Browse Topic: Spectroscopy

Items (589)
Purified nickel and a large number of MgTi2 / NiO2 catalysts with various MgTi2 loadings were produced using the traditional incipient wetness method. X-ray crystallography and Fourier-transform infrared spectroscopy were used to examine the catalysts. To understand the material's microstructure better, the researchers investigated oxygen adsorption at 90K. The amine titration method was used to investigate the acidic characteristics of these catalysts. In a study on cumene cracking, these catalysts were employed. The catalyst was found to be amorphous up to a loading of 12 weight percent MgTi2, but at higher loadings, crystalline MgTi2 phase formed on an amorphous silica substrate. When NiO2 is doped with more MgTi2, there are significant differences in the structure, surface acidity, and catalytic activity of the catalysts. Catalysts with a higher MgTi2 loading are noticeably more acidic than those with a lower MgTi2 loading. A correlation between the amount of cracking activity and
Ashok Kumar, B.Dhiyaneswaran, J.Selvaraj, MalathiPradeepkumar, M.Shajeeth, S.
ABSTRACT In this study, a styrene butadiene rubber, which is similar to the rubber used in road wheel backer pads of tracked vehicles, was investigated experimentally under monotonic and fatigue loading conditions. The monotonic loading response of the material was obtained under different stress states (compression and tension), strain rates (0.001/s to 3000/s), and temperatures (-5C to 50C). The experimental data showed that the material exhibited stress state, strain rate and temperature dependence. Fatigue loading behavior of the rubber was determined using a strain-life approach for R=0.5 loading conditions with varying strain amplitudes (25 to 43.75 percent) at a frequency of 2 Hz. Microstructural analysis of specimen fracture surfaces was performed using scanning electron microscopy and energy dispersive x-ray spectroscopy to determine the failure mechanisms of the material. The primary failure mechanisms for both loading conditions were found to be the debonding of particles on
Brown, H.R.Bouvard, J.L.Oglesby, D.Marin, E.Francis, D.Antonyraj, A.Toghiani, H.Wang, P.Horstemeyer, M.F.Castanier, M.P.
In physical chemistry, time-resolved spectroscopy is the study of dynamic processes in materials or chemical compounds. Within this field, various techniques including transient absorption spectroscopy are used to study the mechanistic and kinetic details of chemical processes that occur within just a few picoseconds to a femtosecond — the equivalent of one millionth of one billionth of a second
Light measurement devices called optical frequency combs have revolutionized metrology, spectroscopy, atomic clocks, and other applications. Yet challenges with developing frequency comb generators at a microchip scale have limited their use in everyday technologies such as handheld electronics
A Columbia Engineering team has published a paper in the journal Joule that details how nuclear magnetic resonance spectroscopy techniques can be leveraged to design the anode surface in lithium metal batteries. The researchers also present new data and interpretations for how this method can be used to gain unique insight into the structure of these surfaces
Lasers developed at the University of Rochester offer a new path for on-chip frequency comb generators. University of Rochester, Rochester, NY Light measurement devices called optical frequency combs have revolutionized metrology, spectroscopy, atomic clocks, and other applications. Yet challenges with developing frequency comb generators at a microchip scale have limited their use in everyday technologies such as handheld electronics. In a study published in Nature Communications, researchers at the University of Rochester describe new microcomb lasers they have developed that overcome previous limitations and feature a simple design that could open the door to a broad range of uses
Selective Laser Melting (SLM) has gained widespread usage in aviation, aerospace, and die manufacturing due to its exceptional capacity for producing intricate metal components of highly complex geometries. Nevertheless, the instability inherent in the SLM process frequently results in irregularities in the quality of the fabricated components. As a result, this hinders the continuous progress and broader acceptance of SLM technology. Addressing these challenges, in-process quality control strategies during SLM operations have emerged as effective remedies for mitigating the quality inconsistencies found in the final components. This study focuses on utilizing optical emission spectroscopy and IR thermography to continuously monitor and analyze the SLM process within the powder bed, intending to strengthen process control and minimize defects. Optical emission spectroscopy is employed to study the real-time interactions between the laser and powder bed, melt pool dynamics, material
