Browse Topic: Sensors and actuators

Items (7,843)
In the automobile industry, ensuring the safety of automated vehicles equipped with the automated driving system (ADS) is becoming a significant focus due to the increasing development and deployment of automated driving. Automated driving depends on sensing both the external and internal environments of a vehicle, utilizing perception sensors and algorithms, and electrical/electronic (E/E) systems for situational awareness and response. ISO 21448 is the standard for Safety of the Intended Functionality (SOTIF) that aims to ensure that the ADS operate safely within their intended functionality. SOTIF focuses on preventing or mitigating potential hazards that may arise from the limitations or failures of the ADS, including hazards due to insufficiencies of specification, or performance insufficiencies, as well as foreseeable misuse of the intended functionality. However, the challenge lies in ensuring the safety of vehicles despite the limited availability of extensive and systematic
Patel, MilinJung, RolfKhatun, Marzana
The previously developed capacitance sensor for detecting a liquid fuel film was modified to apply to the in-cylinder measurement. On the developed sensor surface, comb-shaped electrodes were circularly aligned. The capacitance between the electrodes varies with the liquid fuel film adhering. The capacitance variation between the electrodes on the sensor surface was converted to the frequency variation of the oscillation circuit. In the previous study, it was revealed that the frequency of the oscillation circuit varies with the variation of the liquid fuel coverage area on the sensor surface. The developed sensor was installed in the combustion chamber of the rapid compression and expansion machine, and the performance of the developed sensor was examined. Iso-octane was used as a test fuel to explore the sensor that had been developed. As a result, the adherence of the liquid fuel directly injected into the cylinder was successfully detected under the quiescent and motoring
Kuboyama, TatsuyaMoriyoshi, YasuoTakayama, SatoshiNakabeppu, Osamu
Small size engines feature several peculiarities that render them a challenge with respect to implementing measurements required for characterizing specific phenomena such as combustion evolution. Measuring in-cylinder pressure is well established as standard procedure for determining combustion characteristics, but in the case of small size units actually applying it can require alternative approaches. Fitting a crank angle encoder may be extremely difficult, as a consequence of the actual size of the power unit. Cost is another essential driver for small engine development that also influences how measurements are implemented. Within this context, the present work describes the development and implementation of a method that employs an algorithm that practically generates a ‘virtual’ encoder. Only a basic phasing signal is required, such as an inductive crankshaft position sensor output or that of an ignition pulser. The software was developed on an experimental engine with a crank
Irimescu, AdrianCecere, GiovanniMerola, Simona SilviaVaglieco, Bianca Maria
The objective of this experimental study was to investigate the change of shifting rate of metal V-belt type CVT during speed up/down under quasi-idle loading condition. Changes in the rotational speeds of the driving and driven pulleys were simultaneously measured by the rotational speed sensors installed on the driving and driven shafts during speed up/down shifting, respectively. In addition, the interaxial force applied to the driving and driven pulleys was measured by a load cell. The shifting rate was defined as the ratio of the calculated radial displacement to the tangential displacement of the belt in the pulley groove. This study found that the shifting rate was determined not only by the slippage between the pulley and the belt element, but also by the elastic deformation of the belt element in the pulley groove. The power transmission performance was improved when the elastic deformation was small even though radial slippage between the pulley and the belt element was
Mori, YuichirouOkubo, KazuyaObunai, Kiyotaka
Hurricane evacuations generate high traffic demand with increased crash risk. To mitigate such risk, transportation agencies can adopt high-resolution vehicle data to predict real-time crash risks. Previous crash risk prediction models mainly used limited infrastructure sensor data without covering many road segments. In this article, we present methods to determine potential crash risks during hurricane evacuation from an emerging alternative data source known as connected vehicle data that contain vehicle speed and acceleration information collected at a high frequency (mean = 14.32, standard deviation = 6.82 s). The dataset was extracted from a database of connected vehicle data for the evacuation period of Hurricane Ida on Interstate-10 in Louisiana. Five machine learning models were trained considering weather features and different traffic characteristics extracted from the connected vehicle data. The results indicate that the Gaussian process boosting and extreme gradient
Syed, Zaheen E MuktadiHasan, Samiul
Shear-polarized ultrasonic sensors have been instrumented onto the outer liner surface of an RTX-6 large marine diesel engine. The sensors were aligned with the first piston ring at top dead center and shear ultrasonic reflectometry (comparing the variation in the reflected ultrasonic waves) was used to infer metal–metal contact between the piston ring and cylinder liner. This is possible as shear waves are not supported by fluids and will only transmit across solid-to-solid interfaces. Therefore, a sharp change in the reflected wave is an indicator of oil film breakdown. Two lubricant injection systems have been evaluated—pulse jet and needle lift-type injectors. The needle lift type is a prototype injector design with a reduced rate of lubricant atomization relative to pulse jet injectors. This is manifested as a smaller reduction in the reflected ultrasonic wave, showing less metal–metal contact had occurred. During steady-state testing, the oil feed rate was varied; the high flow
Rooke, JackLi, XiangweiDwyer-Joyce, Robert S.
