Browse Topic: Sensors and actuators

Items (7,906)
The rapid evolution of electric vehicles (EVs) necessitates advanced electronic control units (ECUs) for enhanced safety, monitoring, and performance. This study introduces an innovative ECU system designed with a modular architecture, incorporating real-time monitoring, cloud connectivity, and crash sensing. The methodology includes cost-effective design strategies, integrating STM32 controllers, CAN bus systems, and widely available sensors for motor RPM and temperature monitoring. Key findings demonstrate that the proposed ECU system improves data reliability, enhances vehicle safety through crash response systems, and enables predictive maintenance via cloud connectivity. This scalable and affordable ECU is adaptable to a broad range of EV models.
Padma Priya, S.R.Santhipkumar, S.Sasipriya, S.Srivisweswara, M.S.
The U-Shift IV represents the latest evolution in modular urban mobility solutions, offering significant advancements over its predecessors. This innovative vehicle concept introduces a distinct separation between the drive module, known as the driveboard, and the transport capsules. The driveboard contains all the necessary components for autonomous driving, allowing it to operate independently. This separation not only enables versatile applications - such as easily swapping capsules for passenger or goods transportation - but also significantly improves the utilization of the driveboard. By allowing a single driveboard to be paired with different capsules, operational efficiency is maximized, enabling continuous deployment of driveboards while the individual capsules are in use. The primary focus of U-Shift IV was to obtain a permit for operating at the Federal Garden Show 2023. To achieve this goal, we built the vehicle around the specific requirements for semi-public road
Pohl, EricScheibe, SebastianMünster, MarcoOsebek, ManuelKopp, GerhardSiefkes, Tjark
We present DISRUPT, a research project to develop a cooperative traffic perception and prediction system based on networked infrastructure and vehicle sensors. Decentralized tracking and prediction algorithms are used to estimate the dynamic state of road users and predict their state in the near future. Compared to centralized approaches, which currently dominate traffic perception, decentralized algorithms offer advantages such as greater flexibility, robustness and scalability. Mobile sensor boxes are used as infrastructure sensors and the locally calculated state estimates are communicated in such a way that they can augment local estimates from other sensor boxes and/or vehicles. In addition, the information is transferred to a cloud that collects the local estimates and provides traffic visualization functionalities. The prediction module then calculates the future dynamic state based on neurocognitive behavior models and a measure of a road user's risk of being involved in
Beutenmüller, FrankBrostek, LukasDoberstein, ChristianHan, LongfeiKefferpütz, KlausObstbaum, MartinPawlowski, AntoniaRössert, ChristianSas-Brunschier, LucasSchön, ThiloSichermann, Jörg
Autonomous driving technology enables new and innovative driverless vehicle concepts to emerge, like U-Shift. Designed from the ground up, the U-Shift II platform, called driveboard, exemplifies the advantages of separating a vehicle’s driving capability from the intended transportation task. It allows different so-called capsules, such as public transport or cargo, to be transported using the same U-shaped driving platform. The driveboard can change the capsules autonomously, thus providing high flexibility for fleet operators. This novel approach introduces new challenges to the task of autonomous driving. On one hand, changing sensor and vehicle configurations, e.g., when transporting a capsule with its own sensors to compensate for occlusions of the driveboard sensors by the capsule itself, requires an adaptive approach to environmental perception. On the other hand, different environments and driving tasks, as well as the augmented motion capabilities of the driveboard, require
Buchholz, MichaelWodtko, ThomasSchumann, OliverAuthaler, Dominik
This SAE Recommended Practice defines the minimum performance specifications for sensors used within anthropomorphic test devices (ATDs) when performing impact tests per SAE J211. It is intended that any agency proposing to conduct tests in accordance with SAE J211 shall be able to demonstrate that the transducers they use would meet the performance requirements specified in this document.
