Browse Topic: Casting

Items (2,634)
Nowadays, more than in the recent decades, the design process for the body in white for passenger cars is driven by efficiency. This results in the enhanced usage of large-scale cast components made of aluminum, for the battery compartment, the front or rear body and other components. While the automotive industry is striving towards even larger structures made with so-called “Giga-Casting”, challenges in the casting and supply chain processes, but also maintenance and repair processes of these large structures, arise. Other tasks to solve might follow from controlling local microstructures, and thus the strength of the parts, when the flow length of the molten metal increases with component size, especially in relation to an increased fraction of recycled aluminum. Within the Fraunhofer-internal project “FutureCarProduction”, focus is directed towards understanding what drives efficiency, availability and sustainability of modern processes for the production of a car body. Moreover
Bleicher, ChristophQaralleh, AhmadLehmhus, DirkHaesche, MarcoFernandes Gomes, LeonardoPintore, ManuelKleinhans, RobertSommer, SilkeTlatlik, Johannes
Solid state joining processes are attractive for magnesium alloys as they can offer robust joints without the porosity issue typically associated with welding of magnesium and dissimilar materials. Among these techniques, Self-Piercing Riveting (SPR) is a clean, fast and cost-effective method widely employed in automotive industry for aluminum alloys. While SPR has been proven effective for joining aluminum and steel, it has yet to be successfully adapted for magnesium alloy castings. The primary challenge in developing magnesium SPR technology is the cracking of the magnesium button, which occurs due to magnesium's low formability at room temperature. Researchers and engineers approached this issue with several techniques, such as pre-heating, applying rotation to rivets, using a sacrificial layer and padded SPR. However, all these methods involve the employment of new equipment or introduction of extra processing steps. The aim of this work is to develop a SPR technique which adapts
Tabatabaei, YousefWang, GerryWeiler, Jonathan
Image-based machine learning (ML) methods are increasingly transforming the field of materials science, offering powerful tools for automatic analysis of microstructures and failure mechanisms. This paper provides an overview of the latest advancements in ML techniques applied to materials microstructure and failure analysis, with a particular focus on the automatic detection of porosity and oxide defects and microstructure features such as dendritic arms and eutectic phase in aluminum casting. By leveraging image-based data, such as metallographic and fractographic images, ML models can identify patterns that are difficult to detect through conventional methods. The integration of convolutional neural networks (CNNs) and advanced image processing algorithms not only accelerates the analysis process but also improves accuracy by reducing subjectivity in interpretation. Key studies and applications are further reviewed to highlight the benefits, challenges, and future directions of
Akbari, MeysamWang, AndyWang, QiguiYan, Cuifen
The initial powder used for the manufacturing of NdFeB permanent magnets is usually prepared through rapid cooling, either by melt spinning or strip casting. The powders produced by these two methods are suitable for different applications: while melt-spun powder is a good initial material for bonded and hot-deformed magnets, strip-cast powder is normally used for sintered magnets. To investigate the suitability of using strip-cast powder to manufacture hot-deformed magnets, NdFeB powder prepared by strip casting was hot pressed (without particle alignment) and compared with melt-spun powder prepared under the same conditions (700 °C, 45 MPa, 90 min). Although the processing parameters are the same (pressed in the same mold), the magnetic properties of the magnets made from the two powders are significantly different. Surprisingly, the magnet made from the strip-cast powder (after ball milling) shows comparable magnetic properties to those of isotropic magnets, with coercivity (HcJ) of
He, YouliangSong, ShaochangWalsh, DanBernier, FabriceMozharivskyj, YurijPeng, Philip
Given the strategic importance of aluminum cast materials in producing lightweight, high-performance products across industries, it is fundamental to assess their mechanical and cyclic fatigue properties thoroughly. This investigation is primarily for optimizing material utilization and enhancing the efficiency and reliability of aluminum cast components, contributing to significant conservation of raw materials and energy throughout both the manufacturing process and the product's lifecycle. In this study, a systematic material investigation was conducted to establish a reliable estimation of the fatigue behavior of different aluminum cast materials under different loading ratios and elevated temperatures. This paper presents an analysis of the statistical and geometrical influences on various aluminum alloys, including AlSi10MnMg, AlSi7Mg0.3, and AlSi8Cu3Fe, produced via pressure die casting and gravity die casting (permanent mold casting), and subjected to different heat treatment