Automotive signal processing is dealt with in several contributions that propose various techniques to make the most out of the available data, typically for enhancing safety, comfort, or performance. Specifically, the accurate estimation of tire–road interaction forces is of high interest in the automotive world. A few years ago the T.R.I.C.K. tool was developed, featuring a vehicle model processing experimental data, collected through various vehicle sensors, to compute several relevant virtual telemetry channels, including interaction forces and slip indices. Following years of further development in collaboration with motorsport companies, this article presents T.R.I.C.K. 2.0, a thoroughly renewed version of the tool. Besides a number of important improvements of the original tool, including, e.g., the effect of the limited slip differential, T.R.I.C.K. 2.0 features the ability to exploit advanced sensors typically used in motorsport, including laser sensors, potentiometers, and
Napolitano Dell’Annunziata, GuidoFarroni, FlavioTimpone, FrancescoLenzo, Basilio
An implementation of a robust predictive cruise control method for class 8 trucks utilizing V2X communication with connected traffic lights is presented in this work. This method accounts for traffic signal phases with the goal of reducing energy consumption when possible while respecting safety concerns. Tightened constraints are created using a robust model predictive control (RMPC) framework in which constraints are modified so that the safety critical requirements are satisfied even in the presence of disturbances, while requiring only the expected bounds of the disturbances to be provided. In particular, variation in the actuator performance under different conditions presents a unique challenge for this application, which the approach applied in this work is well-suited to handle. The errors resulting from lower-level control and actuator performance are accounted for by treating them as bounded and additive disturbances on the states of the model used in the higher level MPC
Ellison, EvanWard, JacobBrown, LowellBevly, David M.
Vehicle sideslip is a valuable measurement for ground vehicles in both passenger vehicle and racing contexts. At relevant speeds, the total vehicle sideslip, beta, can help drivers and engineers know how close to the limits of yaw stability a vehicle is during the driving maneuver. For production vehicles or racing contexts, this measurement can trigger Electronic Stability Control (ESC). For racing contexts, the method can be used for driver training to compare driver techniques and vehicle cornering performance. In a fleet context with Connected and Autonomous Vehicles (CAVS) any vehicle telemetry reporting large vehicle sideslip can indicate an emergency scenario. Traditionally, sideslip estimation methods involve expensive and complex sensors, often including precise inertial measurement units (IMUs) and dead reckoning, plus complicated sensor fusion techniques. Standard GPS measurements can provide Course Over Ground (COG) with quite high accuracy and, surprisingly, the most
Hannah, AndrewCompere, Marc
Bicycle computers record and store kinematic and physiologic data that can be useful for forensic investigations of crashes. The utility of speed data from bicycle computers depends on the accurate synchronization of the speed data with either the recorded time or position, and the accuracy of the reported speed. The primary goals of this study were to quantify the temporal asynchrony and the error amplitudes in speed measurements recorded by a common bicycle computer over a wide area and over a long period. We acquired 96 hours of data at 1-second intervals simultaneously from three Garmin Edge 530 computers mounted to the same bicycle during road cycling in rural and urban environments. Each computer recorded speed data using a different method: two units were paired to two different external speed sensors and a third unit was not paired to any remote sensors and calculated its speed based on GPS data. We synchronized the units based on the speed signals and used one of the paired
Booth, Gabrielle R.Siegmund, Gunter P.
In this paper, based on the cylindrical flow theory of incompressible viscous fluids and the equivalent circuit model of resonant sensing elements, a theoretical model for the measurement of liquid viscosity with a U-Shaped tungsten wire resonance sensor was established. This model can measure the liquid viscosity independently without liquid density or coupled detection of liquid density. The experimental results show that the decoupling of liquid viscosity and its density can be achieved at Re<1. The liquid viscosity is strongly linear with the resonant conductance. The viscosity measurement error is less than 7.24% in the viscosity range of 7.235cP to 85.2cP.
