Browse Topic: Nanomaterials

Items (1,187)
Three-way catalysts (TWCs) containing significant amounts of precious metals are commonly employed to purify exhaust emissions (CO, NOx, and THC) from gasoline-powered vehicles. A critical factor contributing to TWC degradation is the sintering of these precious metals. Maintaining the appropriate particle size and distribution of the metals is essential for optimal catalyst performance. In this study, palladium (Pd) nanoparticles with a uniform size were synthesized using ethylene glycol as a reductant under ultrasonic conditions, yielding particles in the range of 3 nm to 5 nm. These Pd nanoparticles were subsequently used to prepare three-way catalysts on cordierite substrates supplied by Corning (China) Inc. Chemisorption analysis revealed that the Pd active component in the catalysts prepared via the ultrasonic method exhibited higher dispersion than the state-of-the-art commercial catalysts. The aged catalysts were obtained after 150 hours of aging following the General Motors
Hao, ShijieLv, YananWang, WeidongRao, ChaoWei, WeiMao, BingbinChen, TaoZhao, Huawang
Mechanical analysis was performed of a non-pneumatic tire, specifically a Michelin Tweel size 18x8.5N10, that can be used up to a speed of 40 km/h. A Parylene-C coating was added to the rubber spoke specimens before performing both microscopic imaging and cyclic tensile testing. Initially, standard ASTM D412 specimens type C and A were cut from the wheel spokes, and then the specimens were subjected to deposition of a nanomaterial. The surfaces of the specimens were prepared in different ways to examine the influence on the material behavior including the stiffness and hysteresis. Microscopic imaging was performed to qualitatively compare the surfaces of the coated and uncoated specimens. Both coated and uncoated spoke specimens of each standard type were then subjected to low-rate cyclic tensile tests up to 500% strain. The results showed that the Parylene-C coating did not affect the maximum stress in the specimens, but did increase the residual strain. Type C specimens also had a
Collings, WilliamLi, ChengzhiSchwarz, JacksonLakhtakia, AkhleshBakis, CharlesEl-Sayegh, ZeinabEl-Gindy, Moustafa
Aluminum oxide (Al₂O₃) nanoparticles are considered a promising fuel additive to enhance combustion efficiency, reduce emissions, and improve fuel economy. This study investigates the spray characteristics of diesel fuel blended with aluminum oxide nanoparticles in a constant volume chamber. The blends were prepared by dispersing Al₂O₃ nanoparticles in diesel at varying concentrations (25, 50, and 100 mg of aluminum oxide nanoparticles into 1 L of pure diesel, respectively) using a magnetic stirrer and ultrasonication to ensure stable suspensions. Spray characterization was conducted in a high-pressure and high-temperature constant volume chamber, simulating actual engine conditions. The ambient temperatures for this experiment were set from 800 to 1200 K, and the oxygen concentrations were set from 21% to 13%. The study focused on key spray parameters such as spray penetration length, spray angle, and spray area, analyzed using high-speed imaging and laser diffraction techniques
Ji, HuangchangZhao, Zhiyu
The advance of regulatory emission standards for light-duty vehicles, trucks and motorcycles, coupled with rising sustainability concerns, particularly United Nations' Sustainable Development Goal 12 (responsible consumption and production), has created an urgent need for lighter, stronger, and more ecological materials. Polylactic acid (PLA), a biodegradable polymer derived from plant sources, offers promising mechanical tensile strength and processability. Nanocomposites, a solution that combines a base matrix with a nanoreinforcing filler, provides a path toward developing sustainable materials with new properties. Cellulose nanofibrils (CNF) are a valuable nanofiller obtained through industrial waste or vegetal fibers, offer a promising avenue for strengthening PLA-based materials. Additive manufacturing (AM) has gained popularity due to its ability to create complex parts, prototyping designs, and to evaluate new nanocomposite materials such as PLA/CNF, showing significant
de Oliveira, ViníciusHoriuchi, Lucas NaoGoncalves, Ana PaulaDe Andrade, MarinaPolkowski, Rodrigo
CNTs play an important role in modern engineering projects, especially in engine pistons design for the next-generation of motorcycles. This work presents a comprehensive analyses proposed project using finite element method under actual operating conditions purpose performance evaluation of a motorcycle engine piston design, investigating the suitability of four distinct materials. Precise material properties adhering to linear elastic isotropic behavior were defined within the software environment and proposed advanced nanomaterial ensuring accurate representations of the proposed under the prescribed loading scenarios. The primary objective was to identify the optimal material choice for the piston, ensuring superior strength, minimal deformation, and lightweight characteristics essential for high-performance engine applications. Moreover interpreting and understanding the dynamic behavior of common and advanced engineering materials. Through a comprehensive evaluation of the
Ali, Salah H. R.Ahmed, Youssef G. A.Ali, Amr S.H.R.
