Browse Topic: Microgrid
ABSTRACT Electric vehicle (EV) aggregation to provide vehicle-to-grid (V2G) services is a topic that has generated research into the economics and viability of using EVs for more than transportation, but little has been demonstrated to this point. This is especially true of using bidirectional power flows to move energy to the grid from EVs or to provide variable charge and discharge control. Our work focuses on implementing bi-directional functionality to demonstrate both V2G services and islanded microgrid support. The use of an intelligent microgrid controller combined with an EV aggregator provides new control capabilities for EV participation as energy storage devices
UC Santa Cruz Assistant Professor of Electrical and Computer Engineering Yu Zhang and his lab are leveraging tools to improve the efficiency, reliability, and resilience of power systems, and have developed an artificial intelligence (AI)-based approach for the smart control of microgrids for power restoration when outages occur
As a part of NASA’s efforts in space, options are being examined for an Artemis moon base project to be deployed. This project requires a system of interconnected, but separate, DC microgrids for habitation, mining, and fuel processing. This in-place use of power resources is called in-situ resource utilization (ISRU). These microgrids are to be separated by 9-12 km and each contains a photovoltaic (PV) source, energy storage systems (ESS), and a variety of loads, separated by level of criticality in operation. The separate microgrids need to be able to transfer power between themselves in cases where there are generation shortfall, faults, or other failures in order to keep more critical loads running and ensure safety of personnel and the success of mission goals. In this work, a 2 grid microgrid system is analyzed involving a habitation unit and a mining unit separated by a tie line. A set of optimal controls that has been developed, including power flow controls on the tie line
With the increased demand for electricity due to the rapid expansion of EV charging infrastructure, weather events, and a shift towards smaller, more environmentally responsible forms of renewable sources of energy, Microgrids are increasing in growth and popularity. The integration of real time communication between all PGSs (Power Generating Sources) and loadbanks has allowed the re-utilization of waste electricity. Pop-up Microgrids in PSPS events have become more popular and feasible in providing small to medium size transmission and distribution. Due to the differing characteristics of the PGSs, it is a challenge to efficiently engage the combined PGSs in harmony and have them share and carry the load of the microgrid with minimal ‘infighting.’ Different Power generating sources each have their own personality and unique ‘quirks.’ With loadbanks being able to perform various functions automatically by monitoring and responding to individual PGSs needs and demands, efficiency is
A novel method which has the potential for improving the U.S. Navy's ability to perform continuous assurance on autonomous and other cyberphysical systems. Naval Postgraduate School, Monterey, CA Autonomous systems are poised to provide transformative benefits to society. Autonomous vehicles (AVs) have the potential to reduce the frequency and severity of collisions, enhance mobility for blind, disabled, and underage drivers, lower energy consumption and environmentally harmful emissions, and reduce population density in metropolitan regions. In civilian aviation, increasingly autonomous systems could mitigate two of the most costly features of human pilots: the cost associated with training and paying highly skilled operators, and the reduced efficiency incurred by flight time limitations and crew rest requirements. Additionally, autonomous air traffic management systems could reduce the cognitive burden on air traffic controllers by automating the monitoring and analysis of high
Reliability and resiliency (R&R) definitions differ depending on the system under consideration. Generally, each engineering sector defines relevant R&R metrics pertinent to their system. While this can impede cross-disciplinary engineering projects as well as research, it is a necessary strategy to capture all the relevant system characteristics. This paper highlights the difficulties associated with defining performance of such systems while using smart microgrids as an example. Further, it develops metrics and definitions that are useful in assessing their performance, based on utility theory. A microgrid must not only anticipate load conditions but also tolerate partial failures and remain optimally operating. Many of these failures happen infrequently but unexpectedly and therefore are hard to plan for. We discuss real life failure scenarios and show how the proposed definitions and metrics are beneficial
Vehicles with power exporting capability are microgrids since they possess electrical power generation, onboard loads, energy storage, and the ability to interconnect. The unique load and silent watch requirements of some military vehicles make them particularly well-suited to augment stationary power grids to increase power resiliency and capability. Connecting multiple vehicles in a peer-to-peer arrangement or to a stationary grid requires scalable power management strategies to accommodate the possibly large numbers of assets. This paper describes a military ground vehicle power management scheme for vehicle-to-grid applications. The particular focus is overall fuel consumption reduction of the mixed asset inventory of military vehicles with diesel generators typically used in small unit outposts. By exploiting peak efficiency operation of the diesel generators and the vehicle’s energy storage systems, the total fuel consumption can be reduced over a typical daily outpost load cycle
The reliability theory of repairable systems is vastly different from that of non-repairable systems. The authors have recently proposed a ‘decision-based’ framework to design and maintain repairable systems for optimal performance and reliability using a set of metrics such as minimum failure free period, number of failures in planning horizon (lifecycle), and cost. The optimal solution includes the initial design, the system maintenance throughout the planning horizon, and the protocol to operate the system. In this work, we extend this idea by incorporating flexibility and demonstrate our approach using a smart charging electric microgrid architecture. The flexibility is realized by allowing the architecture to change with time. Our approach “learns” the working characteristics of the microgrid. We use actual load and supply data over a short time to quantify the load and supply random processes and also establish the correlation between them. The quantified processes are then used
For better understanding of soot formation and oxidation processes in diesel spray flame, the nanostructure of primary soot particles directly sampled in a diesel spray flame was investigated via High-Resolution Transmission Electron Microscopy (HRTEM). A single-shot diesel spray flame was achieved in a constant volume combustion vessel under diesel-like conditions (Ta=1000K, Pa=2.7 MPa) and a micro-grid for HRTEM observation was directly exposed to the spray flame to thermophoretically sample soot particles onto the grid surface. A preliminary nanostructure investigation was conducted for x500k magnification HRTEM images of soot particles directly sampled in diesel spray flames of Fischer-Tropsch Diesel (FTD) fuel seeded with naphthalene as a representative aromatic substance. A MATLAB code for HRTEM image processing and analysis of lattice fringes within primary soot particles was developed and used to characterize the length, tortuosity and separation of lattice fringes
Items per page:
50
1 – 24 of 24