Shan, BaoquanShen, YitaoYang, JianguoWu, Dehong
The Automated Mobility Partnership (AMP) is a consortium of industry and academic stakeholders dedicated to advancing Automated Driving Systems (ADS) through a comprehensive suite of tools, datasets, and methodologies. The AMP portal integrates events from over 35 million miles of naturalistic driving data including thousands of annotated crashes and near-crashes and a decade of U.S. police-reported crash data curated by the Virginia Tech Transportation Institute. The portal enables data discovery, visualization, processing, and analysis through secured web access. This paper briefly describes the AMP portal and examines its utility in developing and evaluating the safety of ADS using standardized processes. For the examination, we provide examples based on generic automated driving functions, guided by the Safety of the Intended Functionality (SOTIF) framework. The results show that AMP is instrumental in identifying recorded real-world cases in which the hazardous behavior of a
Antona-Makoshi, JacoboWilliams, VickiAli, GibranSullivan, KayeTerranova, PaoloKefauver, KevinHatchett, Alex
Path tracking control, which is one of the most important foundations of autonomous driving, could help the vehicle to precisely and smoothly follow the preset path by actively adjusting the front wheel steering angle. Although there are a number of advanced control methods with simple structure and reliable robustness that could assist vehicles achieving path tracking, these controllers have many parameters to be calibrated, and there is a lack of guidance documents to help non-professional test site engineers quickly master calibration methods. Therefore, this paper proposes a parameter virtual calibration method based on the deep reinforcement learning, which provides an effective solution for parameter calibration of vehicle path tracking controller. Firstly, the vehicle trajectory tracking model is established through the kinematic relationship between the vehicle and the target path, combined with the Taylor series expansion linearization method. Next, a vehicle path tracking
Zhao, JianGuo, ChenghaoZhao, HuiChaoZhao, YongqiangYu, ZhenZhu, BingChen, Zhicheng
Trajectory tracking control is a key component of vehicle autonomous driving technology. Compared with traditional vehicles, Distributed Driven Electric Vehicle (DDEV) is an ideal vehicle for trajectory tracking control because of its high space utilization, redundant control freedom and fast system response. However, the chassis execution system of DDEV has a relatively large number of sensors, which significantly increases its probability of failure. In this paper, we propose a trajectory tracking fault-tolerant control method for DDEV considering steering actuator faults. Firstly, we establish the dynamic model of the steering actuator and the trajectory tracking model of DDEV. The model is linearized and discretized by using Taylor series expansion and forward Euler method. Next, considering multi-objective constraints such as motion comfort, actuator saturation and road adhesion boundary, the trajectory tracking control strategy of DDEV is designed by using model predictive
Wang, DepingLi, LunTeng, YuhanZhu, BingChen, Zhicheng
Path tracking is a key function of intelligent vehicles, which is the basis for the development and realization of advanced autonomous driving. However, the imprecision of the control model and external disturbances such as wind and sudden road conditions will affect the path tracking effect and even lead to accidents. This paper proposes an intelligent vehicle path tracking strategy based on Tube-MPC and data-driven stable region to enhance vehicle stability and path tracking performance in the presence of external interference. Using BP-NN combined with the state-of-the-art energy valley optimization algorithm, the five eigenvalues of the stable region of the vehicle β−β̇ phase plane are obtained, which are used as constraints for the Tube-MPC controller and converted into quadratic forms for easy calculation. In the calculation of Tube invariant sets, reachable sets are used instead of robust positive invariant sets to reduce the calculation. Simulation results demonstrates that the
Zhang, HaosenLi, YihangWu, Guangqiang
The proliferation of intelligent technologies in the future battlefield necessitates an exploration of crew workload balancing strategies for human-machine integrated formations. Many current techniques to measure cognitive workload, through qualitative surveys or wearable sensors, are too brittle for the harsh, austere operational environments found in military settings. Non-invasive workload estimation techniques, such as those that analyze physiological effects from video feeds of the crew, present a way forward for workload-aware Soldier-machine interfaces that could trigger events – such as task reallocation – if limits on crew or individual workload are exceeded. One such technique that is being explored is the use of facial expression analysis for workload estimation. We present the performance results of regression and classification models developed from supervised machine learning algorithms that predict pNN50, a common heart rate variability metric used as a physiological
Mikulski, ChristopherRiegner, Kayla
Vehicle ADAS Systems majorly comprises of two functions: Driving and Parking. The most common form of damage to the vehicle which goes unnoticed with unidentified cause are parking damages. A vehicle once parked at a certain location may get damaged without knowledge of the user. In this work developed a solution that not only pre-warns the driver but also prepares the vehicle beforehand if it suspects a damage may occur. This eliminates the latency between damage and information capture, detects small damages such as scratches, classifies the type of damage and informs the user beforehand. This is solution is different from our competitors as the existing solutions informs the user about the scratches/damages, but these solutions are expensive, have high response time, and the damage information is captured after the damage has occurred. The solution consists of the following check blocks: Precondition, Sensor Control and Action Module. The Precondition Module observes the vehicle
