Browse Topic: Stamping

Items (1,037)
ABSTRACT Lower cost aluminum silicon carbide (Al-SiC) metal matrix composite (MMC) produced by stir-casting is emerging as an important material in cost effectively improving the reliability of high power electronic devices; e.g. electronic (IGBT) baseplates, thermal spreaders & stiffeners for flip-chip microelectronics, and heat slugs or MCPCB base layers for high brightness LEDs. This paper will review the properties and competitive cost of these new Al-SiC materials as well as the ability to tailor the coefficient of thermal expansion (CTE) of the Al-SiC to minimize thermal fatigue on solder joints and reduce component distortion. The impact on the final component cost through the use of conventional forming techniques such as (a) rolling sheet followed by stamping, and, (b) die casting, will be described, as will be the opportunity of eliminating a thermal interface material (TIM) layer by integrating the thermal spreader with the heat sink for high power microelectronic packages
Drake, AllenSchuster, DavidSkibo, Michael
The photochemical etching (PCE) process is distinguished by its capacity to fabricate metal parts with unparalleled accuracy. This process sidesteps the typical stresses and deformations linked to conventional metal-working, like stamping or laser cutting, which can compromise material integrity. Such fidelity is crucial in the manufacture of components for thermal management systems, where material integrity and component precision are non-negotiable for ensuring effective heat creation or dissipation. PCE’s ability to craft parts with smooth, burr-free edges and exact dimensions means heat management components work more effectively, bolstering the reliability and extending the service life of micro electronic devices
Innovators at NASA Johnson Space Center have developed a novel, double capsule control system that allows for high temperature and high-pressure geologic research to be performed in a contained environment relevant to a broad array of materials. It can also yield the speciation of redox-sensitive elements and is even capable of creating geologic conditions necessary to birth diamonds when used in conjunction with a multi-anvil press
Soft magnetic cores of electric motors and generators are normally manufactured by stamping individual circular laminates from non-oriented electrical steel (NOES) sheets and stacking them layer by layer to reach the required height. The traditional lamination method can only achieve the average performance of the NOES since the magnetization is in all the directions of the sheet plane. Although NOES is ideal to have isotropic magnetic properties in all the directions of the sheet plane, commercially available electrical steel sheets always show apparent anisotropy in the rotating magnetization directions lying in the sheet plane. The anisotropy in magnetic properties not only causes fluctuations in the rotating magnetic field, but also leads to oscillations in electromagnetic torque, and thus needs to be minimized. In this paper, a novel electrical steel lamination technique is developed, which takes the advantage of the inherent magnetic anisotropy of electrical steel sheets to
He, YouliangSebesta, DamirPodlesny, Maciej
Often, when assessing the distraction or ease of use of an in-vehicle task (such as entering a destination using the street address method), the first question is “How long does the task take on average?” Engineers routinely resolve this question using computational models. For in-vehicle tasks, “how long” is estimated by summing times for the included task elements (e.g., decide what to do, press a button) from SAE Recommended Practice J2365 or now using new static (while parked) data presented here. Times for the occlusion conditions in J2365 and the NHTSA Distraction Guidelines can be determined using static data and Pettitt’s Method or Purucker’s Method. These first approximations are reasonable and can be determined quickly. The next question usually is “How likely is it that the task will exceed some limit?” This question, addressed using discrete event simulations such as IMPRINT, requires the distribution types and parameters (mean, standard deviation, etc.) for each task
Green, Paul
Multiple experimental studies were performed on galling intiation for variety of tooling materials, coatings and surface treatments, sheet materials with various surface textures and lubrication. Majority of studies were performed for small number of samples in laboratory conditions. In this paper, the methodology of screening experiment using different combinations of tooling configurations and sheet material in the lab followed by the high volume small scale U-bend performed in the progressive die on the mechanical press is discussed. The experimental study was performed to understand the effect of the interface between the sheet metal and the die surface on sheet metal flow during stamping operations. Aluminum sheet AA5754 2.5mm thick was used in this experimentation. The sheet was tested in laboratory conditions by pulling between two flat insert with controllable clamping force and through the drawbead system with variable radii of the female bead. Comparing pulling forces during