Qaralleh, AhmadNiewiadomski, JanBleicher, Christoph
Blistering in aesthetic parts poses a significant challenge, affecting overall appearance and eroding brand image from the customer's perspective and blister defects disrupt painting line efficiency, resulting in increased rework and rejection rates. This paper investigates the causes and effects of blistering, particularly in the context of internal soundness of Aluminum castings, emphasizing the crucial role of Computed Tomography in defect analysis. Computed Tomography is an advanced Non-Destructive Testing technique used to examine the internal soundness of a material. This study follows a structured 7-step QC story approach, from problem identification to standardization, to accurately identify the root Cause and implement corrective actions to eliminate blister defect. The findings reveal a strong link between internal soundness and surface quality. Based on the root cause, changes in the casting process and die design were made to improve internal soundness, leading to reduced
D, BalachandarNataraj, Naveenkumar
Gray cast iron (GJL) is one of the oldest cast iron materials and is still in use in many applications in the automotive industry due to its good characteristics, in relation to lubrication, heat conductivity and damping. Engine parts particularly benefit from these parameters. Nevertheless, the design of these components has always been challenging, in terms of maximizing material utilization for lightweight designs for components under cyclic loading. In particular, with regard to the influence of the statistical (component size), geometrical (notches) and technological (microstructural) size effects, the existing guidelines and literature lack the necessary information to provide a comprehensive understanding of the cyclic material behavior of GJL materials. Within a comprehensive study, different GJL materials have been investigated at Fraunhofer LBF to provide more detailed information regarding the influence of size effects on fatigue strength. Accordingly, a variety of specimen
Bleicher, ChristophKansy, Axel
This specification covers a cast tin bronze in the form of sealing rings (see 8.5).
AMS D Nonferrous Alloys Committee
High-strength, lightweight aluminium-based composites show great potential for future weight-reduction applications. The aluminium alloy (AA5052) is commonly used in various engineering applications and serves as the primary matrix material for this study. The objective of this research is to produce and improve the properties of the AA5052 alloy composite by integrating titanium (Ti) and nano silicon carbide (SiC) particles using an advanced vacuum stir casting process. Additionally, an inert atmosphere is used to minimize voids, porosity, and oxidation. The final developed composites include AA5052, AA5052/3wt% Ti, AA5052/5wt% SiC, and AA5052/3wt% Ti/5wt% SiC, which were subjected to metallographic, tensile, elongation, and hardness studies. The mechanical evaluation is carried out following ASTM E8 and E384 standards. Microstructural analysis revealed uniform dispersion of Ti &SiC particles with no significant casting defects. The composite with AA5052/3wt% Ti/5wt% SiC exhibited the
Venkatesh, R.Kaliyaperumal, GopalManivannan, S.Karthikeyan, S.Mohanavel, VinayagamSoudagar, Manzoore Elahi MohammadKarthikeyan, N.
With the advancement of lightweight magnesium-based hybrid composites, are potential for weight management applications. The liquid state stir cast process is the best way to produce complex shapes and most industries are preferred. However, the melting of magnesium alloy and achieving homogenous particle distribution are the major challenges for the conventional stir-casting process, and hot crack formation is spotted due to thermal variations. The main objectives of the present research are to enhance the microstructural and mechanical behaviour of magnesium alloy hybrid nanocomposite (AZ91E) adopted with boron carbide (B4C) and alumina (Al2O3) nanoparticles through a semisolid stir cast technique associated with inert atmosphere helps to limits the oxide formation and reduce risk of magnesium fire. The effect of composite processing and multiple reinforcements on surface morphology, tensile strength, impact strength, and hardness were thoroughly evaluated and compared. The results
Manivannan, S.Venkatesh, R.Kaliyaperumal, GopalKarthikeyan, S.Mohanavel, VinayagamSoudagar, Manzoore Elahi MohammadKarthikeyan, N.
