Browse Topic: Stamping
December is a good time to reflect on the past year - to celebrate successes and consider opportunities for improvement - but it is also an opportune time to look to the future. As I think about the year ahead and appraise the tradeshow landscape that'll provide significant content for this magazine, mobilityengineeringtech.com, our e-newsletters and other multimedia products, none is bigger than Bauma in Munich, Germany, particularly in terms of the global construction and mining vehicle industries. The triennial event will cover an area that's equivalent to 86 soccer fields, according to Stefan Rummel, CEO of Messe München GmbH. Speaking to the press during an October virtual preview of Bauma 2025, which takes place from April 7-13, Rummel said that the number of exhibitors - expected to be about 3,600 - will be closer to the 2019 event versus the post-COVID-19 edition that was pushed back from its usual spring timeslot to the fall of 2022
The photochemical etching (PCE) process is distinguished by its capacity to fabricate metal parts with unparalleled accuracy. This process sidesteps the typical stresses and deformations linked to conventional metal-working, like stamping or laser cutting, which can compromise material integrity. Such fidelity is crucial in the manufacture of components for thermal management systems, where material integrity and component precision are non-negotiable for ensuring effective heat creation or dissipation. PCE’s ability to craft parts with smooth, burr-free edges and exact dimensions means heat management components work more effectively, bolstering the reliability and extending the service life of micro electronic devices
Innovators at NASA Johnson Space Center have developed a novel, double capsule control system that allows for high temperature and high-pressure geologic research to be performed in a contained environment relevant to a broad array of materials. It can also yield the speciation of redox-sensitive elements and is even capable of creating geologic conditions necessary to birth diamonds when used in conjunction with a multi-anvil press
Soft magnetic cores of electric motors and generators are normally manufactured by stamping individual circular laminates from non-oriented electrical steel (NOES) sheets and stacking them layer by layer to reach the required height. The traditional lamination method can only achieve the average performance of the NOES since the magnetization is in all the directions of the sheet plane. Although NOES is ideal to have isotropic magnetic properties in all the directions of the sheet plane, commercially available electrical steel sheets always show apparent anisotropy in the rotating magnetization directions lying in the sheet plane. The anisotropy in magnetic properties not only causes fluctuations in the rotating magnetic field, but also leads to oscillations in electromagnetic torque, and thus needs to be minimized. In this paper, a novel electrical steel lamination technique is developed, which takes the advantage of the inherent magnetic anisotropy of electrical steel sheets to
Multiple experimental studies were performed on galling intiation for variety of tooling materials, coatings and surface treatments, sheet materials with various surface textures and lubrication. Majority of studies were performed for small number of samples in laboratory conditions. In this paper, the methodology of screening experiment using different combinations of tooling configurations and sheet material in the lab followed by the high volume small scale U-bend performed in the progressive die on the mechanical press is discussed. The experimental study was performed to understand the effect of the interface between the sheet metal and the die surface on sheet metal flow during stamping operations. Aluminum sheet AA5754 2.5mm thick was used in this experimentation. The sheet was tested in laboratory conditions by pulling between two flat insert with controllable clamping force and through the drawbead system with variable radii of the female bead. Comparing pulling forces during
During the vehicle lifecycle, customers are able to directly perceive the outer panel stiffness of vehicles in various environmental conditions. The outer panel stiffness is an important factor for customers to perceive the robustness of the vehicle. In the real test of outer panel stiffness after prototype production, evaluators manually press the outer panel in advance to identify vulnerable areas to be tested and evaluate the performance only in those area. However, when developing the outer panel stiffness performance using FEA (Finite Element Analysis) before releasing the drawing, it is not possible to filter out these areas, so the entire outer panel must be evaluated. This requires a significant amount of computing resources and manpower. In this study, an approach utilizing artificial intelligence was proposed to streamline the outer panel stiffness analysis and improve development reliability. A deep learning-based prediction technology was developed to predict force
The application of local advanced steels has challenges to overcome such as stampability requirements to meet manufacturing processes. Several technological alternatives have been studied to improve sheet steel formability and this work focuses on material selection. Dual Phase 800 steel has an important performance for structural parts involved in body-in-white (BIW) to reach durability and material impact resistance. On those alternatives references the coating application to reduce the friction coefficient and makes the formability process easier to mitigate drawing stamping issues. The study deals with DP800 formability analysis applied in automotive seats, mainly on anchorage components, searching for alternatives to a better material stampability and local availability with a lower cost. These tests approached formability simulations and FLD (Forming Limit Diagrams) to compare the imported DP800-Uncoated and the local DP800EG + Phosphate steels. Additional tests were made for