Reinberg, NataliaMurray, RyanAscencio Barrera, SindiPineda Carranza, CristinaGolovashchenko, Sergey
During the vehicle lifecycle, customers are able to directly perceive the outer panel stiffness of vehicles in various environmental conditions. The outer panel stiffness is an important factor for customers to perceive the robustness of the vehicle. In the real test of outer panel stiffness after prototype production, evaluators manually press the outer panel in advance to identify vulnerable areas to be tested and evaluate the performance only in those area. However, when developing the outer panel stiffness performance using FEA (Finite Element Analysis) before releasing the drawing, it is not possible to filter out these areas, so the entire outer panel must be evaluated. This requires a significant amount of computing resources and manpower. In this study, an approach utilizing artificial intelligence was proposed to streamline the outer panel stiffness analysis and improve development reliability. A deep learning-based prediction technology was developed to predict force
Uhm, TaekyoungOh, Seunghyeok
The application of local advanced steels has challenges to overcome such as stampability requirements to meet manufacturing processes. Several technological alternatives have been studied to improve sheet steel formability and this work focuses on material selection. Dual Phase 800 steel has an important performance for structural parts involved in body-in-white (BIW) to reach durability and material impact resistance. On those alternatives references the coating application to reduce the friction coefficient and makes the formability process easier to mitigate drawing stamping issues. The study deals with DP800 formability analysis applied in automotive seats, mainly on anchorage components, searching for alternatives to a better material stampability and local availability with a lower cost. These tests approached formability simulations and FLD (Forming Limit Diagrams) to compare the imported DP800-Uncoated and the local DP800EG + Phosphate steels. Additional tests were made for
de Campos, Kauan MoreiraPiovatto, Roberto ReatoColosio, Marco A.
In the 1st generation Toyota "MIRAI" fuel cell stack, carbon protective surface coating is deposited after individual Ti bipolar plate being press-formed into the desired shape. Such a process has relatively low production speed, not ideal for large scale manufacturing. A new coating concept, consisting of a nanostructured composite layer of titanium oxide and carbon particles, was devised to enable the incorporation of both the surface treatment and the press processes into the roll-to-roll production line. The initial coating showed higher than expected contact resistance, of which the root cause was identified as nitrogen contamination during the annealing step that inhibited the formation of the composite film structure. Upon the implementation of a vacuum furnace chamber as the countermeasure, the issue was resolved, and the improved coating could meet all the requirements of productivity, conductivity, and durability for use in the newer generation of fuel cell stacks
YAMASAKI, TakenoriIKEDA, KotaroSATO, Toshiki
When manipulating an arcade claw, a player can plan all she wants. But once she presses the joystick button, it’s a game of wait-and-see. If the claw misses its target, she’ll have to start from scratch for another chance at a prize. The slow and deliberate approach of the arcade claw is similar to state-of-the-art pick-and-place robots, which use high-level planners to process visual images and plan out a series of moves to grab for an object. If a gripper misses its mark, it’s back to the starting point, where the controller must map out a new plan
In today’s Automotive world, there is NO need to advocate “Light weighting”. Government policies for carbon footprint reduction combined with high safety standards are driving OEMs to adopt advanced manufacturing technologies. Steel hot forming is selected as most preferred way to reduce weight as it is easy to adopt and commercially known. It had many advantages compare to conventional cold stamping of standard and high tensile steel. The process consists of heating blank to nearly 1000 °C and quenching it in tool to for martensitic structure. Higher strength up to 2000 MPa can be achieved by this process. There are many examples where part weight is reduced by 15 to 20 % by this method. But Steel hot forming has limitation as specific density of steel is still high. Thus, there is limitation to its weight reduction capability. For further reduction, OEMs have started exploring Aluminium hot forming. This process, similar to steel hot forming improves hardness of the part by series of
