Browse Topic: Extrusion

Items (1,315)
This work aims to define a novel integration of 6 DOF robots with an extrusion-based 3D printing framework that strengthens the possibility of implementing control and simulation of the system in multiple degrees of freedom. Polylactic acid (PLA) is used as an extrusion material for testing, which is a thermoplastic that is biodegradable and is derived from natural lactic acid found in corn, maize, and the like. To execute the proposed framework a virtual working station for the robot was created in RoboDK. RoboDK interprets G-code from the slicing (Slic3r) software. Further analysis and experiments were performed by FANUC 2000ia 165F Industrial Robot. Different tests were performed to check the dimensional accuracy of the parts (rectangle and cylindrical). When the robot operated at 20% of its maximum speed, a bulginess was observed in the cylindrical part, causing the radius to increase from 1 cm to 1.27 cm and resulting in a thickness variation of 0.27 cm at the bulginess location
Srivastava, KritiKumar, Yogesh
This specification covers a discontinuously reinforced aluminum alloy (DRA) made by mechanical alloying 2124A aluminum powder and silicon carbide particulate (SiC). It is produced in the form of extruded bar, rod, wire, and shapes with cross section inclusive of 1-inch (25.4-mm) diameter or less (see 8.7
AMS D Nonferrous Alloys Committee
This specification covers a discontinuously reinforced aluminum alloy (DRA) made by mechanical alloying 2124A aluminum powder and silicon carbide (SiC) particulate. It is produced in the form of extruded bar, rod, wire, and shapes with cross section inclusive of 1-inch (25.4-mm) diameter or less (see 8.7
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of extruded bars, rods, and profiles (shapes) with a maximum cross-sectional area of 25 square inches (161 cm2), a maximum circle size of 12 inches (305 mm), and a nominal thickness up to 3.250 inches (82.54 mm), inclusive (see 8.6
AMS D Nonferrous Alloys Committee
In this investigation, AA6351 alloy matrix composites with a larger volume proportion of SiC (20 wt%) were fabricated and tested for microstructure and mechanical behavior. Composites were hot extruded from mechanically milled matrix and reinforcements. Hot extrusion uniformly distributed reinforcements in the matrix and strengthened phase interaction. Mechanical ball milling causes AA6351 powder to become more homogeneous, reducing the mean particle size from 38.66 ± 2.31 μm to 23.57 ± 2.31 μm due to particle deformation. The micrograph shows that the SiC particles are equally dispersed in the AA6351 matrix, avoiding densification and reinforcing phase integration issues during hot extrusion. In hot extrusion, SiC particles are evenly distributed in the matrix, free of pores, and have strong metallurgical bonds, resulting in a homogenous composite microstructure. SiC powders and mechanical milling increase microhardness and compressive strength, giving MMC-A 54.9% greater than AA6351
Saiyathibrahim, A.Murali Krishnan, R.Jatti, Vinaykumar S.Jatti, Ashwini V.Jatti, Savita V.Praveenkumar, V.Balaji, K.
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, profiles, and tubing (see 8.6
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of extruded bars, rods, and profiles up to 0.499 inches (12.67 mm) in nominal diameter, or least thickness, and under 10 in2 (65 cm2) in cross-sectional area
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy procured in the form of extruded bars, rods, wire, profiles (shapes), and tubing up to 1.499 inches (38.07 mm), inclusive, in nominal diameter or least thickness (bars, rods, wire, or profiles) or nominal wall thickness (tubing) (see 8.6
AMS D Nonferrous Alloys Committee
Aitiip is a leading Spanish research and development institute and serves companies in the aeronautics, automation, industrial, and packaging sectors. The institute possesses strong platforms for the characterization of materials and processes and is known as a powerful integrator of technologies, which is constantly on the lookout for the next transformative technology. A year ago, Aitiip implemented an NXE 400 industrial resin 3D printer platform from Nexa3D to explore integrations of additive manufacturing and injection molding. Nexa3D is the Ventura, California-based provider of high-speed industrial printing technologies whose portfolio continues to grow, reflected in its acquisition of Essentium, one of the world's most well-known providers of extrusion 3D printing, earlier this year. Liebherr is one of the world's largest providers of a variety of industrial goods, services and products. Aerospace and transportation systems is one of 13 different product segments supplied by the
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, profiles, and tubing up to 5.000 inches (127.00 mm), inclusive, in nominal diameter or least thickness (see 8.5
AMS D Nonferrous Alloys Committee
Ultrahigh-strength steels are traditionally defined as those steels with a minimum yield strength of approximately 1380 MPa. Notable examples of steels in this category include AISI 4130, AISI 4140, and AISI 4340. In many cases, maximizing the performance of these alloys requires a rather complex approach that involves a series of tempering, annealing, or stress-relieving treatments. As a result, they are produced using a variety of traditional processing methods such as casting, rolling, extrusion, or forging. These traditional methods — combined with the ultrahigh strength of the steels — often meant that the production of complex, near-net shape parts of high quality was quite difficult. In addition, these production methods often entailed repetitive treatments or long production cycles, both of which resulted in elevated production costs