Heat shrink polymer is a type of material used in many industries’ segments due to their ability to contract and fit snugly around objects when heat is applied. These products are commonly commercialized in tube format (e.g.: sleeves), made from polyolefin or fluoropolymers, which have the property of shrinking when heated. Nanomaterials present many applications, and their usage is a remarkable tool aiming to improve many properties of materials. Then, many improvements including increase of performance and price reduction may be achieved due to its unique properties when nanomaterials are used into heat shrink polymer sleeves. This work presents a systematic review about the state of the art on heat-shrinkable materials for the automotive industry. As a methodology, articles from the last 10 years on the subject were selected. The keywords “heat shrink” AND “nanomaterial” AND “tubes OR sleeves” were used in three different databases, being “Scopus”, “Web of Science” and “MDPI”. After
Kerche, Eduardo F.Polkowski, RodrigoHoriuchi, LucasGoncalves, Everaldo
In an attempt to improve its mechanical characteristics in the as-fasted conditions, the AZ31 Mg alloy was investigated herein from being reinforced with diverse SiC weight percentages (3, 6, and 9 wt.%). To develop lightweight AZ31-SiC composites, a simple and inexpensive technique, the stir casting process, was used. Microstructural analysis of the as-cast samples showed that the SiC particles were distributed rather uniformly, were firmly bonded to the matrix, and had very little porosity. The substantial improvement in tensile, compressive, and hardness characteristics was caused by fragmentation and spreading of the Mg17Al12 phase, while the addition of SiC had only a slight effect on the microstructure in the as-cast state. Surfaces of AZ31-SiC composites were analyzed using scanning electron microscopy. A study identified the AZ31-SiC composite as a unique material for applications involving a high compressive strength, such as those found in the aviation and automobile
Thillikkani, S.Kumar, N. MathanFrancis Luther King, M.Soundararajan, R.Kannan, S.
This study investigates the heat transfer properties of graphene nanoplatelets (GnPs) blended with distilled water-ethylene glycol (DW-EG) mixtures, focusing on their potential application in battery thermal management systems (BTMS). Compared to other nanoparticles, carbon nanostructures exhibit higher thermal conductivity due to their low density and integrated thermal conductivity. The experimental findings are relevant in that compared with the base fluid, nanofluid samples had heat transfer capability. The physicochemical characteristics of investigated GNP were characterized using a Scanning Electron Microscope (SEM), pH and UV–Vis spectrophotometry. The thermal conductivity and physical properties of graphene platelets having the specific surface area of 500 m2/g in the base fluid of Distilled Water-Ethylene Glycol (DW-EG 70:30) and 100 % vol. of Ethylene Glycol (EG 100) were determined after 120 minutes of sonication time. The graphene nanofluids with the platelet
S, PalanisamySelvan, Arul Mozhi
The search for environmentally friendly and sustainable lubricants for automotive and industrial applications has led to extensive research on bio lubricants as a viable alternative to conventional engine oils and mineral oils. The biodegradable and ecofriendly nature of vegetable oil, makes it an excellent replacement for the depleting mineral oils. Still, a good number of modifications must be brought in, to overcome the drawbacks of vegetable oils. In this work, the preparation and evaluation of lubricating properties like tribological, rheological, thermal etc. of Neem seed oil (NSO) with and without additives were carried out and effectively compared with the lubricating properties of synthetic oil, Polyalphaolefin 6 (PAO 6) and with a commercial engine oil, SAE20W40. The copper oxide nanoparticles were dispersed in neem seed oil as additive in various proportions (0.1, 0.2, 0.3 and 0.4 wt.%) to enhance the tribological properties. The tribological analysis were carried out to
Menon, Krishnaprasad SR, Ambigai
The present study is focused on the integration of phase change materials (PCMs) and Al2O3 nanoparticles into solar stills presents a promising approach to enhance their efficiency. This paper explores the design and performance analysis of a solar still system incorporating PCMs and Al2O3 nanoparticles with different concentration like 200ppm and 400ppm. The primary goal is to investigate the impact of these enhancements on the solar still’s productivity and thermal efficiency.The Aluminium Oxide Nanoparticle were synthesized by chemical co-precipitation method. XRD and TEM were used to characterize the aluminum oxide particles. In this study, Aluminum oxide nanoparticles were employed as thermal conductivity materials, while TN+30 were utilized as a phase change material. After taking about 25 (liters) of water, it was discovered that 1 cm was the ideal depth. Compared to PCM, the energy materials TN+30 and Al2O3 increased collection efficiency with 200 ppm and 400 ppm of 21.65% and
R L, KrupakaranSagaya Raj, GnanaPetla, Ratna KamalaKala, Lakshmi KAnchupogu, Praveen
This paper explores the augmentation of thermal conductivity in paraffin wax through the incorporation of aluminum oxide (Al2O3) and copper oxide (CuO) nanoparticles, leading to the development of composite phase change materials (PCMs). The objective is to enhance heat transfer rates, crucial for various energy storage applications including industrial waste heat recovery and solar thermal energy storage. Differential Scanning Calorimetry (DSC) testing was employed to experimentally investigate the thermal properties of the resulting nanocomposite PCM. The experimental results reveal that the nanocomposite PCM, composed of 96.14% paraffin wax, 2% aluminum oxide, and 1.6% copper oxide, exhibits 1.35 times increase in heat transfer rate compared to conventional paraffin wax. The integration of nanoparticles into the PCM matrix, facilitated by a magnetic stirrer at 50oC for 4 hours, results in uniform distribution and improved grain morphology, as evidenced by SEM images. Moreover, the
