Browse Topic: Heat treatment

Items (11,120)
This specification establishes process controls for the repeatable production of sintered parts by binder jet additive manufacturing (BJAM). It is primarily intended to be used to manufacture metallic or ceramic aerospace parts, but usage is not limited to such applications.
null, null
Aluminum-lithium alloys are extensively used across various industries due to their exceptional strength-to-weight ratio, excellent fatigue/corrosion resistance and good thermal stability. These attributes, combined with improved weldability and ease of fabrication, make them ideal for lightweight engineering applications in sectors such as aerospace, automotive, and defense. Additive manufacturing (AM) offers unique opportunities to fully leverage the potential of aluminum-lithium alloys by enabling the fabrication of complex geometries, minimizing material waste, and supporting on-demand production. This paper explores the significance of lightweight materials, traces the evolution of aluminum-lithium alloys and provides a comprehensive overview of their AM. It discusses the properties and real-world applications of these alloys and examines various AM techniques employed in their processing. Key advancements in the AM of aluminum-lithium alloys are reviewed, including novel alloy
Santhana Babu, A.V.Antony Benson, B.Danusha, M.
Earthmoving machines are equipped with a variety of ground-engaging tools that are joined by bolted connections to improve serviceability. These tools are made from heat-treated materials to enhance their wear resistance. Attachments on earthmoving machines, including buckets, blades, rippers, augers, and grapples, are specifically designed for tasks such as digging, grading, lifting, and breaking. These attachments feature ground-engaging tools (GET), such as cutting bits or teeth, to protect the shovel and other earthmoving implements from wear. Torquing hardened plates of bolted joint components is essential to ensure uniform load distribution and prevent premature failure. Therefore, selecting the proper torque is an important parameter. This study focuses on analyzing various parameters that impact the final torque on the hardened surface, which will help to understand the torque required for specific joints. Several other parameters considered in this study include hardware
Parameswaran, Sankaran PottiBhosale, DhanajiKumar, Rajeev
Over the past 25 years, the heavy fabrication and construction equipment industry has experienced significant transformation. Driven by a global surge in demand for construction machinery, manufacturers are under increasing pressure to deliver higher volumes within shorter timelines and at competitive costs. This demand surge has been compounded by workforce-related challenges, including a declining interest among the new generation in acquiring traditional manufacturing skills such as welding, heat treatment, and painting. Furthermore, the industry faces difficulties in staffing third-shift operations, which are essential to meet production targets. The adoption of automation technologies in heavy fabrication and construction equipment manufacturing has been gradual and often hindered by legacy product designs that were optimized for conventional manufacturing methods. As the industry transitions toward smart, connected manufacturing environments under the industry 4.0 paradigm, it
Saseendran, UnnikrishnanBhorge, Pankaj
In an attempt to reduce CO2 release from alloy wheel production, we have developed an aluminum alloy for casting that satisfies necessary property requirements using recycled aluminum, but without heat treatment. The wheel is a critical safety feature of any vehicle, and it should have toughness and strength .In many wheels, virgin aluminum containing small amounts of impurities is used to maintain toughness, and heat treatment (T6), which is post-casting quick heating and quenching, is applied to provide strength. At the start of this project, we focused on two wheel-manufacturing processes, production of virgin aluminum and heat treatment, from which a large amount of CO2 is released. By switching to recycled aluminum, CO2 was reduced to one-ninth the original amount. The issue with recycled material is that impurities grow in the metal structures as intermetallic compounds and this reduces toughness. To deal with this issue, we have chosen high-pressure die casting (HPDC), in which
Suzuki, Noritaka
This specification covers a fluorosilicone (FVMQ) rubber in the form of molded rings.