NIRGUDKAR, SACHIN SURESHMelotti PhD, Federico
Vacuum suction cups are used as transforming handles in stamping lines, which are essential in developing automation and mechanization. However, the vacuum suction cup will crack due to fatigue or long-term operation or installation angle, which directly affects production productivity and safety. The better design will help increase the cups' service life. If the location of stress concentration can be predicted, this can prevent the occurrence of cracks in advance and effectively increase the service life. However, the traditional strain measurement technology cannot meet the requirements of tracking large-field stains and precise point tracking simultaneously in the same area, especially for stacking or narrow parts of the suction cups. The application must allow multiple measurements of hidden component strain information in different fields of view, which would add cost. In this study, a unique multi-camera three-dimensional digital image correlation (3D-DIC) system was designed
Guo, BichengZheng, XiaowanFang, SiyuanYang, Lianxiang
Engaging in visual-manual tasks such as selecting a radio station, adjusting the interior temperature, or setting an automation function can be distracting to drivers. Additionally, if setting the automation fails, driver takeover can be delayed. Traditionally, assessing the usability of driver interfaces and determining if they are unacceptably distracting (per the NHTSA driver distraction guidelines and SAE J2364) involves human subject testing, which is expensive and time-consuming. However, most vehicle engineering decisions are based on computational analyses, such as the task time predictions in SAE J2365. Unfortunately, J2365 was developed before touch screens were common in motor vehicles. To update J2365 and other task analyses, estimates were developed for (1) cognitive activities (mental, search, read), (2) low-level 2D elements (Press, Tap, Double Tap, Drag, Zoom, Press and Hold, Rotate, Turn Knob, Type and Keypress, and Flick), (3) complex 2D elements (handwrite, menu use
Green, PaulKoca, EkimBrennan-Carey, Collin
Electrical steels are silicon alloyed steels that possess great magnetic properties, making them the ideal material choice for the stator and rotor cores of electric motors. They are typically comprised of laminated stacks of thin electrical steel sheets. An electric motor can reach high temperatures under a heavy load, and it is important to understand the combined effect of temperature and load on the electrical steel’s performance to ensure the long life and safety of electric vehicles. This study investigated the fatigue strength and failure behavior of a 0.27mm thick electrical steel sheet, where the samples were prepared by a stamping process. Stress-control fatigue tests were performed at both room temperature and 150°C. The S-N curve indicated a decrease in the fatigue strength of the samples at the elevated temperature compared to the room temperature by 15-25 MPa in the LCF and HCF regimes, respectively. Looking at the fracture surface, the room temperature samples at both
Gill, GurmeetBehravesh, BehzadSaha, DulalZhang, WenshengChen, JimLamonaca, GianniMills, MarieJahed, Hamid
Light weighting has been one of major driver in automotive industry for few decades. Today when automobile industry is in the transition from internal combustion engine to electric vehicles it becomes even more dominant driver. Many high strength or advanced high strength steels are used in different parts of automotive body for down-gauging and light weighting. BH 220 steel is used in automotive skin panels for its bake hardening property. BH220 provides excellent combination of formability during stamping process and dent resistance in skin panel parts post painting and baking cycle. This material uses CED oven temperature for baking and provide bake hardening effect (BH effect/BH Index) in parts due to increase in yield strength by 35-70 MPa. Current national and international standards specify requirement on BH Index at 170°C for 20 minutes with 2% pre-strain. In order to optimize paint shop CED oven baking temperature, study carried out to know baking temperature effect on BH
Jain, VikasMisal, SwapnaliPaliwal, LokeshSathaye, Asmita
Strict environmental regulations are driving the automotive industry toward electric vehicles as they offer zero emissions. A key component in electric vehicles is the electric motor, where the stator and rotor are manufactured from stacks of thin electrical steel sheets. The electrical steel sheets can be cut in different ways, and the cutting methods may significantly affect the fatigue strength of the component. It is important to understand the effect of the cutting processes on the fatigue properties of electrical steel to ensure there is no premature failure of the electric motor resulting from an improper cutting process. This investigation compared the effect of three different edge preparation methods (stamping, CNC machining, and waterjet cutting) on the fatigue performance of 0.27mm thick electrical steel sheets. To investigate the effect of the edge finish on fatigue behavior, surface roughness was measured for these different samples. It was determined that the CNC