In the 1st generation Toyota "MIRAI" fuel cell stack, carbon protective surface coating is deposited after individual Ti bipolar plate being press-formed into the desired shape. Such a process has relatively low production speed, not ideal for large scale manufacturing. A new coating concept, consisting of a nanostructured composite layer of titanium oxide and carbon particles, was devised to enable the incorporation of both the surface treatment and the press processes into the roll-to-roll production line. The initial coating showed higher than expected contact resistance, of which the root cause was identified as nitrogen contamination during the annealing step that inhibited the formation of the composite film structure. Upon the implementation of a vacuum furnace chamber as the countermeasure, the issue was resolved, and the improved coating could meet all the requirements of productivity, conductivity, and durability for use in the newer generation of fuel cell stacks
When manipulating an arcade claw, a player can plan all she wants. But once she presses the joystick button, it’s a game of wait-and-see. If the claw misses its target, she’ll have to start from scratch for another chance at a prize. The slow and deliberate approach of the arcade claw is similar to state-of-the-art pick-and-place robots, which use high-level planners to process visual images and plan out a series of moves to grab for an object. If a gripper misses its mark, it’s back to the starting point, where the controller must map out a new plan
Vacuum suction cups are used as transforming handles in stamping lines, which are essential in developing automation and mechanization. However, the vacuum suction cup will crack due to fatigue or long-term operation or installation angle, which directly affects production productivity and safety. The better design will help increase the cups' service life. If the location of stress concentration can be predicted, this can prevent the occurrence of cracks in advance and effectively increase the service life. However, the traditional strain measurement technology cannot meet the requirements of tracking large-field stains and precise point tracking simultaneously in the same area, especially for stacking or narrow parts of the suction cups. The application must allow multiple measurements of hidden component strain information in different fields of view, which would add cost. In this study, a unique multi-camera three-dimensional digital image correlation (3D-DIC) system was designed
EV battery enclosures are a hotbed of subsystem design, materials innovation and vehicle integration. Whether you call them packs, boxes or trays, the structures that envelop and protect EV battery cells and their supporting electrical and thermal-management hardware are among the industry's top subsystem priorities. Optimizing the battery pack involves a host of manufacturing and material choices, mass and package tradeoffs, safety provisions and structural design/engineering challenges, OEM and supplier experts told SAE Media. “Do you want the battery pack bolted into the vehicle or integrated into the body structure?” asked Darren Womack, senior department manager, body and structures, at Magna's global R&D group. Hot stamping, cold stamping, roll-forming, hydroforming, casting and steel, aluminum, composites and thermoplastics - are all raising “lively discussions” in pack development, he noted at a recent meeting of analysts
An emerging challenge for the extrusion press industry is older hydraulics technology. Many presses continue using inefficient and unreliable hydraulic pumps
In this paper, for the front wall of a certain automobile, the defects of drawing splits, excessive thinning and excessive springback in the sheet metal forming process are analyzed and predicted. The stamping process has been simulated. The influence of different technical parameters (blank holder force, stamping speed, die gap and friction coefficient) on the forming results was further investigated using the center composite experiment. Through preliminary finite element simulation, the main drawing defects and trimming springback were analyzed. The second-order response surface model was established to perform the multi-objective optimization design of the stamping process with a NGSA-II genetic algorithm. Based on the relevant simulation data, multiple springback compensations are performed on the die surface to reduce the final springback of the part to meet the requirements. Results have shown that through multi-objective optimization, the stamping dies development cycle is