Safety Test Instrumentation Standards Committee
Vehicular accident reconstruction is intended to explain the stages of a collision. This also includes the description of the driving trajectories of vehicles. Stored driving data is now often available for accident reconstruction, increasingly including gyroscopic sensor readings. Driving dynamics parameters such as lateral acceleration in various driving situations are already well studied, but angular rates such as those around the yaw axis are little described in the literature. This study attempts to reduce this gap somewhat by evaluating high-frequency measurement data from real, daily driving operations in the field. 813 driving maneuvers, captured by accident data recorders, were analyzed in detail and statistically evaluated. These devices also make it possible to record events without an accident. The key findings show the average yaw rates as a function of driving speed as well as the ratio between mean and associated peak yaw rate. Beyond that, considerably lower yaw rates
Fuerbeth, Uwe
High Pressure Sensors (HPS) are essential for internal combustion engines and hybrid engine systems. High pressure sensor measures the pressure in the Delivery fuel rail Pipe Module (DPM) to allow the Engine Control Unit (ECU) to control the high pressure pump to generate the required fuel pressure. Most high pressure sensors measure the displacement of the metal-diaphragm according to pressure, and are mainly composed of Half-bridge type Micro Electro Mechanical System (MEMS) elements of the piezo-resistive method. This time, we would like to introduce a high pressure sensor that uses a Full-bridge type MEMS structure. This is cheaper than the existing one and can provide higher performance with reliability. However, there are disadvantages of the full-bridge type applied to high pressure sensors. Unlike the Half-bridge method that measures displacement over a wide area, it measures displacement over a narrow area, so it has the disadvantage of weak to external noise due to increased
Lim, SeungGuLee, DongYoungKim, JungTaekShin, MoonSung
Brake-by-wire (BBW) systems, characterized by fast response, high precision, ease installation, and simplified maintenance, are highly likely to become the future braking systems. However, the reliability of BBW is currently inferior to that of traditional hydraulic braking systems. Considering ECE R13 regulations, actuator reliability, and braking efficiency, this article first proposes a new braking force distribution strategy to prevent braking failure and enhance vehicle safety without modifying the actuator itself. The strategy reduces the operating frequency of rear actuators during low- and medium-intensity braking, thereby extending their service life and operational reliability. Then, the co-simulation model combining Simulink and AMESim was established for simulation validation based on direct drive braking actuator. Additionally, the real-vehicle test platform was built for typical braking scenarios. The simulation and experimental results show that this strategy
Li, TianleGong, XiaoxiangHe, ChunrongDeng, ZhenghuaZhang, HongXu, RongHe, HaitaoWang, XunZhang, Huaiyue
This study introduces an innovative intelligent tire system capable of estimating the risk of total hydroplaning based on water pressure measurements within the tread grooves. Dynamic hydroplaning represents an important safety concern influenced by water depth, tread design, and vehicle longitudinal speed. Existing intelligent tire systems primarily assess hydroplaning risk using the water wedge effect, which occurs predominantly in deep water conditions. However, in shallow water, which is far more prevalent in real-world scenarios, the water wedge effect is absent at higher longitudinal speeds, which could make existing systems unable to reliably assess the total hydroplaning risk. Groove flow represents a key factor in hydroplaning dynamics, and it is governed by two mechanisms: water interception rate and water wedge pressure. In both the shallow water and deep water cases, the groove water flow will increase as a result of increasing the longitudinal speed of the vehicle for a
Vilsan, AlexandruSandu, CorinaAnghelache, GabrielWarfford, Jeffrey
With many stakeholders involved, and major investments supporting it, the advancements in automated driving (AD) are undoubtedly there. Generally speaking, the motivation for advancing AD is driver convenience and road safety. Regarding the development of AD, original equipment manufacturers, technology start-ups, and AD systems developers have taken different approaches for automated vehicles (AVs). Some manufacturers are on the path toward stand-alone vehicles, mostly relying on onboard sensors and intelligence. On the other hand, the connected, cooperative, and automated mobility (CCAM) approach relies on additional communication and information exchange to ensure safe and secure operation. CCAM holds great potential to improve traffic management, road safety, equity, and convenience. In both approaches, there are increasingly large amounts of data generated and used for AD functions in perception, situational awareness, path prediction, and decision-making. The use of artificial