Debnath, SarnabPatil, PrasadBelur Subramanya, SheshagiriGovinda, Shiva Prasad
The recent advancements in fields such as sensors, AI, and IoT are majorly impacting the automotive industry. Automated Driving Systems (ADS) are developing rapidly, meaning that SAE J3016 Level 3 and above vehicles are quickly becoming a reality. As a result, maintenance of such systems becomes essential to ensure their safe and efficient operation. Prognostic techniques in particular are crucial to monitor the state of health and predicting the end of life for components. Prognostics engineering is being applied in many industries and for conventional automotive applications, but ADS is new technology, and the prognostics for these systems are still being developed and adapted. In this paper, we first present a review of the most used prognostic techniques across different safety-critical domains such as aerospace, power, and manufacturing. Then, we summarize the main challenges that must be faced to successfully develop novel approaches for prognostics of ADS components and provide
Merola, FrancescoHanif, AtharLami, GiuseppeAhmed, QadeerMonohon, Mark
Lateral driving features used in Advanced Driver Assistance Systems (ADAS) rely heavily on inputs from the vehicle's surroundings and state information. A critical component of this state information is the curvature of the Ego Vehicle, which significantly influences performance. Curvature is often utilized in lateral trajectory generation and serves as a key element of the lateral motion controller. However, obtaining accurate curvature data is challenging due to the scarcity of sensors that directly measure this parameter. Instead, curvature is typically derived from various vehicle signals and additional sensor data, often employing sophisticated estimation techniques. This paper discusses several methods for estimating vehicle curvature using diverse information sources, evaluates their effectiveness, and investigates their impact on lateral feature performance, while analyzing the associated challenges and advantages.
Awathe, ArpitVarunjikar, TejasJain, Arihant
Progressive emission reductions and stricter legislation require a closer look at the emission behaviour of a vehicle, in particular non-exhaust emissions and resuspension. In addition to the analysis of emissions in isolation, it is also necessary to consider the impact of transport routes and dispersion potential. These factors provide insight into the movement of dust particles and, consequently, the identification of particularly vulnerable areas. Measurements using low-cost environmental sensors can increase the level of detail of dispersion analyses and allow a statement on the distribution of emissions in the vehicle's wake, as several measuring points can be covered simultaneously. A newly developed measurement setup allows vehicle emissions to be recorded in a plane behind the vehicle in a measurement area of 2 by 2 metres. The measuring grid consisting of 16 sensors (4x4 grid) can be variably positioned up to 1 metre from the rear of the vehicle. The sensors detect fine dust
Kunze, MilesIvanov, ValentinGramstat, Sebastian
Camera matching photogrammetry is widely used in the field of accident reconstruction for mapping accident scenes, modeling vehicle damage from post collision photographs, analyzing sight lines, and video tracking. A critical aspect of camera matching photogrammetry is determining the focal length and Field of View (FOV) of the photograph being analyzed. The intent of this research is to analyze the accuracy of the metadata reported focal length and FOV. The FOV from photographs captured by over 20 different cameras of various makes, models, sensor sizes, and focal lengths will be measured using a controlled and repeatable testing methodology. The difference in measured FOV versus reported FOV will be presented and analyzed. This research will provide analysts with a dataset showing the possible error in metadata reported FOV. Analysts should consider the metadata reported FOV as a starting point for photogrammetric analysis and understand that the FOV calculated from the image
Smith, Connor A.Erickson, MichaelHashemian, Alireza
The performance of a second-generation Toyota Mirai fuel cell was characterized as part of the SwRI internal research program. This data was used to develop a supervisory controller scheme designed to balance the plant for the fuel cell system during steady-state and transient vehicle conditions. This was accomplished using a Supervisory Integrated Controller (SIC) implemented on a Real-time Power Electronics Control System (RPECS) with a Simulink-based control algorithm. The actuators of interest are the three hydrogen injectors at anode inlet, air compressor and three air side valves on at the cathode inlet. The FC power measurement and pressure sensor readings at the anode and cathode were utilized as real-time feedback for the controller operation. The aim of the controller was to achieve and maintain the power target set by the hybrid powertrain ECU present on the vehicle, which is responsible for balancing power on the fuel cell and battery over the high-voltage bus. These
Chundru, Venkata RajeshKubesh, MatthewLegala, Adithya