Raju, BenjaminKancherla, Kishore BabuB S, DakshayiniRoy Mahapatra, Debiprosad
Measurements of air–fuel ratio (AFR) and λ (AFRactual/AFRstoich) are crucial for understanding internal combustion engine (ICE) performance. However, current λ sensors suffer from long light-off times (on the order of seconds following a cold start) and limited time resolution. In this study, a four-color mid-infrared laser absorption spectroscopy (LAS) sensor was developed to provide 5 kHz measurements of temperature, CO, CO2, and NO in engine-out exhaust. This LAS sensor was then combined with 1 kHz hydrocarbon (HC) measurements from a flame ionization detector (FID), and the Spindt exhaust gas analysis method to provide 1 kHz measurements of λ. To the authors’ knowledge, this is the first time-resolved measurement of λ during engine cold starts using the full Spindt method. Three tests with various engine AFR calibrations were conducted and analyzed: (1) 10% lean, (2) stoichiometric, and (3) 10% rich. The measurements were acquired in the exhaust of a light-duty truck with an 8
Stiborek, Joshua W.Kempema, Nathan J.Schwartz, Charles J.Szente, Joseph J.Loos, Michael J.Goldenstein, Christopher S.
In today’s landscape, environmental protection and nature conservation have become paramount across industries, spurring the ever-increasing aspect of decarbonization. Regulatory measures in transportation have shifted focus away from combustion engines, making way for electric mobility, particularly in smaller engines. However, larger applications like ships and stationary power generation face limitations, not enabling an analogous shift to electrification. Instead, the emphasis shifted to zero-carbon fuel alternatives such as hydrogen and ammonia. In addition to minimal carbon-containing emissions due to incineration of lubricating oil, hydrogen combustion with air results in nitrogen oxide emissions, still necessitating quantification for engine operation compliance with legal regulations. A commonly used multicomponent exhaust gas analyzer on FTIR principle can suffer from higher volumetric water shares in the exhaust gas of the hydrogen engine, influencing the emission analysis
Armbruster, FelinaKraus, ChristophPrager, MaximilianHärtl, MartinJaensch , Malte
Fossil fuel reserves are swiftly depleting when consumer demand for these fuels continues to rise. In order to meet the demand and diminish the pollution derived through conventional fuels, it is crucial to employ cleaner fuels made from substitutes such as waste biomass. Also, converting waste biomass to fuel can lower usage of landfills. There are many biomass resources that are suitable for fuel production, out of which groundnut is also a potential feedstock. Groundnut shell biomass was chosen for this study, as it is a waste leftover during shelling of groundnuts for various commercial applications. The procured groundnut shells were converted to oil using pyrolysis process and was distilled. Both the pyrolysis oil and the distilled oil were analyzed using Fourier transform infrared instrument wherein the presence of functional groups such as alcohols, amines, and carboxylic acids were identified. Further analysis of the distilled oil using gas chromatography and mass spectrometry
Chelladorai, PrabhuBalakrishnan, Navaneetha KrishnanKeerthiga, G.Singhvi, SambhavAtekov, Parahat
This study demonstrates the defossilized operation of a heavy-duty port-fuel-injected dual-fuel engine and highlights its potential benefits with minimal retrofitting effort. The investigation focuses on the optical characterization of the in-cylinder processes, ranging from mixture formation, ignition, and combustion, on a fully optically accessible single-cylinder research engine. The article revisits selected operating conditions in a thermodynamic configuration combined with Fourier transform infrared spectroscopy. One approach is to quickly diminish fossil fuel use by retrofitting present engines with decarbonized or defossilized alternatives. As both fuels are oxygenated, a considerable change in the overall ignition limits, air–fuel equivalence ratio, burning rate, and resistance against undesired pre-ignition or knocking is expected, with dire need of characterization. Two simultaneous high-speed recording channels granted cycle-resolved access to the natural flame luminosity
Mühlthaler, Markus SebastianHärtl, MartinJaensch, Malte