Grain refinement of aluminium and its alloys is a common industrial practice, particularly for automobile casting. The grain refines with titanium agent influence better mechanical behaviour such as higher yield and ultimate tensile strength rather than monolithic alloy. Present study, the halide salt method has been used to produce the Al-Ti-B grain refiners with different Ti/B ratios. The prepared grain refiner is added in A356 alloy and observed its grain refining efficiency. The addition of grain refiner to A356 aluminium alloy at different holding times, such as 10, 20, and 30 min, allowed it to solidify. It is found that 30 min of holding time with 5Ti1B improves the hardness (40%) and ultimate tensile strength (UTS) value (63.56%). A high degree of grain refinement was observed in a 30-minute holding time with 5Ti1B with improved grain refining efficiency of 3 %. Its microstructural observation and tensile properties helped us understand this grain refinement.
Venkatesh, R.Manivannan, S.Das, A. DanielMohanavel, VinayagamSoudagar, Manzoore Elahi Mohammad
To meet light-weighting and safety target of automotive vehicles, different Aluminium alloys are used in various body parts. Apart from conventional manufacturing process of gravity die casting (GDC), advanced manufacturing process such as low pressure die casting (LPDC), high pressure die casting (HPDC) and extrusion processes are also used to form complex automotive body parts. Steel parts are majorly used in automotive applications across world. However, steel has limitations with respect to light-weighting. To achieve light-weighting, now a days, there is trend to use these complex Aluminium parts in automotive industry to replace steel and integrate multiple parts into a single one. Aluminium has emerged as great potential for light-weighting and reducing complexity of handling multiple parts at an automotive plant. There is a challenge to identify suitable etchant for microstructural characterization of Aluminium alloy parts that can be made through various manufacturing
Deshmukh, MansiJain, VikasMisal, SwapnaliPaliwal, Lokesh
This specification establishes a procedure for designating minimum room temperature tensile property requirements of castings by means of this AMS number and a series of dash numbers.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification establishes a procedure for designating minimum stress-rupture property requirements of castings by means of this AMS number and a series of dash numbers.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification establishes a procedure for designating minimum elevated temperature tensile property requirements of castings by means of this AMS number and a series of dash numbers.
AMS F Corrosion and Heat Resistant Alloys Committee
Recent developments in manufacturing techniques and the development of Al7075 metal matrix composites (MMCs) with reinforcements derived from industrial waste have been steadily gaining popularity for aerospace and automobile applications due to their outstanding properties. However, there are still a lot of limitations with these composite materials. A great deal of research has been done to create new Al7075 MMC materials with the use of economic fly ash (FA) that possesses superior mechanical properties, corrosion resistance, density, and cycle cost. This review outlines different synthesis techniques used in the development of Al7075 MMCs using stir casting. Effects of FA along with other reinforcements on the mechanical, wear, machining, and microstructural properties of the composite are also discussed. Finally, a summary of the application of FA-based MMCs and a recap of the previous discoveries and challenges are reported. Future scope and potential areas of application are
Kumar, RandhirMondal, Sharifuddin
This specification covers a cast leaded-tin bronze in the form of sealing rings (see 8.5).
AMS D Nonferrous Alloys Committee
This specification covers an aluminum bronze alloy in the form of sand castings (see 8.5).
AMS D Nonferrous Alloys Committee
This specification covers a magnesium alloy in the form of sand castings.
AMS D Nonferrous Alloys Committee
This specification defines the requirements for in-process correction of foundry discontinuities by manual welding of castings.