Tarigonda, HariprasadKumar, YB KishoreKala, Lakshmi KR L, Krupakaran
These days, aluminum and other material composites are indispensable for a wide range of engineering applications, including automotive-related ones. The machinability investigations of hybrid metal matrix composites (HMMC) made of Al 6061 are reported in this paper. Graphene nanoparticles (GNp) and boron carbide were used to reinforce Al6061 alloy for the experiment. Stir casting was used to create the hybrid composite under the right circumstances. Since HMMC is not easy to machine using conventional machining procedures, the advanced method of electrical discharge machining (EDM) was used. EDM machinability studies were carried out on stir-casted Al-B4C-GNP composite materials to examine the effects of wire EDM machining variables, including current, pulse on, and pulse off, on surface roughness and material removal rate. Taguchi based Desirability function Analysis was used to optimize the EDM process parameters for maximization of the material removal rate (MRR) and minimization
Kala, Lakshmi KMadhuri, KReddy, DamodaraTarigonda, HariprasadR L, KrupakaranTharehallimata, GurubasavarajuNaidu, B Vishnu Vardhana
This paper studies the effect of single vacancy defect on the fundamental frequency of carbon nanotube using finite element method. Cantilevered and bridged boundary conditions have been used for carbon nanotube with and without attached mass. There is less effect on the frequency of cantilevered structure due to presence of defect at center rather than its presence at other positions. Presence of defect near to fixed end shows more effect on fundamental frequency of bridged structure as opposed to other positions. Cantilevered structure with mass attached shows increase in effect due to presence of defect when mass ranges from 10-3 to 10-6 femtogram, while it seems to remain constant with further decrease in mass. This paper is mainly concerned about the overall effect of single vacancy defect at the different positions and with different parameters of carbon nanotube with and without attached mass on the frequency and frequency shift. Nano materials are playing a vital role in all
Kharche, GauravBhaskara Rao, LokavarapuB, SrivatsanBalakrishna Sriganth, PranavBiswas, Sayan
Polyaniline (PANI)-polymer based smart paints have emerged as a promising solution for enhancing the durability and performance of automobile surface coatings. These paint coatings offer a superior corrosion resistance, conductivity, and environmental stability, making it an ideal. Here novel copolymers of dodecylbenzene sulfonic acid(DBSA) aided poly (aniline-co-m-chloroaniline) nanocomposites of various compositions were prepared by oxidative method in micellar solution. These nanocomposites were analyzed by using UV-Vis and FT-IR spectroscopic methods. The crystalline nature of the polymer was evidenced through XRD patterns. SEM revealed the presence of particles with spherical morphology 100 nm in diameter. The electrical activity of the doped polymer was found to be content increasing from 3:1 to 3:3 x 10-2 S/cm to 5.64 x 10-7 S/cm with chloroaniline. These copolymers are added as additives in manufacturing of paint. These novel paints offer multiple protective mechanisms
Pachanoor, VijayanandMoorthi, Bharathiraja
The integration of carbon nanotubes (CNT) into composite materials has revolutionized various high-performance industries, including aerospace, marine, and defense, for their exceptional thermal, mechanical, and electrical properties. The critical nature of these applications demands precise control over the manufacturing process to ensure the optimal performance of the CNT-reinforced composites. This study employs the Taguchi approach to systematically investigate and determine the optimal proportion of CNT volume fraction, fiber volume fraction, and stacking sequence in composite materials to achieve the optimal fundamental frequency. The Taguchi method, known for its efficiency in optimizing design parameters with a minimal number of experiments, enables the identification of the most influential factors and their optimal levels for enhancing material properties. Our findings demonstrate that the proper arrangement and proportioning of these components significantly improve the
B, SrivatsanBalakrishna Sriganth, PranavBhaskara Rao, LokavarapuBiswas, Sayan
The article describes a two-step technique that involves making a masterbatch that is 3:1 [by weight] carboxylated nitrile rubber (XNBR) and nanoclay (NC), compounding on a two-roll mill, and moulding at 150°C and 20 MPa pressure. Tensile strength (TS), elongation at break (EB), and modulus (M100, M200 and M300) all rises with the amount of nanofiller present, peaked at 5 phr, then fell off. The NC demonstrated a tendency to aggregate at greater concentrations. The amount of reinforcement provided by the NC filler can be determined by comparing the modulus of filled compounds (M100f) to that of unfilled XNBR (M100u). This ratio rises with the amount of NC present, peaked at 5-7.5 phr, and subsequently fell. Using sorption isotherms, the swelling behaviour of the solvent through the nanocomposites was studied. With increasing NC concentration, the solvent absorption fell, reaching a minimum at 5 phr NC. When toluene sorption for diffusion via XNBR-NC composites was measured, the amount
Vishvanathperumal, S.Manimaran, K.Murali, M.Meera, C.Gopika, P.Arun, M.