Various feedstocks can be employed for biodiesel production, leading to considerable variation in composition and engine fuel characteristics. Using biodiesels originating from diverse feedstocks introduces notable variations in engine characteristics. Therefore, it is imperative to scrutinize the composition and properties of biodiesel before deployment in engines, a task facilitated by predictive models. Additionally, the international commercialization of biodiesel fuel is contingent upon stringent regulations. The traditional experimental measurement of biodiesel properties is laborious and expensive, necessitating skilled personnel. Predictive models offer an alternative approach by estimating biodiesel properties without depending on experimental measurements. This research is centered on building models that correlate mid-infrared spectra of biodiesel and critical fuel properties, encompassing kinematic viscosity, cetane number, and calorific value. The novelty of this
Bukkarapu, Kiran RajKrishnasamy, Anand
In the diagnosis of membrane flooding and drying faults in a Proton Exchange Membrane Fuel Cell (PEMFC) through Electrochemical Impedance Spectroscopy (EIS), this paper proposes a Genetic Algorithm (GA)-based feature selection method for selecting the required frequency points of failure, to reduce the measurement time taken by EIS while ensuring high diagnostic accuracy. This feature selection method searches the feature space through GA and proposes an encoding method tailored to this problem. During the searching process, three algorithms, i.e., Backpropagation Neural Network (BPNN), K-Nearest Neighbor (KNN), and eXtreme Gradient Boosting (XGBoost), are used to extract various features and select higher diagnostic rates of feature frequencies. Comparisons are made between the feature frequencies selected by the proposed method and those selected by conventional methods based on empirical experience, and it is found that the feature frequencies selected by the proposed method have
Guan, PengShen, YitaoWang, ZheyuBai, YuXinJi, ZhaoQi
Water content estimation is a key problem for studying the PEM fuel cell. When several hundred fuel cells are connected in serial and their active surface area is enlarged for sufficient power, the difference between cells becomes significant with respect to voltage and water content. The voltage of each cell is measurable by the cell voltage monitor (CVM) while it is difficult to estimate water content of the individual. Resistance of the polymer electrolyte membrane is monotonically related to its water content, so that the new online high frequency resistance (HFR) measurement technique is investigated to identify the uniformity of water content between cells and analyze its sensitivity to operating conditions in this paper. Firstly, the accuracy of the proposed technique is experimentally validated to be comparable to that of a commercialized electrochemical impedance spectroscopy (EIS) measurement equipment. Secondly, the HFR of each cell of a 164-cell and 270 cm2 stack is
Hong, PoMing, PingwenZhang, Cunman
The parameterization of the electrochemical pseudo-two-dimensional (P2D) model plays an important role as it determines the acceptance and application range of subsequent simulation studies. Electrochemical impedance spectroscopy (EIS) is commonly applied to characterize batteries and to obtain the exchange current density and the solid diffusion coefficient of a given electrode material. EIS measurements performed with frequencies ranging from 1 MHz down to 10 mHz typically do not cover clearly isolated solid state diffusion processes of lithium ions in positive or negative electrode materials. To extend the frequency range down to 10 μHz, the distribution function of relaxation times (DRT) is a promising analysis method. It can be applied to time-domain measurements where the battery is excited by a current pulse and relaxed for a certain period. By means of curve-fitting techniques, the pulse-relaxation measurement can be transferred in a function suitable for the DRT analysis
Chen, ChaoWurzenberger, Johann
Optical parametric oscillator (OPO) lasers test optical fibers and components to characterize the spectral response of optical components. OPO lasers are common in sophisticated test and measurement applications such as mass spectrometry, photoacoustic imaging, and spectroscopy. Now, these tunable pulsed lasers are being used to facilitate a range of tests at different wavelengths to qualify and quantify the performance of optical components such as fiber optic strands, filters, lenses, and coated mirrors