The application of multi-sensor fusion for enhanced distance estimation accuracy in dynamic environments is crucial for advanced driver assistance systems (ADAS) and autonomous vehicles. The Limitations of single sensors such as cameras or radar in adverse conditions motivate the use of combined camera and radar data to improve reliability, adaptability, and object recognition. A multi-sensor fusion approach using an Extended Kalman Filter (EKF) is proposed to combine sensor measurements with a dynamic system model, achieving robust and accurate distance estimation. The research utilizes the Mississippi State University Autonomous Vehicular Simulator (MAVS), a physics-based simulation platform, to generate realistic synthetic datasets incorporating sensor imperfections such as noise and missed detections to create a controlled environment for data collection. Data analysis is performed using MATLAB. Qualitative metrics such as visualization of fused data vs ground truth and
Ebu, Iffat AraIslam, FahmidaRafi, Mohammad AbdusShahidRahman, MahfuzurIqbal, UmarBall, John
Advancements in sensor technologies have led to increased interest in detecting and diagnosing “driver states”—collections of internal driver factors generally associated with negative driving performance, such as alcohol intoxication, cognitive load, stress, and fatigue. This is accomplished using imperfect behavioral and physiological indicators that are associated with those states. An example is the use of elevated heart rate variability, detected by a steering wheel sensor, as an indicator of frustration. Advances in sensor technologies, coupled with improvements in machine learning, have led to an increase in this research. However, a limitation is that it often excludes naturalistic driving environments, which may have conditions that affect detection. For example, reductions in visual scanning are often associated with cognitive load [1]; however, these reductions can also be related to novice driver inexperience [2] and alcohol intoxication [3]. Through our analysis of the
Seaman, SeanZhong, PeihanAngell, LindaDomeyer, JoshuaLenneman, John
In this study, we introduce RGB2BEV-Net, an end-to-end pipeline that extends traditional BEV segmentation models by utilizing raw RGB images with Bird’s Eye View (BEV) generation. While previous work primarily focused on pre-segmented images to generate corresponding BEV maps, our approach expands this by collecting RGB images alongside their affiliated segmentation masks and BEV representations. This enables direct input of RGB camera sensors into the pipeline, reflecting real-world autonomous driving scenarios where RGB cameras are commonly used as sensors, rather than relying on pre-segmented images. Our model processes four RGB images through a segmentation layer before converting them into a segmented BEV, implemented in the PyTorch framework after being adapted from an original implementation that utilized a different framework. This adaptation was necessary to improve compatibility and ensure better integration of the entire system within autonomous vehicle applications. We
Hossain, SabirLin, Xianke
This paper presents a Digital Twin approach based on Machine Learning (ML), aimed at creating software-based sensors to reduce the auxiliary devices of the vehicle and enabling predictive maintenance, thus reducing carbon footprint. The solution is applied to the electric Lubrication Oil Pump (eLOP), a crucial component within a vehicle's powertrain system. The proposed eLOP Digital Twin integrates ML-based sensors to estimate critical parameters such as temperature, pressure and flow rate, reducing the reliance on physical sensors and associated hardware. This approach minimizes manufacturing complexity and cost, enhancing energy efficiency during both production and operation. Furthermore, the Digital Twin facilitates predictive maintenance by continuously monitoring the component's performance, enabling early detection of potential failures and optimizing maintenance schedules. This leads to lower energy consumption and reduced emissions throughout the component's lifecycle. The
Khan, JalalD'Alessandro, StefanoTramaglia, FedericoFauda, Alessandro
Automotive technologies have been rapidly evolving with the introduction of electric powertrains, Advanced Driver-Assistance Systems (ADAS) and Over-The-Air (OTA) upgradability. Existing decentralized architectures are not an optimal choice for these applications, due to significant increases in cost and complexity. The transition to centralized architectures enables heavy computation to be delegated to a limited number of powerful Electronic Control Units (ECUs) called domain or zone controllers. The remaining ECUs, known as smart actuators, will perform well defined and specific tasks, receiving new parameters from the dedicated domain/zone controller over a network. Network bandwidth and time synchronization are the two major challenges in this transition. New automotive standards have been developed to address these challenges. Automotive Ethernet and Time Sensitive Networking (TSN) are two standards that are well-suited for centralized architectures. This paper presents a
Ayesh, MostafaBandur, VictorPantelic, VeraWassyng, AlanWasacz, BryonLawford, Mark
Deliberate modifications to infrastructure can significantly enhance machine vision recognition of road sections designed for Vulnerable Road Users, such as green bike lanes. This study evaluates how green bike lanes, compared to unpainted lanes, enhance machine vision recognition and vulnerable road users safety by keeping vehicles at a safe distance and preventing encroachment into designated bike lanes. Conducted at the American Center for Mobility, this study utilizes a vehicle equipped with a front-facing camera to assess green bike lane recognition capabilities across various environmental conditions including dry daytime, dry nighttime, rain, fog, and snow. Data collection involved gathering a comprehensive dataset under diverse conditions and generating masks for lane markings to perform comparative analysis for training Advanced Driver Assistance Systems. Quality measurement and statistical analysis are used to evaluate the effectiveness of machine vision recognition using