Gill, GurmeetBehravesh, BehzadSaha, DulalZhang, WenshengChen, JimLamonaca, GianniMills, MarieJahed, Hamid
EV battery enclosures are a hotbed of subsystem design, materials innovation and vehicle integration. Whether you call them packs, boxes or trays, the structures that envelop and protect EV battery cells and their supporting electrical and thermal-management hardware are among the industry's top subsystem priorities. Optimizing the battery pack involves a host of manufacturing and material choices, mass and package tradeoffs, safety provisions and structural design/engineering challenges, OEM and supplier experts told SAE Media. “Do you want the battery pack bolted into the vehicle or integrated into the body structure?” asked Darren Womack, senior department manager, body and structures, at Magna's global R&D group. Hot stamping, cold stamping, roll-forming, hydroforming, casting and steel, aluminum, composites and thermoplastics - are all raising “lively discussions” in pack development, he noted at a recent meeting of analysts
Brooke, Lindsay
Stamped components play an important role in supporting various sub-systems within a typical engine and transmission assembly. In some cases, the stamped components will not initially meet the design criteria, and material may need to be added to strengthen it. However, in other cases the component may be overdesigned, and there will be opportunities to reduce mass while still meeting all design criteria. In this latter case, multiple CAE simulations are often performed to enhance the component design by varying design parameters such as thickness, bend radius, material, etc., The conventional process will assess changes in one parameter at a time, while holding other parameters constant. Though this helps in meeting the design criteria, it is often very difficult to produce the best optimized design within the limited time span with this approach. With the aid of Altair-HyperMorph techniques, multiple design parameters can be varied simultaneously. Design of Experiments (DOE) analyses
S, SiddeshFreiman, DavidNayak, Swarnendu Bikash
With the increase of electric vehicles on the roads, there is also an increase with vehicles that use regenerative braking (RB). This novel braking method differs from traditional service braking (SB) because RB decelerates the moment the driver releases the accelerator pedal and continues to actively brake if neither pedal is depressed. Since the vehicle actively decelerates when neither pedal is depressed in a vehicle with RB, we hypothesized that this would result in a difference in driver foot behavior. There were two pieces to explore this potential difference. The first piece was to explore time-based measures. The first measure was the time period from when the lead vehicle brake lights illuminate, to when the driver releases the accelerator pedal. The second measure was the time period from when the driver releases the accelerator pedal, to when the driver presses the brake pedal. When comparing RB and SB, there was no statistically significant difference for the first time
Rundus, Christopher Robert MitropoulosMcGehee, Daniel V.Schwarz, Chris W.
An emerging challenge for the extrusion press industry is older hydraulics technology. Many presses continue using inefficient and unreliable hydraulic pumps
In this paper, for the front wall of a certain automobile, the defects of drawing splits, excessive thinning and excessive springback in the sheet metal forming process are analyzed and predicted. The stamping process has been simulated. The influence of different technical parameters (blank holder force, stamping speed, die gap and friction coefficient) on the forming results was further investigated using the center composite experiment. Through preliminary finite element simulation, the main drawing defects and trimming springback were analyzed. The second-order response surface model was established to perform the multi-objective optimization design of the stamping process with a NGSA-II genetic algorithm. Based on the relevant simulation data, multiple springback compensations are performed on the die surface to reduce the final springback of the part to meet the requirements. Results have shown that through multi-objective optimization, the stamping dies development cycle is
Zeng, HaohanHuang, ZhaomingWang, TaoSun, HuimingWang, Liangmo