The objective of this study is to optimize and characterize an Al6061/Al2O3/MWCNT nanocomposite produced through stir casting. The investigation focused on various concentrations of 2%, 3%, and 5% by weight of Al2O3/MWCNT nanoparticles, with an average Al2O3 particle size of 40 nm. The Al6061 matrix exhibited a uniform distribution of these nanoparticles. Microstructural analysis of the nanocomposite was conducted using scanning electron microscopy. The study examined the tribological properties, including wear and coefficient of friction, as well as the tensile strength and hardness of the Al6061/Al2O3/MWCNT nanocomposites. The results indicated a significant enhancement in mechanical properties, with the ultimate tensile strength (UTS) increasing from 122 MPa to 157 MPa, and the yield tensile strength (YTS) rising from 52 MPa to 76 MPa. At a 5% concentration of Al2O3/MWCNT, the hardness test showed an increase from 28 BHN to 55 BHN. The improvement ratios for 2%, 3%, and 5
Haridass, R.Subramani, N.Viknesh, S.Mathan Kumar, M.Mownitharan, M. S.
Magnesium oxide (MgO) nanofluids are of great interest for enhancing the performance in thermal management especially in automotive applications, where efforts have been made to reduce parasitic losses from traditional cooling systems. These findings highlight the effects of Water–ethylene glycol and MgO nanofluids on viscosity and thermal conductivity in specific filling a gap in research that allows to clarify how these states behave at different temperature (T) and concentration (C) conditions. Test results demonstrate that the thermal conductivity of MgO nanofluids improved adequately /while its corresponding change in viscosity remained under control, affirming a significant improvement for energy savings by means heat transfer enhancement using new generation coolants based on this nano-additive. The results also provide useful information for design and development of automotive cooling systems, including real numbers on performance improvements that lead to more efficient and
Jeyanthi, P.
This study’s objective is to examine the combustion and performance of mosambi waste peel biodiesel (MWPB) combined with butylated hydroxytoluene (BHT) nanoparticles as a substitute fuel for diesel engines. It also aims to assess the impact of this blend on engine combustion, such as in-cylinder pressure, heat release rate (HRR), ignition delay (ID), combustion duration (CD) and mass fraction burnt (MFB) and performance indicators, including brake thermal efficiency (BTE), brake-specific energy consumption (BSEC), engine torque, exhaust gas temperature (EGT), indicated mean effective pressure (IMEP), air-fuel ratio (A/F ratio) and volumetric efficiency, while also considering the feasibility of employing waste materials in fuel generation. The experimental configuration utilized a research diesel engine functioning under standard conditions, emphasizing the maintenance of uniform injection pressure to ensure optimal fuel atomization and combustion. The test fuels are diesel, MWPB, MWPB
Jayabal, RavikumarMadhu, S.Devarajan, YuvarajanDomian, Christopher Selvam
The present aim of the investigation is to prepare and evaluate the excellence of boron nitride (BN) and silicon carbide nanoparticles on characteristics of magnesium alloy (AZ91D) hybrid nanocomposite. This constitution of AZ91D alloy hybrid nanocomposite is made through the liquid state processing route, which helps to improve the spread of particles in the AZ91D matrix. The impact of BN and SiC on microstructural and mechanical properties like tensile strength, hardness, and impact strength of AZ91D alloy composites are studied, and its investigational results are compared. Besides, microstructural studies have revealed that the structure of composite is found to have better BN and SiC particle dispersion and uniformity. The 5 percentage in weight (wt%) of BN and 5 wt% of SiC facilitated better tensile strength (183 MPa), hardness (85HV), and impact strength (21.4J/mm2) behaviour, which are 26, 30, and 35% better than the monolithic AZ91D alloy. This AZ91D/5wt% BN and 5wt% SiC
Venkatesh, R.Kaliyaperumal, GopalManivannan, S.Karthikeyan, S.Mohanavel, VinayagamSoudagar, Manzoore Elahi MohammadKarthikeyan, N.
