Browse Topic: Electric hybrid power
Electricity is the fuel of tomorrow — a future powered by battery technology. With the global electric mobility market expected to reach nearly $500 billion by 2025, battery and power storage needs will be pushed beyond current limits. Design teams are being challenged to rethink how systems work on the ground, in the skies, and at sea
Test and validation of control systems for hybrid vehicle power trains provide a unique set of challenges. Not only does the electronic control unit (ECU), or pair of ECUs, need to smoothly coordinate power flow between two or more power plants, but it also must handle the power electronics' high-speed dynamics due to PWM signals frequently in the 10-20 kHz range. The trend in testing all-electric and hybrid-electric ECUs has moved toward using field-programmable gate arrays (FPGAs) as the processing node for simulating inverter and electric motor dynamics in real time. Acting as a purpose-built processor colocated with analog and digital input and output, the FPGA makes it possible for real-time simulation loop rates on the order of one microsecond. Combining the temporal fidelity provided by the FPGA with the model fidelity of a machine model based on finite-element analysis yields a hardware-in-the-loop test system that can replicate the high-speed, nonlinear dynamics required to
Functional safety of automotive embedded systems is a key issue during the development process. To support the industry, the automotive functional safety standard ISO 26262 has been defined. However, there are several limitations when following the approach directly as defined in the standard. Within this work, we propose an approach for the integration and test of safety-critical systems by using system modeling techniques. The combination of two state-of-the-art modeling languages into a dedicated multi-language development process provides a direct link between all stages of the development process, thus enabling efficient safety verification and validation already during modeling phase. It supports the developer in efficient application of requirements as defined by ISO 26262, hence reducing development time and cost by providing traceable safety argumentation. Based on a hybrid electric power train scenario, we evaluate the benefits of the proposed system modeling approach for
The effectiveness of elements comprising a hybrid electric power generating system was studied. The wind and photovoltaic renewable resources served as integral components of the hybrid systems configuration. A HMMWV towable trailer system provided an intermediary basis for formulation of methodology needed for optimization of power generation and energy storage capacity constrained by cost, size and weight of the system. The methodology employed in this paper is scalable from kilowatts to megawatts or from man portable systems to significantly larger systems which can be housed in 40 foot ISO containers
Future combat vehicles will require unconventional weapons and armor systems such as electromagnetic (EM) or electrothermal chemical (ETC) guns, electromagnetic (EM) armor, and directed- energy weapons (DEWs). To meet these requirements, a hybrid electric power system has been identified as the best alternative to support the demand for propulsion, continuous auxiliary power demand, and pulsed power demand for weapons and armor
The power system for the Future Combat System's (FCS) family of manned ground vehicles will not only need to satisfy mobility requirements, but also need to provide continuous and pulsed power for weapons, armaments and other auxiliary loads. Investigating hybrid power technologies has been an active research area for the U.S. Army RDECOM's Tank Automotive Research, Development and Engineering Center (TARDEC) Power and Energy System Integration Laboratory (P&E SIL). The P&E SIL is located in Santa Clara, CA and is maintained by Science Applications International Corporation (SAIC). Current P&E SIL efforts include imposing realistic loads on notional combat vehicle subsystems in order to evaluate components, such as motors and batteries. Equally important research is being conducted through the application of realistic driver/commander inputs which will aid in the validation of vehicle designs, control systems and vehicle power management architectures capable of meeting the mobility
Items per page:
50
1 – 22 of 22