With the rising cost of fuels in addition to stricter emission standards, modern vehicles ought to be more fuel efficient. The best approach to increase fuel efficiency is to reduce the mass of vehicles. In order to produce light weight components for vehicles, topology optimization (TO) is now widely used by designers. However, the raw results obtained from TO cannot be manufactured directly and require significant reinterpretation to be able to be manufactured using traditional manufacturing processes. By considering the manufacturing process outside of TO, a sub-optimal design is obtained. The consideration of process specific manufacturing constraints within the TO ensures that a more optimal design will be produced. Previously the complex designs produced by TO have been a barrier to its implementation as the components cannot be produced without excessive costs. By coupling manufacturing constraints with TO more optimal designs can be obtained. Traditionally TO is done with a
Forward, CameronShah, VishrutKashanian, KiarashPamwar, ManishSangha, BalbirKim, Il Yong
The development of new components that have a structural commitment and still achieve mass reduction is becoming increasingly complex and sophisticated materials for production for the automotive market for commercial and passenger vehicles. To achieve this level of demand the use of composite materials such as carbon fiber, glass fiber or a compound of the two has become a reality, however the production rate was still considered a problem for medium volume parts (up to one hundred thousand parts per year). The work demonstrates the construction and simulation of a PoC (proof of concept) using these composites in a warm stamp process where the material a thermoset composite plate is preheated to the working temperature, then it is inserted in a tool preheated stamping, remaining closed for a few minutes where the material is consolidated and then the part is extracted already cured without the need for cooling, thus ensuring the projected production tackt compared to the autoclave
RICCI, MARCO TULIO DE RIBEIRODE MELLO, WELLINGTON LOMBARDO NUNESDE LIMA, RAPHAEL BARBOSA CARNEIRODE OLIVEIRA, JOSE ALBERTOPEREIRA, DANIEL ALMEIDAAGUIAR, DIMAS CAMPOS
This standard provides the following: a Definition of terms pertaining to marking. b Symbols for marking location. c Requirements and restrictions for permanent markings. d Types of marking methods. e Rules for designating marking methods. f Table listing marking methods
E-25 General Standards for Aerospace and Propulsion Systems
Strain-rate sensitivity has been neglected in the simulation of the traditional stamping process because the strain rate typically does not significantly impact the forming behavior of sheet metals in such a quasi-static process, and traditional crank or link mechanical presses lack the flexibility of slide motion. However, the recent application of servo drive presses in stamping manifests improvement in formability and reduction of springback, besides increased productivity and energy savings. An accurate simulation of servo stamping entails constitutive models with strain-rate sensitivity. This study evaluated a few strain rate-sensitive models including the power-law model, the linear power-law model, the Johnson-Cook model, and the Cowper-Symonds model through the exercise of fitting these models to the experimental data of a deep draw quality (DDQ) steel. Curve fitting over segmented strain ranges and grouped strain rates were conducted so that the uniqueness of the identified
Wen, WeilingZou, YuDe Zhao, Arthur
Rosin is a naturally available organic material obtained especially from pine trees. It finds many usages and applications in areas like soldering, pharmaceuticals, building work, engineering field etc. In this work, an attempt has been made to study experimentally the improvement in strength of rosin at normal stove top temperature by means of combining rosin in various ratios with some important organic hardeners and chemicals of literature importance. A table top book press was fabricated for the purpose of rosin pressing using simple tools like teak wood, bolt and nuts. Experiments were conducted using commonly used kitchen gas stove, fabricated book press, rosin raw material, aluminium sulfate powder, maleic anhydride chemical, acetone, ethanol and saw dust particles for making different combination materials using rosin as the main element. Results showed that, rosin on its own without additives showed higher viscosity and brittleness. When combined with organic hardener
Kumar Ayyaswamy, John PresinS., SivakumarS., SathishRavikumar Solomon, Gnanadurai
