Automotive thermal systems are becoming complicated each year. The powertrain efficiency improvement initiatives are driving transmission and engine oil heaters into coolant network design alternatives. The initiatives of electrified and autonomous vehicles are making coolant networks even more complex. The coolant networks these days have many heat exchangers, electric water pumps and valves, apart from typical radiators, thermostat and heater core. Some of these heat exchangers, including cabin heaters deal with very small amount of coolant flow rates at different ambient conditions.
This paper describes how viscosity can be a major reason for simulation inaccuracy, and how to deal with it for each component in the coolant network. Both experimental and computational aspects have been considered in this paper with wide range of ambient temperatures. Methods have been proposed to handle these issues in the simulation phase at the early phase of automotive thermal system development, especially during extreme cold ambient conditions.