This specification covers a magnesium alloy in the form of extruded bars, rods, wire, tubing, and profiles up to 40 square inches (258 cm2) in cross-sectional area (solids) and up to 8.5 inches (216 mm) OD by 1.188 inches (30.18 mm) wall thickness (tubing) (see 8.5
AMS D Nonferrous Alloys Committee
AISI H13 hot work tool steel is commonly used for applications such as hot forging and hot extrusion in mechanical working operations that face thermal and mechanical stress fluctuations, leading to premature failures. Cryogenic treatment was applied for AISI H13 steel to improve the surface hardness and thereby fatigue resistance. This work involves failure analysis of H13 steel specimens subjected to cryogenic treatment and gas nitriding. The specimens were heated to 1020°C, oil quenched followed by double tempering at 550°C for 2 h, and subsequently, deep cryogenically treated at −185°C in the cryochamber. Gas nitriding was carried out for 24 h at 500°C for 200 μm case depth in NH3 surroundings. The specimens were subjected to rotating bending fatigue at constant amplitude loading at room temperature. Measurement of surface roughness, hardness, and microstructural analysis indicated improved fatigue life for cryogenically treated specimens as compared to gas nitride, which could be
Shinde, TarangMutalikdesai, SachinJomde, AmitShamkuwar, Sonal
At the dawn of battery electric vehicles (BEVs), protection of automotive battery systems as well as passengers, especially from severe side impact, has become one of the latest and most challenging topics in the BEV crashworthiness designs. Accordingly, two material-selection concepts are being justified by the automotive industry: either heavy-gauge extruded aluminum alloys or light-gauge advanced high-strength steels (AHSSs) shall be the optimal materials to fabricate the reinforcement structures to satisfy both the safety and lightweight requirements. In the meantime, such a justification also motivated an ongoing C-STARTM (Cliffs Steel Tube as Reinforcement) Protection project, in which a series of modularized steel tube assemblies, were demonstrated to be more cost-efficient, sustainable, design-flexible, and manufacturable than the equivalent extruded aluminum alloy beams as BEV reinforcement structures. Tangent to this comparative study, the present work shed some light on the
Hu, JunSun, YetingYu, MiaoWang, Yu-WeiThomas, Grant
This specification covers an aluminum alloy in the form of extruded bars, rods, and profiles 0.250 to 2.000 inches (6.35 to 50.80 mm) in nominal thickness and up to 32 square inches (206 cm2), inclusive, in cross-sectional area (see 8.5
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, profiles, and tubing, flash-welded rings fabricated from extruded stock, and stock for flash-welded rings (see 8.6
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, shapes, and tubing 5.000 inches (127.00 mm) and under in nominal diameter or least thickness (wall thickness of tubing) (see 8.5
AMS D Nonferrous Alloys Committee
This specification covers a corrosion-resistant steel in the form of bars, wire, forgings, extrusions, mechanical tubing, flash-welded rings, and stock for forging, extruding, or flash-welded rings
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a titanium alloy in the form of extruded bars, shapes, and flash-welded rings up through 3.000 inches (76.20 mm), inclusive, in nominal diameter or least distance between parallel sides, and stock for flash-welded rings of any size (see 8.7
AMS G Titanium and Refractory Metals Committee
Tubing for wound draining is an essential medical component used to manage the drainage of fluids from surgical or traumatic wounds. This tubing is commonly employed after surgical procedures to facilitate the removal of excess fluids (such as blood or serous fluid) from the wound site, or in traumatic Injuries where there is a need to control and remove fluids to aid in the healing process. Other uses include draining abscesses or fluid collections, helping to prevent infection, and promote faster healing, or to manage fluid accumulation in body cavities, preventing complications like seromas or hematomas. By removing excess fluids, tubing promotes a cleaner wound environment, which is conducive to faster healing
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, shapes, and tubing up to 5.000 inches, (127.00 mm), inclusive, in nominal diameter or least thickness (see 8.5
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, profiles, and tubing 5.000 inches (127.00 mm) and under in nominal diameter or thickness (wall thickness of tubing) and 32 square inches (206 cm2) and under in cross-sectional area (see 8.5
AMS D Nonferrous Alloys Committee
The 3D printing technology is an Additive Manufacturing process which is capable of producing the complex shapes. At present there is no other technologies integrating the 3D printing and the CNC machine, thus we adapting a new design of 3D printing setup for CNC machine with some special feature as extruder, it is based on the Fusion Deposition Modelling (FDM) process with the help of the parts like Extruder, Heat Bed, Arduino boards where we are going to design a head of the printer which is to be attached with the BT40 commonly used Tool holder for the CNC milling machines. This extruder plays a vital role in this CNC milling machine for producing 3D printed components of different material and different colour. And this setup is capable of printing high resolution and complex shapes with different material and different colour by means of the heated filament. The post processing process like milling and surface finish can also be done by the CNC Machine. This setup is cost
