torque matching in the electric, serial hybrid, and engine driving modes. Under the condition that the future traffic information scenario is known, it is desired to realize the global optimal planning based on the combination of dynamic programming (DP) and ECMS. The SOC, engine speed, and torque results calculated by the DP strategy are used as benchmarks to develop the improved SOC-AECMS and S-AECMS strategies, which better incorporate the advantages of the global optimization results. Finally, a hardware-in-the-loop simulation platform is set up to validate the real
Zhu, JingyuHan, MengweiLiu, ChongfanYang, ChenfanNishida, Keiya
This paper introduces an innovative in-wheel electric drive system designed for all-wheel drive Formula Student Electric racing cars. The system utilized AMK's DD5-14-10-POW-18600-B5 model as the driving motor, with a gearbox transmission ratio of 13.2 determined through Optimum Lap simulation. A two-stage gear reducer was integrated into a unified hub-spoke assembly, which connected directly to the ten-inch carbon fiber rim. In this paper, three conventional FSEC planetary gear reducer shafting designs are introduced, and a new shafting structure is proposed. Then the four structures are compared in multiple dimensions. Subsequently, we designed the shafting of the gear group, determined the size parameters of the shafting structure and the bearing type, and completed the verification. The planetary carriers were integrated with the wheel-edge suspension columns. Meanwhile, a special floating brake disc mounting method was employed, which increased the brake disc's heat capacity by
Guo, RuijieZeng, JunhaoYang, YuancaiHou, YijieZhu, ZhonghuiXiong, Jiaming
In driving condition, the electric drive system of electric vehicles generates significant heat, which increases temperature of the motor, leading to reduced performance and energy loss. To manage the motor temperature and recover energy, a plate-fin heat exchanger (PFHE) is used to facilitate heat exchange between the electric drive system and the vehicle's thermal management system. In this study, Computational Fluid Dynamics (CFD) method was used to investigate the fin structure on thermal flow performance within the PFHE. The mathematical models of pressure drop and heat transfer of plate-fin heat exchanger are established in this paper, and an empirical formula for the friction factor was derived by using test data. The NTU method was applied to fit the formula of convective heat transfer coefficient, enabling the derivation of an empirical formula for the Colburn factor. A CFD simulation model was developed for a local heat exchange unit, considering the generic boundary
Yin, JintaiYin, ZhihongLu, XuanWang, MengmengLiu, Qian
Based on the harmonic current injection method used to suppress the torsional vibration of the electric drive system, the selection of the phase and amplitude of the harmonic current based on vibration and noise has been explored in this paper. Through the adoption of the active harmonic current injection method, additional torque fluctuations are generated by actively injecting harmonic currents of specific amplitudes and phases, and closed-loop control is carried out to counteract the torque fluctuations of the motor body. The selection of the magnitude of the injected harmonic current is crucial and plays a vital role in the reduction of torque ripple. Incorrect harmonic currents may not achieve the optimal torque ripple suppression effect or even increase the motor torque ripple. Since the actively injected harmonic current is used to counteract the torque ripple caused by the magnetic flux linkage harmonics of the motor body, the target harmonic current command is very important
Jing, JunchaoZhang, JunzhiLiu, YiqiangHuang, WeishanDai, Zhengxing
The motor controller, as one of the important controllers in the electric drive system, may cause unexpected acceleration or deceleration of the vehicle by the driver due to systematic failure and random hardware failure. Conducting research on the functional safety of drive motors for new energy vehicles is of great significance for reducing the systematic failure and random hardware failure of the electric drive. This paper has carried out designs including the allowable motor torque design for safety monitoring, the motor torque prediction design for safety monitoring, the rationality judgment design of the motor torque for safety monitoring, the rationality judgment design of the motor direction for safety monitoring, the functional safety motor degradation design, and the active discharge state monitoring of the motor, so that the system can transition to a safe state when an error occurs. Among them, the motor torque prediction design for safety monitoring includes predicting the
Jing, JunchaoZuo, BotaoLiu, YiqiangHuang, WeishanDai, Zhengxing
The problem of monitoring the parametric failures of a traction electric drive unit consisting of an inverter, a traction machine and a gearbox when interacting with a battery management system has been solved. The strategy for solving the problem is considered for an electric drive with three-phase synchronous and induction machines. The drive power elements perform electromechanical energy conversion with additional losses. The losses are caused by deviations of the element parameters from the nominal values during operation. Monitoring gradual failures by additional losses is adopted as a key concept of on-board diagnostics. Deviation monitoring places increased demands on the information support and accuracy of mathematical models of power elements. We take into account that the first harmonics of currents and voltages of a three-phase circuit are the dominant energy source, higher harmonics of PWM appear as harmonic losses, and mechanical losses in the rotor and gearbox can be