AMS B Finishes Processes and Fluids Committee
Recent advances in both alloy development and additive manufacturing have enabled the production of ultrahigh-strength steels in nearnet shape parts. Army Research Laboratory, Aberdeen Proving Ground, Maryland Ultrahigh-strength steels are traditionally defined as those steels with a minimum yield strength of approximately 1380 MPa. Notable examples of steels in this category include AISI 4130, AISI 4140, and AISI 4340. In many cases, maximizing the performance of these alloys requires a rather complex approach that involves a series of tempering, annealing, or stress-relieving treatments. As a result, they are produced using a variety of traditional processing methods such as casting, rolling, extrusion, or forging. These traditional methods - combined with the ultrahigh strength of the steels - often meant that the production of complex, near-net shape parts of high quality was quite difficult. In addition, these production methods often entailed repetitive treatments or long
Ultrahigh-strength steels are traditionally defined as those steels with a minimum yield strength of approximately 1380 MPa. Notable examples of steels in this category include AISI 4130, AISI 4140, and AISI 4340. In many cases, maximizing the performance of these alloys requires a rather complex approach that involves a series of tempering, annealing, or stress-relieving treatments. As a result, they are produced using a variety of traditional processing methods such as casting, rolling, extrusion, or forging. These traditional methods — combined with the ultrahigh strength of the steels — often meant that the production of complex, near-net shape parts of high quality was quite difficult. In addition, these production methods often entailed repetitive treatments or long production cycles, both of which resulted in elevated production costs.
This specification establishes nondestructive testing methods, sampling frequency, and acceptance criteria for the inspection of metal castings.
AMS B Finishes Processes and Fluids Committee
Cast austenitic stainless steels, such as 1.4837Nb, are widely used for turbo housing and exhaust manifolds which are subjected to elevated temperatures. Due to assembly constraints, geometry limitation, and particularly high temperatures, thermomechanical fatigue (TMF) issue is commonly seen in the service of those components. Therefore, it is critical to understand the TMF behavior of the cast steels. In the present study, a series of fatigue tests including isothermal low cycle fatigue tests at elevated temperatures up to 1100°C, in-phase and out-of-phase TMF tests in the temperature ranges 100-800°C and 100-1000°C have been conducted. Both creep and oxidation are active in these conditions, and their contributions to the damage of the steel are discussed.
Liu, YiHess, DevinWang, QiguiCoryell, Jason
Inconel 718 is a nickel-rich superalloy that can function in cryogenic to high-temperature applications. It has excellent mechanical and corrosion-resistant properties. This research focuses on developing Cu and Cu–alloy–tungsten disulfide (WS2) tools developed through a stir casting route, and the machining behaviour of Inconel 718 alloy in the EDM Process is investigated. The influence of output responses of Removal rate of material (RRM), surface roughness (SR), and tool wear loss rate (TWR) on input constraints pulse time-on, peak discharge current, and type of tool. The optimal parameters are studied with the aid of the Response Surface Methodology (RSM) and Analysis of Variance (ANOVA) combination, in response to maximize and decrease the RRM, TWR, and SR, respectively. It is found that using the Cu-WS2 tool provides an optimum finding with a peak discharge current of 18 Amps, and pulse on time of 8 μs yields the best value for RRM, TWR, and SR. In addition, a three-dimensional
Dinesh, D.Sangaravadivel, P.Jeevith, R.Kishore, M.Deepith, N.Srikanth, M.
Employing the stir casting process, a unique hybrid composites were fabricated, using A356 as the matrix and reinforced with ZrSiO4 and TiB2 particulates. The produced specimens were initially in their as-cast state. Following that, the reinforcement particle concentrations were changed 2 and 4 weight percentages (wt%) of ZrSiO4 and keeping a constant 6 wt% of TiB2. Three samples were exposed to dry sliding conditions at room temperature using a tribometer. Two applied loads of magnitude 10N and 50N and a sliding velocity of 1m/s and 2m/s were selected as testing parameters. After measuring the wear rate (WR) and the coefficient of friction (COF), the worn-out pin surfaces were examined using scanning electron microscopy (SEM). The results of the study indicated that, under different sliding parametric conditions, the hybrid composite sample with a weight percentage of A356, specifically with 4% ZrSiO4 and 6% TiB2, displayed a minimal WR and a higher COF compared with the remaining
Raghul, K.S.Kaviyarasan, K.Vinayagamoorthi, M.A.Velmurugan, Santhosh
The study will involve conducting analyses on microstructures consisting of 40% aluminium and 10% nickel, with variations in the rate of hardening. The aluminium and nickel, both of commercial grade, were subjected to a crucible furnace where they were heated to a temperature of 1600 degrees Celsius until they reached a molten state. The utilization of permanent moulds was necessary for casting the metal at temperatures of 20, 60, and 100 degrees Celsius. In order to document the freezing curvature of the castings, a centralized data collection technique was implemented. The microstructure and mechanical properties of this alloy were examined by researchers. The rate of solidification was observed to increase and the duration of the process was observed to decrease as the temperature of the mould was reduced. The microstructure has been modified due to disparities in solidification rates. An increase in the rate of solidification leads to a reduction in the spacing between secondary
Srinivasan, V.P.Selvarajan, L.Balu Mahandiran, S.Venkataramanan, K.Sasikumar, R.Shanthi, C.