Van Schijndel-de Nooij, MargrietBeiker, Sven
Public buses can be high-risk environments for the transmission of airborne viruses due to the confined space and high passenger density. However, advanced cabin air control systems and other measures can mitigate this risk. This research was conducted to explore various strategies aimed at reducing airborne particle transmission in bus cabins by using retrofit accessories and a redesigned parallel ventilation system. Public transit buses were used for stationary and on-road testing. Air exchange rates (ACH) were calculated using CO2 gas decay rates measured by low-cost sensors throughout each cabin. An aerosol generator (AG) was placed at various locations inside the bus and particle concentrations were measured for various experiments and ventilation configurations. The use of two standalone HEPA air filters lowered overall concentrations of particles inside the bus cabin by a factor of three. The effect of using plastic “barriers” independently showed faster particle arrival times
Lopez, BrendaSwanson, JacobDover, KevinRenck, EvanChang, M.-C. OliverJung, Heejung
The results published in this paper emphasize on the study of three-way catalytic convertor for a 1.2 L turbocharged multi-point fuel injection gasoline engine. This paper takes us through the findings on methodology used for finalizing the brick configuration for catalytic convertor along with downstream oxygen sensor placement for emission control and methods applied for catalytic convertor selection with actual testing. The advantages of dual brick configuration over single brick with downstream sensor placed in between the bricks to enable faster dew point of sensor is explained using water splash test and design confirmation of better exhaust gas flow vortices concentration at the sensor tip for better sensing. Selection of catalytic convertor loading by testing its emission conversion capability and light-off behavior. NOx conversion capability across stoichiometric ratio (14.7:1 for petrol) on selected most operational zone was tested (±5% lambda) for the design-finalized
Arun Selvan, S. A.Paul, Arun AugustineSelvaraj, Manimaran
Industries that require high-accuracy automation in the creation of high-mix/low-volume parts, such as aerospace, often face cost constraints with traditional robotics and machine tools due to the need for many pre-programmed tool paths, dedicated part fixtures, and rigid production flow. This paper presents a new machine learning (ML) based vision mapping and planning technique, created to enhance flexibility and efficiency in robotic operations, while reducing overall costs. The system is capable of mapping discrete process targets in the robot work envelope that the ML algorithms have been trained to identify, without requiring knowledge of the overall assembly. Using a 2D camera, images are taken from multiple robot positions across the work area and are used in the ML algorithm to detect, identify, and predict the 6D pose of each target. The algorithm uses the poses and target identifications to automatically develop a part program with efficient tool paths, including
Langan, DanielHall, MichaelGoldberg, EmilySchrandt, Sasha
A major challenge in self-powered wearable sensors for health care monitoring is distinguishing different signals when they occur at the same time. Researchers from Penn State and China’s Hebei University of Technology addressed this issue by uncovering a new property of a sensor material, enabling the team to develop a new type of flexible sensor that can accurately measure both temperature and physical strain simultaneously but separately to more precisely pinpoint various signals.
A Northwestern University-led team of researchers has developed a new fuel cell that harvests energy from microbes living in dirt. About the size of a standard paperback book, the completely soil-powered technology could fuel underground sensors used in precision agriculture and green infrastructure. This potentially could offer a sustainable, renewable alternative to batteries, which hold toxic, flammable chemicals that leach into the ground, are fraught with conflict-filled supply chains and contribute to the ever-growing problem of electronic waste.
MEMS is a more complex technology than traditional semiconductors. They are 3D structures with moving parts, making them much more difficult to fabricate. If you’re designing a semiconductor, you may be able to take advantage of an existing process development kit (PDK), which your foundry can provide to you. There is no equivalent approach in MEMS. It’s a “one process, one product” paradigm that requires a high level of customization. That takes time, money, and resources.
In late July to October 2022, residents of the Manu’a Islands in American Samoa felt the earth shake several times a day, raising concerns of an imminent volcanic eruption or tsunami.
An invention that uses microchip technology in implantable devices and other wearable products such as smart watches can be used to improve biomedical devices including those used to monitor people with glaucoma and heart disease.