The development of new components that have a structural commitment and still achieve mass reduction is becoming increasingly complex and sophisticated materials for production for the automotive market for commercial and passenger vehicles. To achieve this level of demand the use of composite materials such as carbon fiber, glass fiber or a compound of the two has become a reality, however the production rate was still considered a problem for medium volume parts (up to one hundred thousand parts per year). The work demonstrates the construction and simulation of a PoC (proof of concept) using these composites in a warm stamp process where the material a thermoset composite plate is preheated to the working temperature, then it is inserted in a tool preheated stamping, remaining closed for a few minutes where the material is consolidated and then the part is extracted already cured without the need for cooling, thus ensuring the projected production tackt compared to the autoclave
This standard provides the following: a Definition of terms pertaining to marking. b Symbols for marking location. c Requirements and restrictions for permanent markings. d Types of marking methods. e Rules for designating marking methods. f Table listing marking methods
Strain-rate sensitivity has been neglected in the simulation of the traditional stamping process because the strain rate typically does not significantly impact the forming behavior of sheet metals in such a quasi-static process, and traditional crank or link mechanical presses lack the flexibility of slide motion. However, the recent application of servo drive presses in stamping manifests improvement in formability and reduction of springback, besides increased productivity and energy savings. An accurate simulation of servo stamping entails constitutive models with strain-rate sensitivity. This study evaluated a few strain rate-sensitive models including the power-law model, the linear power-law model, the Johnson-Cook model, and the Cowper-Symonds model through the exercise of fitting these models to the experimental data of a deep draw quality (DDQ) steel. Curve fitting over segmented strain ranges and grouped strain rates were conducted so that the uniqueness of the identified
Rosin is a naturally available organic material obtained especially from pine trees. It finds many usages and applications in areas like soldering, pharmaceuticals, building work, engineering field etc. In this work, an attempt has been made to study experimentally the improvement in strength of rosin at normal stove top temperature by means of combining rosin in various ratios with some important organic hardeners and chemicals of literature importance. A table top book press was fabricated for the purpose of rosin pressing using simple tools like teak wood, bolt and nuts. Experiments were conducted using commonly used kitchen gas stove, fabricated book press, rosin raw material, aluminium sulfate powder, maleic anhydride chemical, acetone, ethanol and saw dust particles for making different combination materials using rosin as the main element. Results showed that, rosin on its own without additives showed higher viscosity and brittleness. When combined with organic hardener
Belt-driven starter generator claw pole electric motors are used in hybrid automobiles to start the engine, charge the battery and to power the electrical system when its engine is running. Shaft and claw pole are important components in the claw pole electric motor. The claw pole is fitted onto the shaft through press-fit force. Press-fit is a widely used fastening process to join two different components by pushing a component inside or over another component with high press force which will create a strong bond between the components. Determining press-fit force required to assemble parts is very complex since it depends on a lot of factors such as mechanical material properties of components, interference fit condition whether it is in Min, mean and max condition, amount of contact pressure induced by contact surface, co-efficient of friction created in between components. The press-fit will help to prevent loosening components from its bond at high torque and speed. More over
In the design of gearboxes and transfer boxes of heavy-duty vehicle`s transmissions, sliding bearings are often used as supports for gear wheels. Analysis of the results of statistical processing of gearbox parts failures and transfer boxes of wheeled tractors with a pulling force of 30 kN indicates the need to improve the reliability of the sliding bearings of the gear wheels. Such plain bearings ensure free rotation of the gear wheels in case of the torque transmission absence, and when locked by a clutch, the radial load of the gear wheel is sensed, while operating in the slipping rolling mode. Such units are poorly understood and in the technical literature sources there are no recommendations for their engineering, which often leads to errors when selecting operation gaps and press fitted in gear wheels. The manufacturers of the transmissions assemblies replaced the plain bearings, which in this case are made of metal-ceramic bushes, for roller bearings. Also, the application of
Developing lightweight, stiff and crash-resistant vehicle body structures requires a balance between part geometry and material properties. High strength materials suitable for crash resistance impose geometry limitations on depth of draw, radii and wall angles that reduce geometric efficiency. The introduction of 3rd generation Advanced High Strength Steels (AHSS) can potentially change the relationship between strength and geometry and enable simultaneous improvements in both. This paper will demonstrate applicability of 3rd generation AHSS with higher strength and ductility to replace the 780 MPa Dual Phase steel in a sill reinforcement on the current Jeep Cherokee. The focus will be on formability, beginning with virtual simulation and continuing through a demonstration run on the current production stamping tools and press
Items per page:
50
1 – 50 of 1036