Ponnuru, Venkata Naga RithikaDas, SushantaGrant, JosephNaber, JeffreyBahramgiri, Mojtaba
Given the promising prospects of retired lithium-ion batteries in second-life utilization, enhancing their consistency through a rational sorting process has become a pressing priority. Traditional capacity-based sorting methods have significant limitations as it takes high time costs and fails to provide internal dynamic information about the batteries. To address this, the present study introduces a novel approach by incorporating electrochemical impedance spectroscopy (EIS) into the sorting process. Firstly, principal component analysis (PCA) analysis is applied to extract the first principal component from the EIS data, which has a strong correlation with battery capacity. It serves as a key feature for assessing the residual value of retired batteries. Accurate estimation of battery capacity is then achieved using a simple linear equation: For retired nickel-cobalt-manganese (NCM) batteries, the mean absolute percentage error (MAPE) and root mean squared percentage error (RMSPE
Fan, WenjunWang, XueyuanJin, YiqunJiang, BoZhu, JiangongWei, XuezheDai, Haifeng
Since the introduction of ABS (1978), TCS (1986) and ESC (1995) in series production, the number of modern vehicle dynamics control functions and advanced driver assistance systems (ADAS) has been continuously increasing. Meanwhile, many functions are available that influence vehicle motion (vehicle dynamics). Since these are only partially and not hierarchically coordinated, the control of vehicle motion is still suboptimal. Current megatrends (automated driving, electromobility, software-defined vehicles) and new key technologies (steer-by-wire, brake-by-wire, domain-based E/E architectures) lead to an increasing number of electrified, motion-relevant components being introduced into series production. These components enable the development of an integrated chassis control (ICC) that controls all motion-relevant components, networks them with each other and coordinates them holistically to optimally control the vehicle motion regarding an adjustable desired driving behavior. Vehicle
Wielitzka, MarkAhrenhold, TimVocht, MoritzRawitzer, JonasSchrader, Jonas
As automotive technology advances, the need for comprehensive environmental awareness becomes increasingly critical for vehicle safety and efficiency. This study introduces a novel integrated wind, weather, and motion sensor designed for moving objects, with a focus on automotive applications. The sensor’s potential to enhance vehicle performance by providing real-time data on local atmospheric conditions is investigated. The research employs a combination of sensor design, vehicle integration, and field-testing methodologies. Findings prove the sensor’s capability to accurately capture dynamic environmental parameters, including wind speed and direction, temperature, and humidity. The integration of this sensor system shows promise in improving vehicle stability, optimizing fuel efficiency through adaptive aerodynamics, and enhancing the performance of autonomous driving systems. Furthermore, the study explores the potential of this technology in contributing to connected vehicle
Feichtinger, Christoph Simon
Autonomous ground navigation has advanced significantly in urban and structured environments, supported by the availability of comprehensive datasets. However, navigating complex and off-road terrains remains challenging due to limited datasets, diverse terrain types, adverse environmental conditions, and sensor limitations affecting vehicle perception. This study presents a comprehensive review of off-road datasets, integrating their applications with sensor technologies and terrain traversability analysis methods. It identifies critical gaps, including class imbalances, sensor performance under adverse conditions, and limitations in existing traversability estimation approaches. Key contributions include a novel classification of off-road datasets based on annotation methods, providing insights into scalability and applicability across diverse terrains. The study also evaluates sensor technologies under adverse conditions and proposes strategies for incorporating event-based and
Musau, HannahRuganuza, DenisIndah, DebbieMukwaya, ArthurGyimah, Nana KankamPatil, AshishBhosale, MayureshGupta, PrakharMwakalonge, JudithJia, YunyiMikulski, DariuszGrabowsky, DavidHong, Jae DongSiuhi, Saidi
Brake-by-wire systems have received more and more attention in the recent years, but a close look on the available systems shows, that they have not reached full by-wire level yet. Most systems are still using hydraulic connections between main cylinder and the brake calipers on at least one axle to ensure functional safety. Mostly, this is the front axle, since the front brakes have to convert more kinetic energy during braking manoeuvers. Electromechanical actuators are currently used for rear brakes in hybrid brake-by-wire applications solely, since a loss of the front brake calipers can lead to severe conditions and control loss of the vehicle during braking. Further, the higher mass of battery electric vehicles (BEVs) leads to much higher braking forces on both axles and to increased sizes of the electromechanical calipers. This article presents a concept for a brake-by-wire system for battery electric vehicles, which features electromechanical brake actuators on all corners and a
Heydrich, MariusLenz, MatthiasIvanov, ValentinStoev, JulianLecoutere, Johan