The present investigation pertains to effect of different levels of modifiers (Na) in the Al-11.1Si hypo-eutectic alloy casting process. The investigation deals with the porosity analysis of the hypo-eutectic Al-Si alloy casting with varying master alloy, composition and holding time. The modifiers used for the investigation is sodium. Four levels of compositions addition of modifier as sodium is selected for the casting process which are 0.03%, 0.06%, 0.09%, &0.12%. The holding times selected for each composition are 10min, 20min and 30min respectively. The introduction sodium to an Al-Si alloy results in a complete transformation of Si particles, changing them from coarse plates to fine fibres, irrespective of the cooling conditions. The reduction in eutectic growth temperature due to sodium addition was consistently associated with the degree of modification, regardless of the initial microstructure coarseness. Employing modification treatment significantly enhances elongation to
Manivannan, S.Daniel Das, A.Suresh Balaji, R.Marimuthu, S.
This specification covers a low-alloy steel in the form of investment castings.
AMS E Carbon and Low Alloy Steels Committee
Aluminum casting parts generally have inherent internal defects such as porosity which lowers the fatigue strength of such castings. Accounting for such a fatigue strength reduction for Aluminum casted parts is the primary purpose of this paper. Authors have used Murakami et al [1] approach to calculate porosity correction factor for fatigue. The actual material S-N curve is modified using fatigue factors to account for the fatigue strength reduction due to presence of porosity. This approach was then validated on one of the fatigue failure cases on Aluminum casted housing. There was a close match between the test data and proposed approach for fatigue prediction. With this approach, engineers will be able to do fatigue predictions in presence of material defects like porosity with simple porosity correction factor, rather than using complex modeling of porosity in FEA or using detailed fracture mechanics methods. Engineers can also be able to provide acceptable levels of porosity in
Kumar, RohitGawture, Majnoo M
Light weight and Robust manufacturing technologies are always needed for transformation drive in the Automotive industry for the next-generation vehicles with greater Power to weight ratio. Innovations and process developments in materials and manufacturing processes are key to this light weighting transformation. Aluminium material has been widely used for these light weighting opportunities. However, aluminum joining techniques, characterized by their poor quality and consistency are limiting this transformation. This technical paper represents one of such case, where the part is made up of Aluminium through conventional casting route which has affected the laser weld quality due to poor casting soundness. This experiment explains in detail about the importance of Casting soundness for laser weld quality, weld penetration, strength etc., and the Product consistency. Casting soundness improvement explored with the support of Ingot quality, Die design, Gating design & Size, Overflow
Umasankar, MaiyarasanVenugopal, SivakumarGopalan, Vijaysankar
This specification covers a corrosion and heat-resistant nickel alloy in the form of investment castings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion-resistant steel in the form of sand or centrifugal castings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion and heat-resistant steel in the form of investment castings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion and heat-resistant steel in the form of investment castings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion and heat-resistant steel in the form of investment castings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion and heat-resistant steel in the form of investment castings.
AMS F Corrosion and Heat Resistant Alloys Committee
Fuel-efficient motorcycles are essential for energy conservation and environmental load reduction. To achieve low fuel consumption, reducing the weight of the body parts of the motorcycle is important. This study focuses on reducing the weight of the swingarms, a relatively heavy body part. However, reducing the weight of swingarms is challenging owing to the low flexibility in their shape because swingarms are conventionally made of multiple pipes and casting parts welded together. Therefore, we utilized the integral casting technology and examined a new light weight shape. However, creating a new shape manually is difficult. Thus, we examined a new shape using the shape optimization technology, which has been recently used in additive manufacturing. The shapes fabricated using this technology are generally complex and difficult to manufacture by casting. Therefore, we adjusted optimization condition with casting. We derived a new shape which can not only be casted but also has good
Yamamoto, KodaiIto, TakafumiWatanabe, KentaroHosokawa, ShoheiNagasaka, KazuyaEndo, YudaiYoshihiro, MasudaImamura, YusukeMaeda, Fujio
This specification covers titanium Ti 6Al-4V alloy in the form of investment castings.