This article conducts a thorough review of contemporary air suspension systems on the market for passenger cars. The evolution of suspension structures and control methodologies are briefly discussed. The layout of air suspension systems is introduced in detail, with each component receiving a comprehensive description and analysis. The open-loop and closed-loop arrangements are explained. Various types of air springs are discussed and compared. The sensory system, special working conditions, and failure analysis are also elaborated. In the case studies, some example models are listed to show a complete guide of how air suspension is implemented on passenger cars, which includes functionalities, air spring configurations, control methods, signal flow, service modes, and diagnostic messages. The major sources are OEMs’ official websites and previously released documents, such as user manuals and maintenance manuals, which are valid up to April 2023. Finally, the article concludes with a
Ma, ChangyeLu, YukunZhen, RanLiu, YegangPan, BingweiKhajepour, Amir
In the automobile industry, ensuring the safety of automated vehicles equipped with the automated driving system (ADS) is becoming a significant focus due to the increasing development and deployment of automated driving. Automated driving depends on sensing both the external and internal environments of a vehicle, utilizing perception sensors and algorithms, and electrical/electronic (E/E) systems for situational awareness and response. ISO 21448 is the standard for Safety of the Intended Functionality (SOTIF) that aims to ensure that the ADS operate safely within their intended functionality. SOTIF focuses on preventing or mitigating potential hazards that may arise from the limitations or failures of the ADS, including hazards due to insufficiencies of specification, or performance insufficiencies, as well as foreseeable misuse of the intended functionality. However, the challenge lies in ensuring the safety of vehicles despite the limited availability of extensive and systematic
Patel, MilinJung, RolfKhatun, Marzana
This document defines a set of standard application layer interfaces called JAUS Manipulator Services. JAUS Services provide the means for software entities in an unmanned system or system of unmanned systems to communicate and coordinate their activities. The Manipulator Services represent platform-independent capabilities commonly found across domains and types of unmanned systems. At present, twenty-five (25) services are defined in this document. These services are categorized as: Low Level Manipulator Control Services – The one service in this category allows for low-level command of the manipulator joint actuation efforts. This is an open-loop command that could be used in a simple tele-operation scenario. The service in this category is listed as follows: Primitive Manipulator Service Manipulator Sensor Services – These services, when queried, return instantaneous sensor data. Three services are defined that return respectively joint positions, joint velocities, and joint
AS-4JAUS Joint Architecture for Unmanned Systems Committee
The objective of this experimental study was to investigate the change of shifting rate of metal V-belt type CVT during speed up/down under quasi-idle loading condition. Changes in the rotational speeds of the driving and driven pulleys were simultaneously measured by the rotational speed sensors installed on the driving and driven shafts during speed up/down shifting, respectively. In addition, the interaxial force applied to the driving and driven pulleys was measured by a load cell. The shifting rate was defined as the ratio of the calculated radial displacement to the tangential displacement of the belt in the pulley groove. This study found that the shifting rate was determined not only by the slippage between the pulley and the belt element, but also by the elastic deformation of the belt element in the pulley groove. The power transmission performance was improved when the elastic deformation was small even though radial slippage between the pulley and the belt element was
Mori, YuichirouOkubo, KazuyaObunai, Kiyotaka
Small size engines feature several peculiarities that render them a challenge with respect to implementing measurements required for characterizing specific phenomena such as combustion evolution. Measuring in-cylinder pressure is well established as standard procedure for determining combustion characteristics, but in the case of small size units actually applying it can require alternative approaches. Fitting a crank angle encoder may be extremely difficult, as a consequence of the actual size of the power unit. Cost is another essential driver for small engine development that also influences how measurements are implemented. Within this context, the present work describes the development and implementation of a method that employs an algorithm that practically generates a ‘virtual’ encoder. Only a basic phasing signal is required, such as an inductive crankshaft position sensor output or that of an ignition pulser. The software was developed on an experimental engine with a crank