Smolin, VictorGladyshev, SergeyTopolskaya, Irina
The efficient operation of electric vehicles (EVs) heavily relies on the proper lubrication of the E-drive unit components, particularly the transmission gears and bearings. Improper oil supply can lead to mechanical failures, while excessive oil can increase power loss due to churning. This study focuses on utilizing Computational Fluid Dynamics (CFD) simulations to analyze the impact of drive speed, oil level, and temperature on gear churning loss in E-drive units. The research also investigates the influence of a baffle plate on power loss and oil splash characteristics. The simulations, conducted using the volume of fluid (VOF) method in Simerics-MP+, consistently illustrate a reduction in power loss with rising oil temperature and reveal decreased gear churning loss with a baffle plate, especially under high-speed conditions, highlighting its potential for enhancing energy efficiency in EVs. Additionally, post-processing analysis of oil splash patterns sheds light on the
Kumar, P. MadhanMotin, AbdulPandey, AshutoshGanamet, AlainMaiti, DipakGao, HaiyangRanganathan, Raj
Since the introduction of ABS (1978), TCS (1986) and ESC (1995) in series production, the number of modern vehicle dynamics control functions and advanced driver assistance systems (ADAS) has been continuously increasing. Meanwhile, many functions are available that influence vehicle motion (vehicle dynamics). Since these are only partially and not hierarchically coordinated, the control of vehicle motion is still suboptimal. Current megatrends (automated driving, electromobility, software-defined vehicles) and new key technologies (steer-by-wire, brake-by-wire, domain-based E/E architectures) lead to an increasing number of electrified, motion-relevant components being introduced into series production. These components enable the development of an integrated chassis control (ICC) that controls all motion-relevant components, networks them with each other and coordinates them holistically to optimally control the vehicle motion regarding an adjustable desired driving behavior. Vehicle
Wielitzka, MarkAhrenhold, TimVocht, MoritzRawitzer, JonasSchrader, Jonas
Following the current need of the automotive sector on reducing secondary emissions coming from non-exhaust sources, this paper presents an innovative zero-emissions magneto-rheological braking system, specifically designed to reach future brake emission targets while maintaining safety brake performance. In particular, the article focusses on the experimental setup design to evaluate a full-sized brake prototype under real load conditions and it presents the first experimental results. The zero-emission braking prototype has been developed for reaching performance compatible with the automotive application, specifically a segment-A vehicle, being able to generate enough braking torque as to perform an emergency brake maneuver without any other traditional braking system. A central aspect to confirm the system’s performance is the development of a test bench engineered for assessing the magneto-rheological braking technology. Detailed insights into the comprehensive strategy
Tempone, Giuseppe PioDe Carlo, MatteoCarello, Massimilianade Carvalho Pinheiro, HenriqueImberti, Giovanni
E-mobility is revolutionizing the automotive industry by improving energy-efficiency, lowering CO2 and non-exhaust emissions, innovating driving and propulsion technologies, redefining the hardware-software-ratio in the vehicle development, facilitating new business models, and transforming the market circumstances for electric vehicles (EVs) in passenger mobility and freight transportation. Ongoing R&D action is leading to an uptake of affordable and more energy-efficient EVs for the public at large through the development of innovative and user-centric solutions, optimized system concepts and components sizing, and increased passenger safety. Moreover, technological EV optimizations and investigations on thermal and energy management systems as well as the modularization of multiple EV functionalities result in driving range maximization, driving comfort improvement, and greater user-centricity. This paper presents the latest advancements of multiple EU-funded research projects under
Ratz, FlorianBäuml, ThomasKompara, TomažKospach, AlexanderSimic, DraganJan, PetraMöller, SebastianFuse, HiroyukiParedes Barros, EstebanArmengaud, EricAmati, NicolaSorniotti, AldoLukesch, Walter
Electric vehicles (EVs) represent a significant stride toward environmental sustainability, offering a multitude of benefits such as the reduction of greenhouse gas emissions and air pollution. Moreover, EVs play a pivotal role in enhancing energy efficiency and mitigating reliance on fossil fuels, which has propelled their global sales to unprecedented heights over the past decade. Therefore, choosing the right electric drive becomes crucially important. The main objective of this article is to compare various conventional and non-conventional electric drives for electric propulsion in terms of electromechanical energy conversion ratio and the thermal response under continuous [at 12 A/mm2 and 6000 rpm] and peak [at 25 A/mm2 and 4000 rpm] operating conditions. The comparative analysis encompasses torque density, power density, torque pulsation, weight, peak and running efficiencies of motor, inverter and traction drive, electromechanical efficiency, and active material cost. This
Patel, Dhruvi DhairyaFahimi, BabakBalsara, Poras T.