This paper investigates the problem of nonlinear model predictive control (NMPC) strategy for a class of nonlinear systems with multiple actuators’ response time-delays. Conventional approaches that incorporate these time-delays into the NMPC formulation typically result in a significant increase in the optimization problem's scale. To address these problems, we propose a novel NMPC strategy. In the first stage, the NMPC strategy is designed for the nonlinear system without considering actuator’s response time-delay, thereby maintaining the original scale of the optimization problem. The optimal control sequence derived from this NMPC is then fitted to a time-continuous polynomial function, serving as a reference signal for the actuators' response time-delay models. In the second stage, combining inverse model and inverse Laplace transform techniques, a novel inverse model compensation control (IMCC) strategy is designed for actuators’ response time-delays. This IMCC strategy enables
Wang, Bin
Door sunshade in a vehicle has proven to be very comfortable and luxurious feature to the customers. Luxury vehicles provide power sunshade which is electrically operated with the activation of a switch, whereas cost conscious vehicles provide manual sunshade which requires manual coiling and uncoiling. This study is to develop a door panel structure that can accommodate both the manual sunshade and power sunshade, thereby serving both cost conscious as well as luxury seeking customers. Manual sunshade consists only of cassette, pull bar, spindle mechanism and hooks whereas the power sunshade consists of cassette, pull bar, spindle mechanism, flap mechanism, bowden cable mechanism, actuator and motor. Due to this difference in package, it becomes difficult to accommodate both variants of sunshade into the same body system. However, this study helps in developing a common body structure by ways of effective packaging, modifying the cable and actuator mechanism and critical packaging of
S M, Rahuld, AnanthaKakani, Phani Kumar
Automotive seating systems have become increasingly sophisticated, providing consumers with more flexible configurations and comfort functionalities. Traditional power seating, which relied on a few motors to adjust the seat position, has evolved into more technically advanced reconfigurable systems equipped with additional feedback sensors and actuators. These advancements include features such as Easy Entry, Zero Gravity, Stadium Swivel, IP Nesting, Auto Lumbar/Bolster Adjustment and Power Long Rails. All the features indicate that the overall control of seating systems now resembles robotic arm control or multi-body control, involving numerous coordinated movements. In this paper, we propose a novel control strategy for the coordinated speed control of multiple motors. Unlike traditional seating controls, which typically use direct switches or open-loop systems, we introduce a feedback approach that incorporates Kalman-filter-based speed estimation using raw signals directly from
Yang, HanlongLi, Miranda
Vehicle-to-Infrastructure (V2I) cooperation has emerged as a fundamental technology to overcome the limitations of the individual ego-vehicle perception. Onboard perception is limited by the lack of information for understanding the environment, the lack of anticipation, the drop of performance due to occlusions and the physical limitations of embedded sensors. The perception of V2I in a cooperative manner improves the perception range of the ego vehicle by receiving information from the infrastructure that has another point of view, mounted with sensors, such as camera and LiDAR. This technical paper presents a perception pipeline developed for the infrastructure based on images with multiple viewpoints. It is designed to be scalable and has five main components: the image acquisition for the modification of camera settings and to get the pixel data, the object detection for fast and accurate detection of four wheels, two wheels and pedestrians, the data fusion module for robust
Picard, QuentinMorice, MaloFadili, MaryemPechberti, Steve
To address the issue of signal aliasing when multiple particles pass through a metallic particle sensor, which can lead to misidentification of particle count, we employ numerical simulation methods for an in-depth investigation. We developed a mathematical model of a three-coil inductive metal particle sensor to explore the signal variations induced by the passage of a single particle. We utilized micro-element simulation analysis to dissect the signal generated by a single particle, elucidating the underlying change process. Focusing on dual ferromagnetic particles as the subject of study, we conducted simulations and demodulation of the induced voltage under various combinations of sizes and spacings to investigate the influence patterns of dual adjacent ferromagnetic particles on the sensor's induced signal. Further research into the peak signals of different diameter particles at a constant spacing revealed that, for a given spacing, the ratio of peak signals between particles of
Chen, SenShen, YitaoQiang, GuiyanZheng, ZhengWang, ZheyuHao, YinHu, Ting
Clamping force control in Electromechanical Brake (EMB) systems must overcome various nonlinear characteristics, such as motor distorted voltage, Back Electromotive Force (EMF), and actuator friction disturbances. Therefore, modeling and parameter identification of these nonlinearities are necessary. This paper first proposes a motor parameter identification method based on the mathematical model of a Permanent Magnet Synchronous Motor (PMSM). A combination of the Least Square Method and Particle Swarm Optimization (PSO) is used to stepwise identify both the electrical and mechanical parameters of the motor. The accuracy of the identified parameters is validated by comparing simulation results with test bench responses. The identified parameters are applied to design the motor Back EMF compensation module, the distorted voltage compensation module, and to tune the current loop parameters. Next, a lumped parameter friction model suitable for closed-loop clamping force control in EMB
Qiao, LeXiong, LuZhuo, GuirongShu, Qiang