Irimescu, AdrianCecere, GiovanniMerola, Simona SilviaVaglieco, Bianca Maria
The previously developed capacitance sensor for detecting a liquid fuel film was modified to apply to the in-cylinder measurement. On the developed sensor surface, comb-shaped electrodes were circularly aligned. The capacitance between the electrodes varies with the liquid fuel film adhering. The capacitance variation between the electrodes on the sensor surface was converted to the frequency variation of the oscillation circuit. In the previous study, it was revealed that the frequency of the oscillation circuit varies with the variation of the liquid fuel coverage area on the sensor surface. The developed sensor was installed in the combustion chamber of the rapid compression and expansion machine, and the performance of the developed sensor was examined. Iso-octane was used as a test fuel to explore the sensor that had been developed. As a result, the adherence of the liquid fuel directly injected into the cylinder was successfully detected under the quiescent and motoring
Kuboyama, TatsuyaMoriyoshi, YasuoTakayama, SatoshiNakabeppu, Osamu
Hurricane evacuations generate high traffic demand with increased crash risk. To mitigate such risk, transportation agencies can adopt high-resolution vehicle data to predict real-time crash risks. Previous crash risk prediction models mainly used limited infrastructure sensor data without covering many road segments. In this article, we present methods to determine potential crash risks during hurricane evacuation from an emerging alternative data source known as connected vehicle data that contain vehicle speed and acceleration information collected at a high frequency (mean = 14.32, standard deviation = 6.82 s). The dataset was extracted from a database of connected vehicle data for the evacuation period of Hurricane Ida on Interstate-10 in Louisiana. Five machine learning models were trained considering weather features and different traffic characteristics extracted from the connected vehicle data. The results indicate that the Gaussian process boosting and extreme gradient
Syed, Zaheen E MuktadiHasan, Samiul
Automotive signal processing is dealt with in several contributions that propose various techniques to make the most out of the available data, typically for enhancing safety, comfort, or performance. Specifically, the accurate estimation of tire–road interaction forces is of high interest in the automotive world. A few years ago the T.R.I.C.K. tool was developed, featuring a vehicle model processing experimental data, collected through various vehicle sensors, to compute several relevant virtual telemetry channels, including interaction forces and slip indices. Following years of further development in collaboration with motorsport companies, this article presents T.R.I.C.K. 2.0, a thoroughly renewed version of the tool. Besides a number of important improvements of the original tool, including, e.g., the effect of the limited slip differential, T.R.I.C.K. 2.0 features the ability to exploit advanced sensors typically used in motorsport, including laser sensors, potentiometers, and
Napolitano Dell’Annunziata, GuidoFarroni, FlavioTimpone, FrancescoLenzo, Basilio
Shear-polarized ultrasonic sensors have been instrumented onto the outer liner surface of an RTX-6 large marine diesel engine. The sensors were aligned with the first piston ring at top dead center and shear ultrasonic reflectometry (comparing the variation in the reflected ultrasonic waves) was used to infer metal–metal contact between the piston ring and cylinder liner. This is possible as shear waves are not supported by fluids and will only transmit across solid-to-solid interfaces. Therefore, a sharp change in the reflected wave is an indicator of oil film breakdown. Two lubricant injection systems have been evaluated—pulse jet and needle lift-type injectors. The needle lift type is a prototype injector design with a reduced rate of lubricant atomization relative to pulse jet injectors. This is manifested as a smaller reduction in the reflected ultrasonic wave, showing less metal–metal contact had occurred. During steady-state testing, the oil feed rate was varied; the high flow
Rooke, JackLi, XiangweiDwyer-Joyce, Robert S.
Most 3D object detection methods employ LiDAR sensors to create 3D point clouds of their environment. Simply put, LiDAR sensors use laser beams to rapidly scan and measure the distances of objects and surfaces around the source. However, using LiDAR data alone can lead to errors due to the high sensitivity of LiDAR to noise, especially in adverse weather conditions like during rainfall.
Naval Air Systems Command Patuxent, MD navairpao@us.navy.mil
Researchers from Skoltech and the University of Texas at Austin have presented a proof-of-concept for a wearable sensor that can track healing in sores, ulcers, and other kinds of chronic skin wounds, even without the need to remove the bandages. The paper was published in the journal ACS Sensors.