AMS G Titanium and Refractory Metals Committee
This SAE Recommended Practice pertains to blast cleaning and shot peening and provides for standard cast shot and grit size numbers. For shot, this number corresponds with the opening of the nominal test sieve, in ten thousandths of inches1, preceded by an S. For grit, this number corresponds with the sieve designation of the nominal test sieve with the prefix G added. These sieves are in accordance with ASTM E11. The accompanying shot and grit classifications and size designations were formulated by representatives of shot and grit suppliers, equipment manufacturers, and automotive users.
Surface Enhancement Committee
Casting is unique manufacturing processes for variety of reasons. Perhaps the most important reason is, it can produce complex components in any metal and weight ranging from grams to several tons. It is age old technology used to produce complex shapes and for mass production. The defects produced specifically inside the component, during casting process are difficult to identify. These defects in turn become cause of component failure in operating condition. FEA tools gives better understanding of process and can predict any defect produced in the casting process. It also helps to optimize entire process. Thus, use of software are becoming necessity in the industry to avoid rejections / last minute surprise. This paper describes use of simulation to predict casting defects accurately in existing casting component. This provides in depth understanding of existing casting process. With understanding of existing process defects, suitable modifications in the casting design and process
Kumbhar, AbhijitGosavi, SanjayPawar MD, Anil
The automotive industry is facing a challenge as efficiency improvements are required to address the strict emission norms which in turn requires high performance downsized, lightweight IC engines. The increasing demand for lightweight engine needs high strength to weight ratio materials. To meet high strength to weight ratio, castings are preferable. However due to strength limitations for critical crankshaft applications, it forces to use costly forgings such as micro alloyed forging steel and Martensitic (after heat treatment) forging steel. To reduce the cost impact, high strength Austempered Ductile iron (ADI) casting is developed for crankshaft applications to substitute steel forgings. Austempered Ductile Iron is having an excellent mechanical properties due to aus-ferritic structure. The improved properties of developed ADI Crankshaft over steel forged crankshaft offers additional weight advantage. The ADI Crankshaft was subjected to rig test and meets the fatigue and
Yerra, UmamaheswaraGopal, ManishKolhe, Vivek MPalkar, VishalKumbhar, Dipak
In today’s Automotive world, there is NO need to advocate “Light weighting”. Government policies for carbon footprint reduction combined with high safety standards are driving OEMs to adopt advanced manufacturing technologies. Steel hot forming is selected as most preferred way to reduce weight as it is easy to adopt and commercially known. It had many advantages compare to conventional cold stamping of standard and high tensile steel. The process consists of heating blank to nearly 1000 °C and quenching it in tool to for martensitic structure. Higher strength up to 2000 MPa can be achieved by this process. There are many examples where part weight is reduced by 15 to 20 % by this method. But Steel hot forming has limitation as specific density of steel is still high. Thus, there is limitation to its weight reduction capability. For further reduction, OEMs have started exploring Aluminium hot forming. This process, similar to steel hot forming improves hardness of the part by series of
NIRGUDKAR, SACHIN SURESHMelotti PhD, Federico
This specification covers steel cleanliness requirements in inch/pound units for aircraft-quality, ferromagnetic, hardenable, corrosion-resistant steels as determined by magnetic particle inspection methods. This specification contains sampling, specimen preparation, and inspection procedures and cleanliness rating criteria (see 8.2).
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a titanium alloy in the forms of investment castings having four grades of permissible discontinuities.
AMS G Titanium and Refractory Metals Committee
This specification covers a corrosion and heat-resistant, air-melted, nickel alloy in the form of investment castings.
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion and heat-resistant, vacuum melted, nickel alloy in the form of investment castings.
AMS F Corrosion and Heat Resistant Alloys Committee
Items per page:
1 – 50 of 2634