Belt-driven starter generator claw pole electric motors are used in hybrid automobiles to start the engine, charge the battery and to power the electrical system when its engine is running. Shaft and claw pole are important components in the claw pole electric motor. The claw pole is fitted onto the shaft through press-fit force. Press-fit is a widely used fastening process to join two different components by pushing a component inside or over another component with high press force which will create a strong bond between the components. Determining press-fit force required to assemble parts is very complex since it depends on a lot of factors such as mechanical material properties of components, interference fit condition whether it is in Min, mean and max condition, amount of contact pressure induced by contact surface, co-efficient of friction created in between components. The press-fit will help to prevent loosening components from its bond at high torque and speed. More over
Neelakandan, VaratharajEkambaram, Ashok kumarGanesan, ThulasirajanRadhakrishnan, MuruganandamChakrapani Rao, Praveen
In the design of gearboxes and transfer boxes of heavy-duty vehicle`s transmissions, sliding bearings are often used as supports for gear wheels. Analysis of the results of statistical processing of gearbox parts failures and transfer boxes of wheeled tractors with a pulling force of 30 kN indicates the need to improve the reliability of the sliding bearings of the gear wheels. Such plain bearings ensure free rotation of the gear wheels in case of the torque transmission absence, and when locked by a clutch, the radial load of the gear wheel is sensed, while operating in the slipping rolling mode. Such units are poorly understood and in the technical literature sources there are no recommendations for their engineering, which often leads to errors when selecting operation gaps and press fitted in gear wheels. The manufacturers of the transmissions assemblies replaced the plain bearings, which in this case are made of metal-ceramic bushes, for roller bearings. Also, the application of
Savchuk, VolodymyrKuhtov, ValeriyGritsuk, Igor V.Podrigalo, MikhailVychuzhanin, VladimirParsadanov, IgorBulgakov, NickolayBelousov, EvgenVrublevskyi, RomanSamarin, OleksandrKurnosenko, DariaVerbovskiy, Valeriy
The aluminum alloy 7075 sheets have drawn more attention in recent years in the automotive industry for lightweighting. Hot stamping of high-strength aluminum alloy has been developed to improve the formability of the part without springback. Obtaining an adequate quench rate is a critical step of the hot stamping process and corresponds to good strength and corrosion resistance. This work looks at measuring the quench rate of 7075 at advanced aging (AA) and T6 condition via two different approaches: forced air and water with various temperatures. The results verify that water is a superior form of quenching, i.e., from 50°C/s to 550°C/s, the forced air-cooled quench rate is 2°C/s-10°C/s. Besides, mechanical properties such as yield strength, ultimate tensile strength, and uniform elongation were measured by tensile testing. As a result, a correlation between the quench rate and final mechanical properties was developed. In addition, microstructure and corrosion analyses were conducted
Chen, ZhongKaunitz, LeonWu, Cedric
As the automotive industry increasingly adopts Advanced High Strength Steel (AHSS) for the vehicle light-weighting and crashworthiness, the edge cracking significantly increases in stamping AHSS. Different lab-scale test methods such as the ISO standard hole-expansion test and the half specimen dome test are available to evaluate edge formability. However, none of these lab-scale testing methods emulates production conditions such as various shear clearances, part complexity, and shearing speed associated with the mechanical or hydraulic press operation. To address these limitations of the available testing methods, a new punching and stamping test was developed. This paper introduces the simulation and experimental approach in developing this unique testing method to design the peanut-shaped hole that is sensitive to edge cracking in stamping. Three different sheet materials, DP780, 980 GEN3, and aluminum 6016-T4 were tested to validate the reliability of the newly developed testing
Gu, JiahuiZoller, LauraKim, Hyunok
Third generation advanced high strength steels (AHSS) have been developed combining high strength and formability, allowing for lightweighting of vehicle structural components. These AHSS components are exposed to paint baking operations ranging in time and temperature to cure the applied paint. The paint baking treatment, combined with straining induced from part forming, may lead to increased in-service component performance due to a strengthening mechanism known as bake hardening. This study aims to quantify the bake hardening behavior of select AHSS grades. Materials investigated were press hardenable steels (PHS) 1500 and 2000; transformation induced plasticity (TRIP) aided bainitic ferrite (TBF) 1000 and 1200; and dual phase (DP) 1000. The number designations of these grades refer to minimum as-received ultimate tensile strengths in MPa. Paint baking was simulated using industrially relevant times and temperatures from 15 to 60 min and 120 to 200 °C, respectively. Samples were
Blesi, Brandon W.Smith, CharlesMatlock, David K.De Moor, Emmanuel
Items per page:
1 – 50 of 1037