Researchers have combined miniaturized hardware and intelligent algorithms to create a cost-effective, compact powerful tool capable of solving real-world problems in areas like healthcare.
Optical sensors serve as the backbone of numerous scientific and technological endeavors, from detecting gravitational waves to imaging biological tissues for medical diagnostics. These sensors use light to detect changes in properties of the environment they’re monitoring, including chemical biomarkers and physical properties like temperature. A persistent challenge in optical sensing has been enhancing sensitivity to detect faint signals amid noise.
Just one year after signing a ground-breaking trilateral agreement, the Deep Space Advanced Radar Capability partnership is completing facilities construction at the first of three sites that will host a global network of advanced ground-based sensors.
Advances in artificial intelligence (AI), machine learning (ML), and sensor fusion drive robotics functionality across many applications, including healthcare. Ongoing innovations in high-speed connectivity, edge computing, network redundancy, and fail-safe procedures crucial to optimizing robotics opportunities. The emergence of natural language processing and emotional AI functionality are poised to propel more intuitive, responsive, and adaptive human-machine interaction.
Defense Advanced Projects Research Agency (DARPA) Arlington, VA outreach@darpa.mil
Vehicle ADAS Systems majorly comprises of two functions: Driving and Parking. The most common form of damage to the vehicle which goes unnoticed with unidentified cause are parking damages. A vehicle once parked at a certain location may get damaged without knowledge of the user. In this work developed a solution that not only pre-warns the driver but also prepares the vehicle beforehand if it suspects a damage may occur. This eliminates the latency between damage and information capture, detects small damages such as scratches, classifies the type of damage and informs the user beforehand. This is solution is different from our competitors as the existing solutions informs the user about the scratches/damages, but these solutions are expensive, have high response time, and the damage information is captured after the damage has occurred. The solution consists of the following check blocks: Precondition, Sensor Control and Action Module. The Precondition Module observes the vehicle
Debnath, SarnabPatil, PrasadBelur Subramanya, SheshagiriGovinda, Shiva Prasad
Bicycle computers record and store kinematic and physiologic data that can be useful for forensic investigations of crashes. The utility of speed data from bicycle computers depends on the accurate synchronization of the speed data with either the recorded time or position, and the accuracy of the reported speed. The primary goals of this study were to quantify the temporal asynchrony and the error amplitudes in speed measurements recorded by a common bicycle computer over a wide area and over a long period. We acquired 96 hours of data at 1-second intervals simultaneously from three Garmin Edge 530 computers mounted to the same bicycle during road cycling in rural and urban environments. Each computer recorded speed data using a different method: two units were paired to two different external speed sensors and a third unit was not paired to any remote sensors and calculated its speed based on GPS data. We synchronized the units based on the speed signals and used one of the paired
Booth, Gabrielle R.Siegmund, Gunter P.
An implementation of a robust predictive cruise control method for class 8 trucks utilizing V2X communication with connected traffic lights is presented in this work. This method accounts for traffic signal phases with the goal of reducing energy consumption when possible while respecting safety concerns. Tightened constraints are created using a robust model predictive control (RMPC) framework in which constraints are modified so that the safety critical requirements are satisfied even in the presence of disturbances, while requiring only the expected bounds of the disturbances to be provided. In particular, variation in the actuator performance under different conditions presents a unique challenge for this application, which the approach applied in this work is well-suited to handle. The errors resulting from lower-level control and actuator performance are accounted for by treating them as bounded and additive disturbances on the states of the model used in the higher level MPC
Ellison, EvanWard, JacobBrown, LowellBevly, David M.