The research introduces the thermal properties of silicon dioxide (SiO2) nanofluids and the promising application of these fluids in hybrid vehicle cooling systems. How to make fluids is simply to disperse a 50-50 mixture of both Ethylene Glycol and Water; into this solution add SiO2 nanoparticles concentration ranges from 0.1% up to 0.5% volume according desired properties or material characteristics etc. When viscosities and thermal conductivities of nanofluid were measured over the temperature range from 25 to 120 °C using Brookfield viscometer and transient hot-wire method; results were as follows: Viscosity of SiO2 nanofluids at 120°C higher concentrations 0.5%, more viscous fluids, thermal conductivity also rose with results, although there was a plateau at around 40% increase compared to that of water-based slurries. At 0.5% concentration, thermal conductivity increased by up to 20% at 120 °C, compared with the value of pure ethylene glycol. These results suggest that SiO2
Sundaram, V.Madhu, S.Vidhyalakshmi, S.Saravanan, A.Manikandan, S.
With the advancement of lightweight magnesium-based hybrid composites, are potential for weight management applications. The liquid state stir cast process is the best way to produce complex shapes and most industries are preferred. However, the melting of magnesium alloy and achieving homogenous particle distribution are the major challenges for the conventional stir-casting process, and hot crack formation is spotted due to thermal variations. The main objectives of the present research are to enhance the microstructural and mechanical behaviour of magnesium alloy hybrid nanocomposite (AZ91E) adopted with boron carbide (B4C) and alumina (Al2O3) nanoparticles through a semisolid stir cast technique associated with inert atmosphere helps to limits the oxide formation and reduce risk of magnesium fire. The effect of composite processing and multiple reinforcements on surface morphology, tensile strength, impact strength, and hardness were thoroughly evaluated and compared. The results
Manivannan, S.Venkatesh, R.Kaliyaperumal, GopalKarthikeyan, S.Mohanavel, VinayagamSoudagar, Manzoore Elahi MohammadKarthikeyan, N.
In this study, we investigate the thermal conductivity optimization of nanodiamond nanofluids for application in high-performance automotive engines. Nanodiamond particles, known for their superior thermal properties and stability, are dispersed in a base fluid composed of ethylene glycol and water. Various concentrations of nanodiamonds are prepared to evaluate their impact on thermal conductivity and viscosity. The experimental setup includes precise measurements of thermal conductivity using the transient hot-wire method and viscosity using a rotational viscometer over a temperature range of 25°C to 100°C. The results demonstrate significant enhancements in thermal conductivity with acceptable increases in viscosity, suggesting the potential of nanodiamond nanofluids in improving engine cooling efficiency. The study concludes with recommendations for future research to explore the long-term stability and performance of these nanofluids in real-world automotive applications.
Jeyanthi, P.Gulothungan, G.
This study points to potentiality of studying Aluminum Oxide (Al2O3) nanofluid on viscosity (μ) and thermal conductivity (K) for automotive cooling system. The Al2O3 nanoparticles dispersed in 50:50 ethylene glycol-water with5 varying concentrations of 0.1, 0.2, 0.3, 0.4 and 0.5 vol%. The viscosity at 25°C, 40°C, 60°C and 80°C was measured by using a Brookfield viscometer; and thermal conductivity was measured by the transient hot wire method. The results indicate that the viscosity increases with the concentration of nanoparticles but decreases with the temperature. Due to comparative importance of thermal conductivity with increasing temperatures and nanoparticle concentrations. In nanofluid Al2O3 can enhance heat transfer automotive cooling system can be good performance and efficient as well as engine, in 0.5% concentration, thermal conductivity at 25°C and increase 27% at 60°C, paranormal found for development and Al2O3 nanofluids apply can be effective improvement at heat
Vickram, A.S.Manikandan, S.Madhu, S.Saravanan, A.
In this study, the viscosity and thermal performance of nanofluids based on ZnO-MgO mixed oxide nanoparticles added in different concentrations to ethylene glycol-water mixture are characterized with potential applications in engine cooling. The work began with two needs: the increasing importance of better heat removal in automotive engines, where traditional coolants struggle to adequately maintain good thermal conductivity but at low viscosity to acceptable levels; and a chance opportunity for exploration provided by MMD/MILab Engineer Andrew Cricee. The work wants to improve the cooling properties, but still keeping good fluidity by integrating ZnO-MgO nanoparticles. Preparation method the preparation of ZnO-MgO nanofluids was done using volume concentrations of 0.1%, 0.3% and 0.5%. To determine chemical properties, viscosity measurements were made on the Dragonfly using a Brookfield viscometer at temperatures ranging from 25 ° C to 80 ° C while varying the nanoparticle
Manikandan, S.Vickram, A. S.Madhu, S.Saravanan, A.
