Browse Topic: Electric drives
Direct current (DC) systems are increasingly used in small power system applications ranging from combined heat and power plants aided with photovoltaic (PV) installations to powertrains of small electric vehicles. A critical safety issue in these systems is the occurrence of series arc faults, which can lead to fires due to high temperatures. This paper presents a model-based method for detecting such faults in medium- and high-voltage DC circuits. Unlike traditional approaches that rely on high-frequency signal analysis, the proposed method uses a physical circuit model and a high-gain observer to estimate deviations from nominal operation. The detection criterion is based on the variance of a disturbance estimate, allowing fast and reliable fault identification. Experimental validation is conducted using a PV system with an arc generator to simulate faults. The results demonstrate the effectiveness of the method in distinguishing fault events from normal operating variations. The
An important characteristic of battery electric vehicles (BEVs) is their noise signature. Besides tire and wind noise, noise from auxiliaries as pumps, the electric drive unit (EDU) is one of the major contributors. The dynamic and acoustic behavior of EDUs can be significantly affected by production tolerances. The effects that lead to these scatter bands must be understood to be able to control them better and thus guarantee a consistently high quality of the products and a silent and pleasant drive. The paper discusses a simulation driven approach to investigate production tolerances and their effect on the NVH behavior of the EDU, using high precision transient multi-body dynamic analysis. This approach considers the main effects, influences, and the interaction from elastic structures of electric motor and transmission with accurate gear contact models in a fully coupled way. It serves as virtual end of line test, applicable in all steps of a new EDU development, by increasing
A design is presented for an electro-mechanical switchgear, intended for reconfiguring the windings of an electric machine whilst in operation. Specifically, the design is developed for integration onto an in-wheel automotive motor. The motor features 6 phase fractions, which can be reconfigured by the switchgear between series-star or parallel-star arrangements, thereby doubling the torque or speed range of the electric machine. The switchgear has a mass of only 1.8kg – around one tenth of the equivalent 2-speed transmission which might otherwise be employed to achieve a similar effect. As well as the extended operating envelope, the reconfigurable winding motor offers benefits in efficiency and power density. The mechanical solution presented is expected to achieve efficiency and cost advantages over equivalent semiconductor-based solutions, which are practical barriers to adoption in automotive applications. The design uses only mechanical contacts and a single actuator, thereby
Electric drive systems are central to the efficient and clean use of energy for electric and hybrid vehicles. They need to efficiently convert electrical energy into mechanical motion, but coupling mechanical and electrical components into a highly compact system requires a range of complex design and engineering tradeoffs. One challenge is that automotive companies typically use a wide range of design and simulation technologies from different suppliers. This has resulted in multiple iterations of model and data transfers between the design and simulation software, which is inefficient, error-prone, and results in a lack of decision traceability.
The recent addition of fully electric powertrains to propulsion system options has increased the relevance of sound and vibration from electric motors and gearboxes. Electrified beam axles require different metrics from conventional beam axles for noise and vibration because they have multiple sources of vibration energy, including an electric motor and a reduction gearbox. Improved metrics are also driven by the stiff suspension connections and lack of significant isolation compared to electric drive units. Blocked force is a good candidate because it can completely characterize the vibration energy transmitted into a receiver and is especially useful because it is theoretically independent of the vehicle-side structure. While the blocked force methodology is not new, its application to beam axles is relatively unexplored in the literature. This paper demonstrates a case study of blocked force measurement of an electrified beam axle with a leaf spring suspension. The axle was tested
Gear whine has emerged as a significant challenge for electric vehicles (EVs) in the absence of engine masking noise. The demand from customers for premium EVs with high speed and high torque density introduces additional NVH risks. Conventional gear design strategies to reduce the pitch-line velocity and increase contact ratio may impact EV torque capacitor or its efficiency. Furthermore, microgeometry optimization has limited design space to reduce gear noise over a wide range of torque loads. This paper presents a comprehensive investigation into the optimization of transfer gear blanks in a single-speed two-stage FDW electric drive unit (EDU) with the objective of reducing both mass and noise. A detailed multi-body dynamics (MBD) model is constructed for the entire EDU system using a finite-element-based time-domain solver. This investigation focuses on the analysis and optimization of asymmetric gear blank design features with three-slot patterns. A design-of-experiment (DOE
E-mobility is revolutionizing the automotive industry by improving energy-efficiency, lowering CO2 and non-exhaust emissions, innovating driving and propulsion technologies, redefining the hardware-software-ratio in the vehicle development, facilitating new business models, and transforming the market circumstances for electric vehicles (EVs) in passenger mobility and freight transportation. Ongoing R&D action is leading to an uptake of affordable and more energy-efficient EVs for the public at large through the development of innovative and user-centric solutions, optimized system concepts and components sizing, and increased passenger safety. Moreover, technological EV optimizations and investigations on thermal and energy management systems as well as the modularization of multiple EV functionalities result in driving range maximization, driving comfort improvement, and greater user-centricity. This paper presents the latest advancements of multiple EU-funded research projects under
The problem of monitoring the parametric failures of a traction electric drive unit consisting of an inverter, a traction machine and a gearbox when interacting with a battery management system has been solved. The strategy for solving the problem is considered for an electric drive with three-phase synchronous and induction machines. The drive power elements perform electromechanical energy conversion with additional losses. The losses are caused by deviations of the element parameters from the nominal values during operation. Monitoring gradual failures by additional losses is adopted as a key concept of on-board diagnostics. Deviation monitoring places increased demands on the information support and accuracy of mathematical models of power elements. We take into account that the first harmonics of currents and voltages of a three-phase circuit are the dominant energy source, higher harmonics of PWM appear as harmonic losses, and mechanical losses in the rotor and gearbox can be
The driving capability and charging performance of electric vehicles (EVs) are continuously improving, with high-performance EVs increasing the voltage platform from below 500V to 800V or even 900V. To accommodate existing low-voltage public charging stations, vehicles with high-voltage platforms typically incorporate boost chargers. However, these boost chargers incur additional costs, weight, and spatial requirements. Most mature solutions add a DC-DC boost converter, which results in lower charging power and higher costs. Some new methods leverage the power switching devices and motor inductance within the electric drive motor to form a boost circuit using a three-phase current in-phase control strategy for charging. This approach requires an external inductor to reduce charging current ripple. Another method avoids the use of an external inductor by employing a two-parallel-one-series topology to minimize current ripple; however, this reduces charging power and increases the risk
Items per page:
50
1 – 50 of 550