The application of multi-sensor fusion for enhanced distance estimation accuracy in dynamic environments is crucial for advanced driver assistance systems (ADAS) and autonomous vehicles. The Limitations of single sensors such as cameras or radar in adverse conditions motivate the use of combined camera and radar data to improve reliability, adaptability, and object recognition. A multi-sensor fusion approach using an Extended Kalman Filter (EKF) is proposed to combine sensor measurements with a dynamic system model, achieving robust and accurate distance estimation. The research utilizes the Mississippi State University Autonomous Vehicular Simulator (MAVS), a physics-based simulation platform, to generate realistic synthetic datasets incorporating sensor imperfections such as noise and missed detections to create a controlled environment for data collection. Data analysis is performed using MATLAB. Qualitative metrics such as visualization of fused data vs ground truth and
Ebu, Iffat AraIslam, FahmidaRafi, Mohammad AbdusShahidRahman, MahfuzurIqbal, UmarBall, John
Path tracking is a key function of intelligent vehicles, which is the basis for the development and realization of advanced autonomous driving. However, the imprecision of the control model and external disturbances such as wind and sudden road conditions will affect the path tracking effect and even lead to accidents. This paper proposes an intelligent vehicle path tracking strategy based on Tube-MPC and data-driven stable region to enhance vehicle stability and path tracking performance in the presence of external interference. Using BP-NN combined with the state-of-the-art energy valley optimization algorithm, the five eigenvalues of the stable region of the vehicle β−β̇ phase plane are obtained, which are used as constraints for the Tube-MPC controller and converted into quadratic forms for easy calculation. In the calculation of Tube invariant sets, reachable sets are used instead of robust positive invariant sets to reduce the calculation. Simulation results demonstrates that the
Zhang, HaosenLi, YihangWu, Guangqiang
In this study, we introduce RGB2BEV-Net, an end-to-end pipeline that extends traditional BEV segmentation models by utilizing raw RGB images with Bird’s Eye View (BEV) generation. While previous work primarily focused on pre-segmented images to generate corresponding BEV maps, our approach expands this by collecting RGB images alongside their affiliated segmentation masks and BEV representations. This enables direct input of RGB camera sensors into the pipeline, reflecting real-world autonomous driving scenarios where RGB cameras are commonly used as sensors, rather than relying on pre-segmented images. Our model processes four RGB images through a segmentation layer before converting them into a segmented BEV, implemented in the PyTorch framework after being adapted from an original implementation that utilized a different framework. This adaptation was necessary to improve compatibility and ensure better integration of the entire system within autonomous vehicle applications. We
Hossain, SabirLin, Xianke
Autonomous ground navigation has advanced significantly in urban and structured environments, supported by the availability of comprehensive datasets. However, navigating complex and off-road terrains remains challenging due to limited datasets, diverse terrain types, adverse environmental conditions, and sensor limitations affecting vehicle perception. This study presents a comprehensive review of off-road datasets, integrating their applications with sensor technologies and terrain traversability analysis methods. It identifies critical gaps, including class imbalances, sensor performance under adverse conditions, and limitations in existing traversability estimation approaches. Key contributions include a novel classification of off-road datasets based on annotation methods, providing insights into scalability and applicability across diverse terrains. The study also evaluates sensor technologies under adverse conditions and proposes strategies for incorporating event-based and
Musau, HannahRuganuza, DenisIndah, DebbieMukwaya, ArthurGyimah, Nana KankamPatil, AshishBhosale, MayureshGupta, PrakharMwakalonge, JudithJia, YunyiMikulski, DariuszGrabowsky, DavidHong, Jae DongSiuhi, Saidi
The recent advancements in fields such as sensors, AI, and IoT are majorly impacting the automotive industry. Automated Driving Systems (ADS) are developing rapidly, meaning that SAE J3016 Level 3 and above vehicles are quickly becoming a reality. As a result, maintenance of such systems becomes essential to ensure their safe and efficient operation. Prognostic techniques in particular are crucial to monitor the state of health and predicting the end of life for components. Prognostics engineering is being applied in many industries and for conventional automotive applications, but ADS is new technology, and the prognostics for these systems are still being developed and adapted. In this paper, we first present a review of the most used prognostic techniques across different safety-critical domains such as aerospace, power, and manufacturing. Then, we summarize the main challenges that must be faced to successfully develop novel approaches for prognostics of ADS components and provide
Merola, FrancescoHanif, AtharLami, GiuseppeAhmed, QadeerMonohon, Mark
Items per page:
1 – 50 of 7906