The main aim of this experimental study is to investigate the wear properties of a hybrid composite material composed of a banana fibre mat, rice husk powder, and an epoxy matrix polymer filled with multi-walled carbon nanotubes (MWCNT). This research emphasizes the assessment of the composite's characteristics and behaviour. The adjustment of various ratios of fibres and fillers within polymer matrix hybrid composites finds application in numerous engineering fields, particularly in the automotive and aerospace industries. The experimental evaluation is conducted using a pin-on-disk wear tester to analyze the specimens in terms of pin wear, friction coefficient, and friction force. Experimental trials were conducted using L9 orthogonal arrays following the Taguchi design of experiments, and the output response was optimized by implementing a hybrid approach of Gray relational analysis. It depends upon the suitability of the wear performance needs of the application to obtain the
Senthilkumar, N.Ramu, S.Yuvaperiyasamy, M.Sabari, K.
Nanofluids have emerged as effective alternatives to traditional coolants for enhancing thermal performance in automotive applications. This study conducts a comparative analysis of the viscosity and thermal conductivity of ZnO and Cu hybrid nanofluids. Nanofluids were prepared with ZnO and Cu nanoparticle concentrations of 0.1%, 0.3%, and 0.5% by volume and were characterized over temperatures ranging from 25°C to 100°C. The results demonstrate that ZnO and Cu hybrid nanofluids achieve an increase in thermal conductivity by up to 22% and 28%, respectively, compared to the base fluid. Concurrently, the viscosity of these nanofluids increases by up to 12% at the highest concentration and temperature. This study addresses a critical research gap by investigating the combined effects of ZnO and Cu nanoparticles in hybrid nanofluids, an area that has been underexplored. By providing new insights into optimizing both thermal conductivity and viscosity, this research contributes to the
Sivasubramanian, M.Sundaram, V.Madhu, S.Saravanan, A.Vidhyalakshmi, S.
A lightning strike during raining season causes significant risks to automobiles, especially modern vehicles mostly dependent on electronic systems. Lightning can cause severe damage to electronic control unit that control the vehicle functions such as engine management, electrical circuits with sensors, braking systems, and safety features. Therefore, this research work focused for developing new electrical polymers with better conductive properties that would create a path for lightning to travel without damaging it. In-situ chemical oxidative polymerization was used to develop a new series of functional electroactive nanocomposites based on silver nanoparticles embedded poly (aniline-co-3-chloroaniline) matrix. Here we would suggest these electroactive polymers can be widely used as additive in paint manufacturing as special coatings in automobiles industry. Because of the internal chemical bonds and internal structure of these materials acts as a semiconducting nature, hence they
Pachanoor, VijayanandMoorthi, Bharathiraja
Anode material, responsible for the critical storage and release of lithium ions during charge and discharge cycles, holds paramount importance. By strategically altering the material design and composition of the current graphite, researchers aim to significantly improve fast charging capabilities, energy density, cycling stability and overall electrochemical kinetics within Lithium ion battery. Anode materials operate through three primary mechanisms: insertion/de-insertion that is allowing for reversible lithium ion accommodation within the host structure; alloying, where lithium ions form chemical bonds with the anode material; and conversion reactions, involving the creation of new phases during charge/discharge cycles. This review delves into a captivating array of advanced anode materials with the potential to surpass the limitations of traditional graphite. Carbon-based nanomaterials like graphene and its derivative, reduced graphene oxide, offer exceptional conductivity and
Borkar, ShwetaNahalde, SujayRuban J S, AlwinMore, Hemant
Recently, there has been a growing emphasis on Thermal Management Systems (TMS) for Lithium-ion battery packs due to safety concerns related to fire risks when temperatures exceed operating limits. Elevated temperatures accelerate electrochemical reactions, leading to cell degradation and reduced electronic system performance. These conditions can cause localized hotspots and hinder heat dissipation, increasing the risk of thermal runaway due to high temperatures, flammable gases, and heat-producing reactions. To tackle these issues, many automotive manufacturers employ indirect liquid cooling techniques to maintain battery pack and electronic system temperatures within safe limits. Engineered nanofluids, particularly those containing multi-nanoparticles dispersed in water and ethylene glycol, are being explored to enhance electrical safety in case of accidental exposure to electrical systems in EVs. This paper focuses on the experimental characterization of nanofluid containing
Nahalde, SujayHonrao, GauravMore, Hemant
The future of space travel is seemingly changing by the day and a Coventry University academic is doing his bit to stay at the front of the space race.
This breakthrough promises to significantly enhance the safety and performance of lithium-ion batteries (LIBs), addressing a critical challenge in energy storage technology.
This paper explores the groundbreaking applications of plasma propulsion engines and advanced nanomaterials in low-altitude aircraft, addressing the challenges and recent technological advancements that make such applications feasible. Traditional space plasma thrusters operate effectively in near-vacuum conditions by taking advantage of the ease of plasma ignition at low pressures. However, these thrusters face significant difficulties when operated at near-atmospheric pressures found in low-altitude environments, where plasma ignition is challenging. This paper highlights recent breakthroughs in high-pressure plasma glow discharge technology and the integration of nanomaterials, which together enable the use of plasma propulsion engines in low-altitude aircraft. These innovations offer substantial advantages over conventional engines, including higher efficiency, reduced emissions, and the potential to fundamentally change the propulsion systems of low-altitude aircraft.