Multicolored light-emitting arrays could be useful in low-power sensing, computing, and spectroscopy, but too often their spectral range is limited to a few colors due to material and device constraints. Now, Berkeley engineers have devised a way to produce an economical and compact light-emitting device with limitless colors that could greatly increase resolution in spectral imaging
Mass spectrometry (MS), which is used to identify molecules within a sample by measuring the mass-to-charge ratio of ions, is employed across many fields of study, including biology, chemistry, physics, and clinical medicine. As the technology continues to evolve, so will the applications that can benefit from this important tool
The Euro 7 emission regulations currently under consideration by the EU will adopt on-road emissions test as the main Type Approval procedure, and it has been proposed that the number of gas components to be measured will be increased. Therefore, the Portable Emissions Measurement System (PEMS) used for on- road emissions testing must be able to simultaneously measure more components with higher precision while maintaining the same compact and lightweight structure as in the existing PEMS. The authors have applied a relatively new technique, quantum cascade laser infrared spectroscopy (QCL-IR), to an on-board multi-component gas analyzer. Comparison with laboratory tests on a gasoline passenger car on a dynamometer showed that the newly developed QCL- IR PEMS correlated well with conventional PEMS and stationary conventional analyzers. Signal noise and interference from other gases was also confirmed to show the expected performance, which was equal to or better than that of
Kondo, YosukeHamauchi, ShotaKowada, YoshihitoShibuya, KyojiOtsuki, Yoshinori
Chemical Vapor Deposition (CVD) and Atomic Layer Deposition (ALD) processes deposit material on all surfaces in a process chamber. Over time, the thickness of these deposits increases to the point that material begins to delaminate, producing gas-phase particulates that negatively impact process yield. Remote and in situ chemical etching processes are used to periodically remove these deposits from chamber walls, maintaining chamber cleanliness
A threat in the form of chemical vapor may not be visible, but rapid detection is critical for preservation of life and property. In addition, understanding the surrounding environment informs the posture that the warfighter will need to take. The field of chemical vapor detection spans far beyond the warfighter and is rich in research. A search in SciFinder for “chemical vapor detection” provides over 400,000 results with over 3,000 books, 26,000 reviews, and nearly 300,000 journal articles. The focus of this document will be with an eye towards perimeter monitoring for a wide range of gas-phase chemicals. To accomplish such sensing, compound-specific sensors should not be employed as they lack capability to detect or inform about the presence of many potential threats outside of their selected targets. A viable technique for sensing a wide range of compounds is infrared absorption as most potential threats provide an infrared absorbance spectrum which arises from each compound’s
A presentation of work comparing efficacy of a traditional IR method used as a standard within the U.S. Army Combat Capabilities Development Command (DEVCOM) and by international collaborators with that of an emerging technology, cavity ring down spectroscopy (CRDS). Army Combat Capabilities Development Command, Aberdeen Proving Ground, MD A threat in the form of chemical vapor may not be visible, but rapid detection is critical for preservation of life and property. In addition, understanding the surrounding environment informs the posture that the warfighter will need to take. The field of chemical vapor detection spans far beyond the warfighter and is rich in research. A search in SciFinder for “chemical vapor detection” provides over 400,000 results with over 3,000 books, 26,000 reviews, and nearly 300,000 journal articles. The focus of this document will be with an eye towards perimeter monitoring for a wide range of gas-phase chemicals. To accomplish such sensing, compound