In this article, a comprehensive review regarding the vibration suppression for electric vehicles with in-wheel motors is provided. Most of the current reviews on the suspension performance of the in-wheel motor electric vehicles have seldom discussed the issue of the multidimensional coupling between the vertical and longitudinal dynamics of the vehicle. This article not only addresses this shortcoming, but also provides an all-inclusive review of these effects while considering the electrical–mechanical coupling on the vehicle dynamics. This article uses a state-of-the-art search strategy to search and process relevant and high-quality studies in the area. First, various negative effects of the deployment of the in-wheel motor, such as the increased unsprung mass, multidimensional electromagnetic–mechanical coupling, and the coupled vehicle vertical–longitudinal dynamics, are discussed. A review of the studies related to the unbalanced electromagnetic force and its coupling with the
Marral, Usman IqbalDu, HaipingNaghdy, Fazel
The growing number of automobiles on the road has raised awareness about environmental sustainability and transportation alternatives, sparking ideas about future transportation. Few short-term alternatives meet consumer needs and enable mass production. Because they do not accurately reflect real-world driving. Current models are unable to estimate vehicle emissions. However, the purpose of this research is to present an application of an adaptive neuro-fuzzy inference system for managing the various factors contributing to vehicle gasoline engine exhaust emissions. It examines how well the three known standardized driving cycles (DSCs). Accurately reflect real-world driving and evaluate the impact of real-world driving on vehicle emissions. Indirect emissions are inversely proportional to the vehicle’s fuel consumption. The methodology used is Eco-score methodology to calculate indirect emissions of light vehicles. Expected emission charge estimates for different using styles
Shiba, Mohamed S.Abouel-Seoud, Shawki A.Aboelsoud, W.Abdallah, Ahmed S.
From humble Chevrolet Bolts to six-figure Lucid Airs, every EV can reverse its electric motors to slow the vehicle while harvesting energy for the battery, the efficient tag-team process known as regenerative braking. Today's EVs do this so well that traditional friction brakes, which clamp onto a spinning wheel rotor or drum, can seem an afterthought. Witness Volkswagen's decision to equip its ID.4 with old-fashioned rear drum brakes, with VW claiming drums reduce EV rolling resistance and offer superior performance after long periods of disuse.
Ulrich, Lawrence
In Electric vehicle Drive Unit Gears, high mesh misalignments result in shift in load distribution of a gear pair that can increase contact and bending stresses. It can move the peak bending and contact stresses to the edge of the face width and increase gear noise as well. Lower misalignment value is often required to reduce the peak bending and contact stresses and have a balanced load distribution along the gear flank, which in turn helps in reducing noise and improving durability of drive unit. This paper delineates Prescriptive Analytics method that combines virtual simulations, Machine learning (ML) and optimization techniques to minimize different gear misalignments for the electric vehicle drive units. Generally, the manual optimization process is carried out by sequential modifications of stiffness of individual components. However, this process is time consuming and does not account for interactions between the components. In this study, firstly, Machine learning models are
Penumatsa, Venkata Ramana RajuThomas, BensonBlack, DerrickJain, Sachin
Environmental awareness is being fostered in every sector, with particular emphasis on the automotive industry. Conventional internal combustion engines are responsible for greenhouse gas emissions and health issues. Researchers are looking for alternative technologies to reduce carbon footprint and for a green environment. In this study, electric drivetrain is designed for 20% range extension and retrofitted in conventional two-wheeler. An effective control technique has been developed, thoroughly tested, and effectively implemented on the two-wheeler. The hybrid drivetrain architecture is assessed for complexities such as the required space for the battery and the location for fitting the electric motor. During low-speed conditions, the electric motor reduced the emissions and minimized fuel consumption. Consequently, the overall utilization of internal combustion engines at low-speed conditions has decreased, leading to a decrease in the vehicle's fuel consumption and exhaust gases.
