Browse Topic: Nanomaterials
Heat shrink polymer is a type of material used in many industries’ segments due to their ability to contract and fit snugly around objects when heat is applied. These products are commonly commercialized in tube format (e.g.: sleeves), made from polyolefin or fluoropolymers, which have the property of shrinking when heated. Nanomaterials present many applications, and their usage is a remarkable tool aiming to improve many properties of materials. Then, many improvements including increase of performance and price reduction may be achieved due to its unique properties when nanomaterials are used into heat shrink polymer sleeves. This work presents a systematic review about the state of the art on heat-shrinkable materials for the automotive industry. As a methodology, articles from the last 10 years on the subject were selected. The keywords “heat shrink” AND “nanomaterial” AND “tubes OR sleeves” were used in three different databases, being “Scopus”, “Web of Science” and “MDPI”. After
The future of space travel is seemingly changing by the day and a Coventry University academic is doing his bit to stay at the front of the space race.
This breakthrough promises to significantly enhance the safety and performance of lithium-ion batteries (LIBs), addressing a critical challenge in energy storage technology.
This paper explores the groundbreaking applications of plasma propulsion engines and advanced nanomaterials in low-altitude aircraft, addressing the challenges and recent technological advancements that make such applications feasible. Traditional space plasma thrusters operate effectively in near-vacuum conditions by taking advantage of the ease of plasma ignition at low pressures. However, these thrusters face significant difficulties when operated at near-atmospheric pressures found in low-altitude environments, where plasma ignition is challenging. This paper highlights recent breakthroughs in high-pressure plasma glow discharge technology and the integration of nanomaterials, which together enable the use of plasma propulsion engines in low-altitude aircraft. These innovations offer substantial advantages over conventional engines, including higher efficiency, reduced emissions, and the potential to fundamentally change the propulsion systems of low-altitude aircraft.
Researchers have shown that twisted carbon nanotubes can store three times more energy per unit mass than advanced lithium-ion batteries. The finding may advance carbon nanotubes as a promising solution for storing energy in devices that need to be lightweight, compact, and safe, such as medical implants and sensors.
A flexible and stretchable cell has been developed for wearable electronic devices that require a reliable and efficient energy source that can easily be integrated into the human body. Conductive material consisting of carbon nanotubes, crosslinked polymers, and enzymes joined by stretchable connectors, are directly printed onto the material through screenprinting.
Researchers have discovered that minuscule, self-propelled particles called “nanoswimmers” can escape from mazes as much as 20 times faster than other passive particles. The tiny synthetic nanorobots are incredibly effective at escaping cavities within maze-like environments.
When wounds happen, we want them to heal quickly and without complications, but sometimes infections and other complications prevent it. Chronic wounds are a significant health concern affecting tens of millions of Americans.
Engineers at the University of California San Diego have developed an ultra-sensitive sensor made with graphene that can detect extraordinarily low concentrations of lead ions in water. The device achieves a record limit of detection of lead down to the femtomolar range, which is one million times more sensitive than previous sensing technologies.
Borophene is more conductive, thinner, lighter, stronger, and more flexible than graphene, the 2D version of carbon. Now, researchers have made the material potentially more useful by imparting chirality — or handedness — on it, which could make for advanced sensors and implantable medical devices. The chirality, induced via a method never before used on borophene, enables the material to interact in unique ways with different biological units such as cells and protein precursors.
Advances in optical sensors and imaging technologies are ever more rapidly assimilated into how humans interact, understand themselves, and explore the world around them. The scope of inquiry for optical devices is broad and they enable technologies within, such as implanted transdermal bioMEMS devices, and beyond, or as space-flight surveyors deployed as near and deep space instruments. Central to the functionality of modern optical devices, ultra-narrow bandpass (UNBP) thin-film optical filters enable discrimination of sub-nanometer bands inside broad spectra. These filters, pioneered as NIR DWDM filters for the telecommunications industry, are now essential in extracting meaningful signal from imaging and sensing devices operating anywhere between the deep ultraviolet and the mid infra-red bands.
University of Rochester Medical Center Rochester, NY
Membranes of vertically aligned carbon nanotubes (VaCNT) can be used to clean or desalinate water at high flow rate and low pressure. Recently, researchers of Karlsruhe Institute of Technology (KIT) and partners carried out steroid hormone adsorption experiments to study the interplay of forces in the small pores. They found that VaCNT of specific pore geometry and pore surface structure are suited for use as highly selective membranes. The research was published in Nature Communications.
Innovators at NASA’s Glenn Research Center have made several breakthroughs in treating hexagonal boron nitride (hBN) nanomaterials, improving their properties to supplant carbon nanotubes in many applications. These inventors have greatly enhanced the processes of intercalation and exfoliation. Both processes are crucial in creating usable nanomaterials and tailoring them for specific engineered applications.
Graphene has been called “the wonder material of the 21st century.” But graphene has a dirty little secret: it’s dirty. Now, engineers at Columbia University and colleagues at the University of Montreal and the National Institute of Standards and Technology are poised to clean things up with an oxygen-free chemical vapor deposition (OF-CVD) method that can create high-quality graphene samples at scale. Their work, published in Nature, directly demonstrates how trace oxygen affects the growth rate of graphene and identifies the link between oxygen and graphene quality for the first time.
Items per page:
50
1 – 50 of 1187