AMS CE Elastomers Committee
AE-8C2 Terminating Devices and Tooling Committee
This study aims at examining the effect of tool rotational speed on the microstructural and mechanical properties of friction stir welded joints of AA6061 aluminum alloy, both pre- and post-heat treatment. The quality of the joints was assessed initially through tensile, hardness, and charpy impact tests, as well as microscopic observations. During the second stage, solid solution heat treatments were conducted at 535°C, followed by aging on additional specimens welded at identical speeds. The latter underwent hardness tensile tests and microscopic examinations. A comprehensive assessment of the outcomes from various tests validated the influence of metallurgical phenomena, including recrystallization, precipitation, and structural defects on overall resistance. The results showed an improvement in strength, ductility, and impact energy was observed in the case of welding at high rotation speed (1400 rpm). At the same speed, ductility almost doubled after post-weld heat treatment
Bouchelouche, FatimaDebih, AliOuakdi, Elhadj
This specification covers flash welded rings made of corrosion and heat-resistant austenitic steels and austenitic-type iron, nickel, or cobalt alloys, or precipitation-hardenable alloys.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers flash welded rings made of ferritic and martensitic corrosion-resistant steels.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification, in conjunction with the general requirements for steel heat treatment covered in AMS2759, establishes the requirements for annealing of austenitic corrosion-resistant steel parts. Parts are defined in AMS2759. General ordering instructions are specified in AMS2759.
AMS F Corrosion and Heat Resistant Alloys Committee
Additive Manufacturing is currently being utilized to improve military readiness by transforming maintenance operations and the supply chain associated with repairing or replacing parts or components on legacy vehicles. The National Institute for Aviation Research at Wichita State University is collaborating with the Army Ground Vehicle Systems Center in the creation of a rapid qualification framework for various additive manufacturing materials and processes to support the modernization and sustainment of ground vehicles. Currently, a rapid qualification 17-4PH stainless steel material is being executed utilizing Laser Powder Bed Fusion and Direct Energy Deposition additive manufacturing processes. Prior to entering the rapid qualification, pre-qualification screening studies are performed to select the feedstock and develop process control to limit risk within the qualification. An overview of the pre-qualification screening studies performed in selecting the feedstock and heat
Tomblin, JohnAndrulonis, RachaelSaathoff, BrandonThomas, AnnikaDaharsh, ColeLowney, MatthewWalker, Eric
This specification covers the requirements for producing a continuous compound zone (white layer) with controlled extent of porosity by means of a gaseous process, automatically controlled to maintain nitriding and carburizing potentials that determine properties of the nitrocarburized surface. Automatic control is intended to ensure repeatability of nitrogen and carbon content of the compound zone, which influences properties such as wear and corrosion resistance, ductility, and fatigue strength.
AMS B Finishes Processes and Fluids Committee
This specification covers an aluminum alloy in the form of investment castings (see 8.6).
AMS D Nonferrous Alloys Committee
This SAE Aerospace Recommended Practice (ARP) describes training and approval of personnel performing certain thermal processing and associated operations that could have a material impact on the properties of materials being processed. It also recommends that only approved personnel perform or monitor the functions listed in Table 1.
AMS B Finishes Processes and Fluids Committee
This specification covers an aluminum alloy in the form of permanent mold castings (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers a corrosion- and heat-resistant cobalt alloy in the form of investment castings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aluminum alloy in the form of extruded bars, rods, and profiles (shapes) from 0.375 to 1.300 inches (9.53 to 33.02 mm) in diameter or thickness, produced with cross-sectional area of 22.5 square inches (145 cm2), maximum, and a circumscribing circle diameter (circle size) of 17.4 inches (44.2 cm), maximum (see 2.4 and 8.8).
AMS D Nonferrous Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of investment castings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant iron alloy in the form of investment castings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification, in conjunction with the general requirements for steel heat treatment in AMS2759, establishes requirements for thermal stress-relief treatments of parts manufactured from the following materials: a Carbon and low-alloy steels b Tool steels c Precipitation-hardening, corrosion-resistant, and maraging steels d Austenitic corrosion-resistant steels e Martensitic corrosion-resistant steels
AMS E Carbon and Low Alloy Steels Committee
This specification covers a corrosion-resistant steel in the form of sheet, strip, and plate 0.002 inch (0.05 mm) and above in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers beryllium in the form of bar, rod, tubing, and shapes fabricated from beryllium powder consolidated by hot isostatic pressing (HIP) (see 8.5).
AMS G Titanium and Refractory Metals Committee
This specification covers a corrosion-resistant steel in the form of sheet and strip over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant steel in the form of sheet, strip, and plate over 0.005 inch (0.13 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers the engineering requirements for producing brazed joints in parts made of steels, iron alloys, nickel alloys, and cobalt alloys using gold-nickel alloy filler metal.