Banad, Chandrashekhar BDevunuri, SureshNair, Jayashri NarayananHadagali, BalappaPrasad, Gvl
To enhance the operating performance of the common-bus open-winding permanent magnet synchronous motor under single-phase open-circuit faults, this paper proposes a model predictive torque control strategy with torque ripple suppression. First, the operating principles of the model predictive torque control system for both normal operation and single-phase fault conditions are analyzed. Based on this analysis, the electromagnetic torque controller in the model predictive torque control system is restructured. However, if the conventional space vector modulation strategy used during fault-free operation is continued, the required stator voltage cannot be achieved. Therefore, analyze the phase relationship of the current before and after the fault, derive a new Clark transformation matrix, and then based on the principle of torque invariance that can be generated by the fundamental magnetic flux, derive the coefficients of the Park transformation of the two-phase current. To simplify the
Zhang, DongdongMo, FushenLin, Xiaogang
The design of weighting factors in the cost function of traditional model predictive torque control (MPTC) is relatively cumbersome, at the same time, the accuracy of the prediction model decreases obviously when the motor parameters are mismatched. Therefore, a model predictive control without weighting factors based on on-line identification of motor parameters is studied. Firstly, the control objectives transformed from torque and flux of traditional MPTC to active torque and reactive torque, since they are of the same dimension the design of weighting factors is unnecessary. Secondly, aiming at the problem of control performance degradation caused by the change of motor parameters in the prediction model, the online identification of motor parameters based on model reference adaptive system is studied, the identification results are applied to the prediction process to avoid the bad influence caused by the parameter variation. The findings from the simulation indicate that the
Zhang, YanqingJia, DanyangYin, ZhonggangLiu, Qi
Distributed Drive Electric Vehicles (DDEVs), as a significant development form of electric vehicles, have garnered considerable focus owing to their excellent energy utilization efficiency and the capability for flexible torque distribution. However, DDEVs still face numerous challenges in practical applications, particularly in the coordinated control of hub motors and system stability. This paper focuses on the whole-vehicle control technology and distributed control theory of DDEVs and researches the active safety function of Direct Yaw-moment Control (DYC): acceleration and turning. A full-order terminal sliding mode controller is utilized to suppress the chattering of sliding mode control and to reduce torque fluctuations in the output. Results show that the proposed method can enhance the vehicle’s yaw stability and driving safety with the linear sliding mode.
Zhou, MinghaoWu, WeiweiFei, XueranChen, ZhenqiangJiang, LongbinCai, William
An effective vehicle integrated thermal management system (ITMS) is critical for the safe and efficient operation of proton exchange membrane fuel cell (PEMFC) vehicles. This paper takes a fuel cell vehicle (FCV) as the research object, comprehensively considers the vehicle layout environment and thermal management requirements, and designs a complete thermal management system for FCV. The key components are selected and designed to match the performance and the control strategy of ITMS of fuel cell vehicle is developed. To do that, the ITMS model is established based on the heating principle and heat transfer theory of each key component. Then, the ITMS under Worldwide Harmonized Light Vehicles Test Cycle (WLTC) operating conditions at different ambient temperatures are simulated and analyzed by selecting indicators such as coolant flow rate and temperature. Under the ambient temperature of 40°C, the temperature of PEMFC is basically stable between 78 °C and 83°C, the coolant outlet
Jiang, QiXiong, ShushengWang, YupengZhu, ShaopengChen, Huipeng
Items per page:
1 – 50 of 529