Deepan Kumar, SadhasivamS, BalakrishnanSaminathan, SathiskumarArun Raj, VDhayaneethi, SivajiE, SoundrapandianVeath Prakash, B
This specification covers a corrosion-resistant steel in the form of bars, wire, forgings, extrusions, mechanical tubing, flash-welded rings, and stock for forging, extruding, or flash-welded rings
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, profiles 5.000 inches (127.00 mm) and under in nominal diameter or thickness and 32 square inches (206 cm2) and under in cross-sectional area, and tubing 3.000 inches (76.20 mm) and under in wall thickness and 20 square inches (129 cm2) and under in cross-sectional area (see 8.5
AMS D Nonferrous Alloys Committee
This specification covers an aluminum-beryllium alloy in the form of bars, rods, tubing, and shapes consolidated from powder by extrusion
AMS G Titanium and Refractory Metals Committee
This specification covers an aluminum alloy in the form of extruded profiles such as angles, channels, tees, zees, I-beams, and H-beams
AMS D Nonferrous Alloys Committee
This specification covers a closed cell silicone rubber sponge in the form of sheet, strip, extrusions, and molded shapes
AMS CE Elastomers Committee
This specification covers requirements and recommendations for the heat treatment of wrought aluminum alloy raw materials (see 2.2.1) by producers. It supersedes AMS-H-6088 and replaces MIL-H-6088
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of extruded profiles 0.500 to 1.750 inches thick (12.70 to 44.20 mm), inclusive, with a maximum cross-sectional area of 20 square inches (129 cm2) and a maximum circle size of 10 inches (254 mm
AMS D Nonferrous Alloys Committee
This specification covers established inch/pound manufacturing tolerances applicable to bars and rods of copper and copper alloys ordered to inch/pound dimensions. These tolerances apply to all conditions, unless otherwise noted. The term “exclusive” is used to apply only to the higher figure of a specified range
AMS D Nonferrous Alloys Committee
The development of microfluidic systems for lab-on-a-chip (LoC) and organ-on-a-chip (OoC) applications require precise fluid flow control. Typically, on-chip flows are controlled by integrating a microfluidic chip with external pumps that deliver fluid flow at the microscale (typically on the order of mL/min) through the microchannels. To this end, commercially available flow devices such as extrusion syringe pumps, peristaltic pumps, and pneumatic pumps have been widely used
An interdisciplinary team of University of Minnesota Twin Cities scientists and engineers has developed a first-of-its-kind, plant-inspired extrusion process that enables synthetic material growth. The new approach will allow researchers to build better soft robots that can navigate hard-to-reach places, complicated terrain, and potentially areas within the human body
This specification covers an aluminum alloy in the form of extruded rods, bars, and profiles (shapes) 0.040 to 4.500 inches (1.02 to 114.30 mm), inclusive, in thickness produced with maximum cross sectional area of 56.1 square inches (36199 mm2) and a maximum circumscribing circle diameter (circle size) of 24.4 inches (620 mm) (see 2.4.1 and 8.6
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of extruded rods, bars, and profiles (shapes) 0.040 to 4.500 inches (1.02 to 114.30 mm), inclusive, in thickness produced with maximum cross sectional area of 56.1 square inches (36193 mm2) and a maximum circumscribing circle diameter (circle size) of 20.2 inches (513 mm) (see 2.4.1
AMS D Nonferrous Alloys Committee
This specification covers an aluminum alloy in the form of extruded bars, rods, wire, profiles, and tubing up to 2.999 inches (76.17 mm), inclusive, in thickness, nominal diameter or wall thickness with cross-sectional area 25 square inches (161 cm2) and under (see 8.6
AMS D Nonferrous Alloys Committee
The purpose of this report is to provide information on the results of ultraviolet (UV) laser marking and mark contrast measurement of a wide range of aerospace wire and cable constructions, the specifications for most of which do not state specific requirements for laser markability. The contents of this document are for information and guidance only. It is not intended that it be used as the basis for marking process specifications or standards, which are covered by AS5649
AE-8A Elec Wiring and Fiber Optic Interconnect Sys Install
This specification covers a corrosion-resistant steel in the form of bars, wire, forgings, extrusions, flash welded rings, and stock for forging, extruding, or flash welded rings
AMS F Corrosion and Heat Resistant Alloys Committee
This specification covers a corrosion- and heat-resistant nickel alloy in the form of bars, forgings, extrusions, flash welded rings up to 10 inches (254 mm) in diameter, thickness, or for hexagons, least distance between parallel sides, and stock of any size for forgings, extrusions, and rings
AMS F Corrosion and Heat Resistant Alloys Committee
Items per page:
1 – 50 of 1315