This program involved the detailed evaluation of a novel laser-based in-exhaust ammonia sensor using a diesel fuel-based burner platform integrated with an ammonia injection system. Test matrix included both steady-state modes and transient operation of the burner platform. Steady-state performance evaluation included tests that examined impact of exhaust gas temperature, gas velocity and ammonia levels on sensor response. Furthermore, cross sensitivity of the sensor was examined at different levels of NOX and water vapor. Transient tests included simulation of the FTP test cycles at different ammonia and NOX levels. A Fourier transform infrared (FTIR) spectrometer as well as NIST traceable ammonia gas bottles (introduced into the exhaust stream via a calibrated flow controller) served as references for ammonia measurement. Results suggested that Indrio’s sensor exhibits a strong linear relationship with reference ammonia measurement across the tested range of 0 ppm to 200 ppm with a
Premnath, VinayBalakrishnan, ArunSur, RitobrataKhalek, ImadEakle, Scott
This work elaborates the transferability of electrode diffusion coefficients gained from fitting procedures in frequency domain to an electrochemical battery model run in time domain. An electrochemical battery model of an NMC622 half-cell electrode is simulated with sinusoidal current excitations at different frequencies. The current and voltage signals are analyzed in frequency domain via Nyquist and Bode plots. The frequency domain analysis of time domain simulations is applied to assess the numerical convergence of the simulation and the sensitivity on particle diameter, electrode and electrolyte diffusion coefficients. The simulated frequency spectra are used to fit the electrode diffusion coefficient by means of different electrical equivalent circuit models and the electrochemical battery model itself. The fitted diffusion coefficients from the different electrical equivalent circuit models deviate by one order of magnitude from the a priori known reference data. The fitting
Wurzenberger, Johann C.Lechner, ChristophChen, ChaoKolmbauer, MichaelMele, IgorKatrasnik, Tomaz
As NASA expands its quest to discover exoplanets — planets beyond our solar system — it also grows its toolbox. Last summer, a new tool called NEID (pronounced NOO-id) delivered its first batch of data on the nearest and best-studied star, our Sun
Army Research Laboratory, Adelphi, MD Developing single photon UV detection for compact chemical and biological sensors. This report summarizes the main lines of effort for the Electro-Optics Materials Research (EOMR) program including its goals and major accomplishments, focusing on the past 5 years. This EOMR program was an effort within 601102A.31B.1 titled “Optoelectronic and Integrated Photonic Materials and Device Research” for FY16-FY19 and 611102A.AA8.1 titled “Photonic Materials and Device Research” for FY20-FY21. The focus of this EOMR for most of the program was to develop novel semiconductor optoelectronic devices to reduce the size, weight, power, and cost (SWaP-C) of chemical and biological detection and identification systems. Specifically, the program addressed the need for high sensitivity photodetectors in the near-UV (NUV) spectrum between 300 and 350 nm for biological agent detection using light-induced fluorescence techniques employed by the Tactical Biological
Mobile NIR spectroscopy has gathered a lot of interest in recent years. On site and real time measurements of the chemical composition of solid or fluid samples could be applied to identification, authentication or estimation of quality parameters and similar relevant measurement tasks. This measurement technique is particularly useful for, but not limited to samples containing organic compounds
Scientists, including an Oregon State University materials researcher, have developed a better tool to measure light, contributing to a field known as optical spectrometry in a way that could improve everything from smartphone cameras to environmental monitoring
This article discusses the basic design concepts of a UV-visible-NIR range microscope spectrometer in several different configurations. These include configurations to acquire absorbance, reflectance, fluorescence and Raman spectra of microscopic samples. A brief summary of some of the uses of the microscope-spectrometer is also included
In the present study, a reverse micelle method is used to fabricate Lanthanum ferrite nanopowders. Toluene (oil phase), Igepal CO 520 (non-ionic surfactant), and mixed aqueous solutions of Lanthanum (III) nitrate hydrate and Iron (III) nitrate nonohydrate are used to make the microreactor (water phase). The precipitate is formed by introducing ammonium hydroxide to microemulsion. The deposit is then centrifuged, dried, and calcined to prepare LaFeO3 nanopowders. The prepared LaFeO3 nanopowders were subjected to X-ray diffraction (XRD), and Transmission electron microscopy (TEM). XRD confirms the presence of LaFeO3 with cubic spinel structure annealed at 600°C. The size of the crystallites grows as the water to surfactant ratio rises. TEM shows the particle size at water to surfactant ratio of about 11.4 nm. Weak ferromagnetic behavior and reduced magnetic moments are revealed by magnetic measurements. When the water-to-surfactant ratio rises, the absorption band at R=12 shifts to a