Having an in-depth comprehension of the variables that impact traffic is essential for guaranteeing the safety of all drivers and their automobiles. This means avoiding multiple types of accidents, particularly rollover accidents, that may have the capacity of causing terrible repercussions. The non-measured factors in the system state can be estimated employing a vehicle model incorporating an unknown input functional observer, this gives an accurate estimation of the unknown inputs such as the road profile. The goal of the proposed functional observer design constraints is to reduce the error of estimation converging to a value of zero, which results in an improved calculation of the observer parameters. This is accomplished by resolving linear matrix inequalities (LMIs) and employing Lyapunov–Krasovskii stability theory with convergence conditions. A simulator that enables a precise evaluation of environmental factors and fluctuating road conditions was additionally utilized. This
Saber, MohamedOuahi, MohamedNaami, GhaliEl Akchioui, Nabil
Roadside perception technology is an essential component of traffic perception technology, primarily relying on various high-performance sensors. Among these, LiDAR stands out as one of the most effective sensors due to its high precision and wide detection range, offering extensive application prospects. This study proposes a voxel density-nearest neighbor background filtering method for roadside LiDAR point cloud data. Firstly, based on the relatively fixed nature of roadside background point clouds, a point cloud filtering method combining voxel density and nearest neighbor is proposed. This method involves voxelizing the point cloud data and using voxel grid density to filter background point clouds, then the results are processed through a neighbor point frame sequence to calculate the average distance of the specified points and compare with a distance threshold to complete accurate background filtering. Secondly, a VGG16-Pointpillars model is proposed, incorporating a CNN
Liu, ZhiyuanRui, Yikang
To meet the requirements of high-precision and stable positioning for autonomous driving vehicles in complex urban environments, this paper designs and develops a multi-sensor fusion intelligent driving hardware and software system based on BDS, IMU, and LiDAR. This system aims to fill the current gap in hardware platform construction and practical verification within multi-sensor fusion technology. Although multi-sensor fusion positioning algorithms have made significant progress in recent years, their application and validation on real hardware platforms remain limited. To address this issue, the system integrates BDS dual antennas, IMU, and LiDAR sensors, enhancing signal reception stability through an optimized layout design and improving hardware structure to accommodate real-time data acquisition and processing in complex environments. The system’s software design is based on factor graph optimization algorithms, which use the global positioning data provided by BDS to constrain
Zhan, KaiDiGao, ChengfaXu, DaweiLan, MinyiDing, Rongjing
Monitoring changes in pavement material compaction degree and analyzing the interaction mechanism between particles are essential for improving compaction quality. In this paper, an on-site intelligent compaction test was carried out using intelligent sensor, the correlation between the in-situ test results and the intelligent compaction measurement value (ICMV) was written, and the influences of moisture content on the correlations were discussed. Further, the gyratory compaction tests were carried out using smart aggregate (SA) sensors to investigate the characteristics of the sensing results during the gyratory compaction of mixtures with different moisture contents, revealing the interaction mechanism between particles. Finally, the compaction characteristic indexes CEI, CDI and CSI were proposed using the SA sensing results, which were used to characterize the flow, compaction degree and stability characteristics of the mixtures, respectively. The conclusions of the study are of
Wang, NingLi, QiangWang, Jiaqing
As automotive technology advances, modern vehicles increasingly rely on complex electronics such as cameras, sensors, radar and lidar. These components are critical for advanced driver-assistance systems (ADAS) and automated driving. With the growing complexity of these systems, automotive manufacturers face challenges in efficiently transmitting both power and data while minimizing weight and system complexity. Power over Coaxial (PoC) technology offers a solution by allowing the transmission of power and data over a single coaxial cable, significantly simplifying vehicle design. With the integration of more electronic systems, especially those required for ADAS and autonomous driving, the demand for power and high-speed data transmission in vehicles has surged. Modern cars now use multiple cameras and sensors, and as vehicle systems continue to evolve, the number of electronic components is expected to increase. This shift places significant demands on the transmission of both data
Thurman, Travis
In an era where technological advancements are rapid and constant, the U.S. Army will need a more agile and efficient approach to modernizing systems on succeeding generations of Army vehicles. Legacy platforms like Abrams, Stryker, and Bradley vehicles use multiple mission computers tied to individual sensors that often required the addition of “boxes” to accommodate new capabilities, which could take years to deploy and drove sustainment costs up due to vendor lock. In addition, this antiquated approach doesn't leverage data to converge effects across the formation in a multi-domain environment. Centralized, common computing as detailed in GCIA would help solve this problem, potentially linking all major subsystems and providing higher-speed processing to assess large datasets in real time with AI and ML algorithms. By using a common, open architecture computer, the Army will be able to rapidly integrate new capabilities inside one box, versus adding multiple boxes. This pivotal
Items per page:
1 – 50 of 7843