AMS B Finishes Processes and Fluids Committee
This specification covers an aircraft-quality, low-alloy steel in the form of bars, forgings, and forging stock.
AMS E Carbon and Low Alloy Steels Committee
This specification covers an aircraft-quality, low-alloy steel in the form of sheet, strip, and plate.
AMS E Carbon and Low Alloy Steels Committee
This specification covers an aircraft-quality, low-alloy steel in the form of sheet, strip, and plate.
AMS E Carbon and Low Alloy Steels Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of sheet, strip, and plate up to 1.000 inch (25.40 mm) in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a high-strength, corrosion-resistant alloy in the form of bars up to 1.75 inches (44.4 mm) in diameter (see 8.2).
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a high-strength, corrosion-resistant alloy in the form of bar up to 1.75 inches (44.4 mm) in diameter (see 8.2).
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an iron-nickel alloy in the form of strip 0.020 to 0.1874 inch (0.51 to 4.760 mm), inclusive, in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers the procurement of granular heat-treating salts suitable for use in the molten state.
AMS B Finishes Processes and Fluids Committee
This specification covers an aluminum alloy in the form of sheet and plate 0.020 to 6.000 inches (0.551 to 152.4 mm), inclusive, in thickness (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers a corrosion-resistant steel in the form of sheet, strip, and foil.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aluminum alloy in the form of plate 0.250 to 4.000 inches (6.35 to 101.60 mm), inclusive, in thickness (see 8.6).
AMS D Nonferrous Alloys Committee
This SAE Aerospace Standard (AS) establishes the requirements for 24° cone flareless fluid connection fittings and nuts and bite type flareless sleeves for use in aircraft fluid systems at an operating pressure of 5000 psi for the fittings and nuts and 3000 psi for the bite type sleeves.
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This specification covers an aluminum alloy in the form of plate 0.750 to 1.500 inches, incl (19.05 to 38.10 mm, incl) in thickness (see 8.6).
AMS D Nonferrous Alloys Committee
This SAE Standard covers normalized electric-resistance welded flash-controlled single-wall, low-carbon steel pressure tubing intended for use as pressure lines and in other applications requiring tubing of a quality suitable for bending, double flaring, beading, forming, and brazing. Material produced to this specification is not intended to be used for single flare applications, due to the potential leak path caused by the Inside Diameter (ID) weld bead or scarfed region. Assumption of risks when using this material for single flare applications shall be defined by agreement between the producer and purchaser. This specification also covers SAE J356 Type-A tubing. The mechanical properties and performance requirements of SAE J356 and SAE J356 Type-A are the same. The SAE J356 or SAE J356 Type-A designation define unique manufacturing differences between coiled and straight material. Nominal reference working pressures for this tubing are listed in ISO 10763 for metric tubing, and SAE
Metallic Tubing Committee
This specification covers a corrosion-resistant steel in the form of cold-worked bars and wire up to 1.750 inches (44.45 mm), inclusive, in nominal diameter or least distance between parallel sides.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of sheet and strip 0.005 inch (0.13 mm) and over in nominal thickness.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of sheet and strip.
AMS F Corrosion and Heat Resistant Alloys Committee
This research examined maraging steel (C300), which is widely used in the automotive industry. The study investigated how various 3D printing parameters—laser power (P), scanning speed (V), and layer spacing (H)—as well as post-processing heat treatment factors such as time (t) and temperature (T) affect the properties of C300 steel produced via selective laser melting (SLM). The primary properties assessed included relative density, porosity, hardness, and microstructure. The first part of the analysis focused on how processing parameters, time, and temperature influenced porosity types and manufacturing defects. Subsequently, ANOVA was employed to explore the sensitivity of relative density and microhardness to these parameters. The results revealed an optimal combination of parameters that improved both microstructural and mechanical properties. Additionally, the post-processing heat treatment was found to impact microhardness by modifying the microstructure and martensite lath size
Jaballah, OlaOmidi, NargesIltaf, AsimBarka, NoureddineEl Ouafi, Abderrazak
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This specification covers a nickel-aluminum-bronze alloy in the form of sand, centrifugal, and continuous castings (see 8.5).
AMS D Nonferrous Alloys Committee
Items per page:
1 – 50 of 11120