Ma, XinDing, ShuitingPan, YilunLiu, JinshuoQiao, HuizheYang, Jincai
Researchers have shown that twisted carbon nanotubes can store three times more energy per unit mass than advanced lithium-ion batteries. The finding may advance carbon nanotubes as a promising solution for storing energy in devices that need to be lightweight, compact, and safe, such as medical implants and sensors.
A flexible and stretchable cell has been developed for wearable electronic devices that require a reliable and efficient energy source that can easily be integrated into the human body. Conductive material consisting of carbon nanotubes, crosslinked polymers, and enzymes joined by stretchable connectors, are directly printed onto the material through screenprinting.
Researchers have discovered that minuscule, self-propelled particles called “nanoswimmers” can escape from mazes as much as 20 times faster than other passive particles. The tiny synthetic nanorobots are incredibly effective at escaping cavities within maze-like environments.
When wounds happen, we want them to heal quickly and without complications, but sometimes infections and other complications prevent it. Chronic wounds are a significant health concern affecting tens of millions of Americans.
Vehicle light-weighting constitutes a critical component in the automotive sector’s drive to improve fuel economy and reduce greenhouse gas emissions. Among the various options for lightweight materials, thermoplastic foams are distinguished by their durability, low weight, and environmental sustainability. This study explores the manufacturing of novel graphene-filled polypropylene (PP) foam, employing supercritical nitrogen as an eco-friendly substitute instead of conventional chemical foaming agents, and investigated the role of over-molding a solid skin over a foamed core on the flexural strength of the molded component. Our approach is broken down into four distinct investigations—Study I investigated the effect of different graphene content by weight percentage (wt.%), namely 0.1%, 0.5%, and 1%, on flexural properties and foam morphology obtained for 15 wt.% reduction of the PP thermoplastic, thereby helping identify an optimum graphene loading wt.%. Study II broadened the wt
Pradeep, Sai AdityaDeshpande, Amit MakarandShah, BhavikKhan, SaidaFarahani, SaeedSternberg, JamesLi, GangPilla, Srikanth
In this investigation, AA6351 alloy matrix composites with a larger volume proportion of SiC (20 wt%) were fabricated and tested for microstructure and mechanical behavior. Composites were hot extruded from mechanically milled matrix and reinforcements. Hot extrusion uniformly distributed reinforcements in the matrix and strengthened phase interaction. Mechanical ball milling causes AA6351 powder to become more homogeneous, reducing the mean particle size from 38.66 ± 2.31 μm to 23.57 ± 2.31 μm due to particle deformation. The micrograph shows that the SiC particles are equally dispersed in the AA6351 matrix, avoiding densification and reinforcing phase integration issues during hot extrusion. In hot extrusion, SiC particles are evenly distributed in the matrix, free of pores, and have strong metallurgical bonds, resulting in a homogenous composite microstructure. SiC powders and mechanical milling increase microhardness and compressive strength, giving MMC-A 54.9% greater than AA6351
Saiyathibrahim, A.Murali Krishnan, R.Jatti, Vinaykumar S.Jatti, Ashwini V.Jatti, Savita V.Praveenkumar, V.Balaji, K.
Engineers at the University of California San Diego have developed an ultra-sensitive sensor made with graphene that can detect extraordinarily low concentrations of lead ions in water. The device achieves a record limit of detection of lead down to the femtomolar range, which is one million times more sensitive than previous sensing technologies.
Borophene is more conductive, thinner, lighter, stronger, and more flexible than graphene, the 2D version of carbon. Now, researchers have made the material potentially more useful by imparting chirality — or handedness — on it, which could make for advanced sensors and implantable medical devices. The chirality, induced via a method never before used on borophene, enables the material to interact in unique ways with different biological units such as cells and protein precursors.
Advances in optical sensors and imaging technologies are ever more rapidly assimilated into how humans interact, understand themselves, and explore the world around them. The scope of inquiry for optical devices is broad and they enable technologies within, such as implanted transdermal bioMEMS devices, and beyond, or as space-flight surveyors deployed as near and deep space instruments. Central to the functionality of modern optical devices, ultra-narrow bandpass (UNBP) thin-film optical filters enable discrimination of sub-nanometer bands inside broad spectra. These filters, pioneered as NIR DWDM filters for the telecommunications industry, are now essential in extracting meaningful signal from imaging and sensing devices operating anywhere between the deep ultraviolet and the mid infra-red bands.