J, ChandradassN.V., RengasamyM, AMUTHA SURABIkim, Ki HyeonRajendran, R
The Coordinating Research Council (CRC) is actively involved in developing and applying advanced analytical techniques to the chemical characterization of transportation fuels. This article complements a 2017 CRC project to quantify and compare the effects of a commercially available renewable diesel fuel (hydrotreated vegetable oil [HVO]) and an ultralow sulfur diesel (ULSD) fuel on engine-out gaseous and particulate matter (PM) emissions from a light-duty vehicle. Results showed that the combustion of HVO fuel had an advantage over ULSD in terms of lowering engine-out emissions (THC, CO, NOx, etc.). Furthermore, this advantage is strongly related to the fuel composition. This article summarizes the results of advanced and comprehensive analytical tests on the same ULSD and HVO fuels and attempts to connect some of the engine-out emissions results to fuel composition and specific chemical structures. A variety of test methods, generally unavailable in combination, were employed, such
Bays, J. TimothyGieleciak, RafalViola, Michael B.Lewis, Russ P.Cort, John R.Campbell, Kristen B.Coffey, Gregory W.Linehan, John C.Kusinski, Matthew
Developed by Rudolph Diesel in the 1890s, the diesel powertrain is used in many applications worldwide. For significant time the engine fuel source for these engines was petroleum diesel, until new legislation regarding emission reduction and smog mitigation saw the introduction of petroleum diesel and biodiesel (Fatty acid methyl ester; FAME) blends in the early 2000s. Since then there have been many instances of filters in diesel powertrains across heavy, light and off-road platforms becoming blocked with unidentified material, for example in the United States, Northern Europe and Scandinavia. Filters are designed to remove contaminants from the fuel system and as the filter becomes plugged it restricts the fuel flow resulting in loss of engine power and eventual breakdown. Understanding The nature of the material responsible for such blockages is clearly important to the industry and has been the subject of many studies. However, it is also clear from such work that not all the
Barker, JimLangley, GrahamCarter, AnastarsiaHerniman, JulieReid, JacquelineWilmot, Ed
Scientists used photoelectrochemical measurement and x-ray photoelectron spectroscopy to clarify the source of titanium’s biocompatibility when implanted into the body, as with hip replacements and dental implants. They find that its reactivity with the correct ions in the extracellular fluid allows the body to recognize it. This work may lead to a new generation of medical implants that last longer
Titan, Saturn’s largest moon and the only celestial body which is found to have a landmass composed of liquid hydrocarbons. Nitrogen - The building block of all life that exists on earth is found to be abundant in Titan’s atmosphere of up to 97%. Aerobots provide a great platform for exploring a celestial body with an atmosphere such as Titan. They have modest power requirements, longer mission duration, and can cover a longer distance in a shorter time. They are powered by a Radioisotope Thermoelectric Generator for optimal mission life. Aerobot’s altitude can be altered by varying the temperature of the air inside the balloon and yaw can be controlled using a Reaction Wheel and a motor-driven propeller for forwarding thrust. The proposed Aerobot will be equipped with four miniature deployable fixed weather stations that can be dropped from the aerobot to Titan's surface. They can be deployed at diverse locations such as the equator and Polar Regions to deeply explore the Titan’s
Raja, Manoj KumarSaravana Mohan, HaribalanThangavel, SabariRaja, VijayanandhGnanasekaran, Raj KumarSivasankaran, Abinash Nataraj
Any space, enclosed or open, can be vulnerable to the dispersal of harmful airborne biological agents. Silent and near-invisible, these bioagents can sicken or kill living things before steps can be taken to mitigate their effects. Venues where crowds congregate are prime targets for biowarfare strikes engineered by terrorists but expanses of fields or forests could be victimized by an aerial bioattack
An aeroengine exhaust plume is one of the important sources of infrared (IR) signature in the 3-5 μm and the 2-3 μm bands. Analysis, characterization, and modeling of the exhaust plume IR emission are needed for insight into its role in aircraft survivability against IR-guided missiles. The IR signature estimation of aeroengine exhaust needs estimation of radiative properties of absorbing-emitting exhaust gases, e.g., carbon dioxide (CO2) and water vapor (H2O). The radiative properties of the gases can be estimated by a mathematical model with a spectroscopic database of these gases. Low-Resolution Transmission (LOWTRAN), Moderate-Resolution Transmission (MODTRAN), High-Resolution Transmission (HITRAN), and High-Temperature Transmission (HITEMP) are some commonly used spectroscopic databases. This study compares Statistical Narrow-Band (SNB) models with the various other mathematical models used for the estimation of radiative properties of exhaust gases. The contribution to IR
Bhatt, AshishMahulikar, Shripad Prabhakar
This paper describes a new method for measuring oil consumption using laser induced breakdown spectroscopy (LIBS). LIBS focuses a high energy laser pulse on a sample to form a transient plasma. As the plasma cools, each element produces atomic emission lines which can be used to identify and quantify the elements present in the original sample. In this work, a LIBS system was used on simulated engine exhaust with a focus on quantifying the inorganic components (termed ash) of the particulate emissions. Because some of the metallic elements in the ash almost exclusively result from lube oil consumption, their concentrations can also be correlated to an oil consumption rate. Initial testing was performed using SwRI’s Exhaust Composition Transient Operation Laboratory®(ECTO-Lab®) burner system so that oil consumption and ash mass could be precisely controlled. Several spectral regions were identified where absorptions attributable to calcium exhibited a response in proportion to the
Wright, NolanHenry, CaryMoore, Thomas
A reproducible analytical test method was developed to quantify the fouling resistance and cleanability of camera lens covers for autonomous vehicles (AVs). Reproducible fouling and cleaning cycles were achieved using a custom-built laboratory test stand. The impact of fouling/cleaning on image quality was quantified using digital image analysis. Three optically transparent, fluorine-containing functional coatings on lens covers were used to validate the test method. Accelerated weathering was employed to deliberately degrade the functional coatings. Coating degradation was characterized using water contact angle and X-ray photoelectron spectroscopy. The effect of coating degradation on cleaning performance was studied using this test method. This analysis method was able to characterize differences in coating performance and can be used as a tool to evaluate next-generation functional coatings for autonomous vehicles
Peczonczyk, SabrinaMisovski, TonySeubert, ChrisPeters, CindyNichols, Mark
The hot corrosion studies for the die-casted magnesium (Mg) silver (Ag) alloys are carried out through the steam heating route. The Magnesium Silver (QE22A) alloy is fixed under the top lid of the pressure cooker (2 liters) and filled with water and 5% salt (NaCl) solution. The specimens are treated with different time intervals (10, 20, and 30 minutes), with the steam temperature maintained at 100°C around the specimen. The results showed an increase in the corrosion rate with the increase in the steaming time. Further, after the specimens have cooled down to room temperature, similar experiments are repeated for the second and third cycles. Here the formation of the oxide layers over the specimen has reduced the corrosion rate. The structural, surface study was carried out through scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive spectroscopy (EDS) to know the corrosion behavior on the specimen. From the microstructure, it is noticed that the average
Shailesh Rao, A.Sangamesh, M.A.Nayak, HaridasLatha, B. M.Pallavi, B. K.
The global food inspection industry needs newer and more precise tools to meet stringent government regulations. From specialty crops to seafood, meat, and poultry, the food safety testing market alone is valued at a staggering $19.5 billion USD in 2021 and is projected to reach $28.6 billion by 20261. This is one example where Hyperspectral Imaging (HSI) represents a tool that can alleviate tedious and labor-intensive tasks, as well as bring a new level of consistency to some historically subjective grading applications
As NASA expands its quest to discover exoplanets — planets beyond our solar system — it also grows its toolbox. Over the summer, a new tool called NEID (pronounced NOO-id) delivered its first batch of data on the nearest and best-studied star, our Sun
Items per page:
1 – 50 of 589