University of Rochester Medical Center Rochester, NY
The present work deals with the effects of nano-additives on ternary blend biodiesel fuel added in diesel engine. The ternary blend comprises of mustard oil biodiesel and rice bran oil biodiesel, synthesized by means of transesterification and diesel. Nano-additives used in the current study include carbon nanotubes (CNT) and MgO/MgAl2O4 spinel, which were added in a suitable concentration to the biodiesel. CNTs were procured from the market and MgO/MgAl2O4 spinel was prepared by co-precipitation via ball milling process. The nano-additives were characterized by means of FTIR (Fourier transform infrared spectroscopy), AFM (atomic force microscopy), and DSC (differential scanning calorimetry) analysis. Biodiesel blend samples were prepared such as B20 (20% biodiesel + 80% diesel), B20 + CNT (1000 PPM), B20+MgO/MgAl2O4 spinel (1000 PPM), and B20+CNT+MgO/MgAl2O4 spinel (1000 PPM) were tested against diesel fuel. The maximum increase in brake thermal efficiency (BTE), oxides of nitrogen
Jeyakumar, NagarajanDhinesh, BalasubramanianPapla Venugopal, Inbanaathan
This research explores the experimental analysis of titanium alloy using an innovative approach involving a 2–7% carbon nanotube (CNT)-infused cubic boron nitride (CBN) grinding wheel. Employing a full-factorial design, the study systematically investigates the interactions among varied wheel speed, workpiece feed rate, and depth of cut, revealing compelling insights. The integration of CNTs in the CBN grinding wheel enhances the machining performance of titanium alloy, known for its high strength and challenging machinability. The experiment varies CNT infusion levels to assess their impact on material removal rate (MRR) and surface finish. Significantly, MRR is influenced by CNT content, with 5% and above demonstrating optimal performance. The 7% CNT-CBN wheel exhibits a remarkable 61% improvement in MRR over the conventional CBN wheel. Interaction studies highlight the pivotal role of depth of cut, indicating that slower speeds and feeds, combined with increased depth of cut
Stephen, Deborah SerenadeSethuramalingam, Prabhu
The demand for enhanced safety and extended lifespan of brake systems prompts the investigation to increase the static mechanical properties and fatigue resistance of commercial vehicle brake spiders through the incorporation of niobium nanoparticles into a cast iron alloy. This study aims to improve the material structure as well as the static and dynamic mechanical properties of the component. Chemical, microscopic, and mechanical analyses were conducted in samples of the nanostructured alloy and in the spider. A durability test was performed using a structural bench called “Chuker” to assess the potential increase in fatigue life. The Chuker is capable of simulating a real-world brake system condition, including torque magnitudes up to 17.5 kNm, which are the highest to be withstand by the designed brake power. This torque replicates the brake system activation during a vehicle emergency braking. The spiders manufactured with the nanostructured alloy exhibited most uniform
Titton, Angelo PradellaTuzzin, MatheusLopes, Carlos H. R.Marcon, LucasBoaretto, JoelKlein, Aloísio N.Cruz, Robinson C. D.
Membranes of vertically aligned carbon nanotubes (VaCNT) can be used to clean or desalinate water at high flow rate and low pressure. Recently, researchers of Karlsruhe Institute of Technology (KIT) and partners carried out steroid hormone adsorption experiments to study the interplay of forces in the small pores. They found that VaCNT of specific pore geometry and pore surface structure are suited for use as highly selective membranes. The research was published in Nature Communications.
Innovators at NASA’s Glenn Research Center have made several breakthroughs in treating hexagonal boron nitride (hBN) nanomaterials, improving their properties to supplant carbon nanotubes in many applications. These inventors have greatly enhanced the processes of intercalation and exfoliation. Both processes are crucial in creating usable nanomaterials and tailoring them for specific engineered applications.
Graphene has been called “the wonder material of the 21st century.” But graphene has a dirty little secret: it’s dirty. Now, engineers at Columbia University and colleagues at the University of Montreal and the National Institute of Standards and Technology are poised to clean things up with an oxygen-free chemical vapor deposition (OF-CVD) method that can create high-quality graphene samples at scale. Their work, published in Nature, directly demonstrates how trace oxygen affects the growth rate of graphene and identifies the link between oxygen and graphene quality for the first time.
Since the beginning of time, people have desired the best materials for production. Metals are often too heavy to be used in manufacturing. Polymer matrix composites (PMC) can be considered more dependable than metals in practical applications because of their high strength-to-weight ratio so it is a good alternative of metals. The article’s objective is to investigate the various PMC properties that are reinforced with carbon fiber. CFRP (Carbon fiber-reinforced polymer) was first made using the hand layup method with carbon fiber as a reinforcement and epoxy resin as a matrix after a thorough literature review. As CFRP have higher stiffness and superior “strength-to-weight ratio,” fiber-reinforced polymer (FRP) composites perform notably better than various conventional metallic materials. The qualities of the matrix can be changed to enhance the characterization of FRP composites. The mechanical qualities of FRP composites have risen as a result of significant advancements in the
Haider, RehanSingh, Pradeep KumarSharma, Kamal
Items per page:
1 – 50 of 1187