Browse Topic: Sensors and actuators
Researchers from RMIT University have developed a wearable wound monitoring device with integrated sensors that could reduce infection risks by minimizing the need for frequent physical contact.
Planetary and lunar rover exploration missions can encounter environments that do not allow for navigation by typical, stereo camera-based systems. Stereo cameras meet difficulties in areas with low ambient light (even when lit by floodlights), direct sunlight, or washed-out environments. Improved sensors are required for safe and successful rover mobility in harsh conditions. NASA Goddard Space Flight Center has developed a Space Qualified Rover LiDAR (SQRLi) system that will improve rover sensing capabilities in a small, lightweight package. The new SQRLi package is developed to survive the hazardous space environment and provide valuable image data during planetary and lunar rover exploration.
In today’s medical equipment market, reliability is not a luxury — it is a necessity. Every adjustment, every movement, and every interaction with the equipment must be performed flawlessly to ensure patient safety, caregiver efficiency, and long-term service life. Behind this design and precision are highly engineered motion control components, such as gas springs, electric linear actuators, and dampers, that ensure safe, ergonomic operation of medical equipment across a wide range of healthcare applications.
Functional safety is driven by number of standards like in automotive its driven by ISO26262, in Aerospace its driven by DO-178C, and in Medical its driven by IEC 60601. Automotive electronic controllers must adhere to state-of-the-art functional safety standard provided by ISO26262. A critical functional safety requirement is the Fault Handling Time Interval (FHTI), which includes the Fault Detection Time Interval (FDTI) and Fault Reaction Time Interval (FRTI). The requirements for FHTI are derived from Failure Mode Effect Analysis (FMEA) conducted at the system level. Various fault categories are analyzed, including electrical faults (e.g., short to battery, short to ground, open circuits), systemic faults (e.g., sensor value stuck, sensor value beyond range), and communication faults (e.g., incorrect CAN message signal values). Controllers employ strategies such as debouncing and fault time maturity to detect these faults. Numerous FDTI requirements must be verified to ensure
Recent advancements in energy efficient wireless communication protocols and low powered digital sensor technologies have led to the development of wireless sensor network (WSN) applications in diverse industries. These WSNs are generally designed using Bluetooth Low Energy (BLE), ZigBee and Wi-Fi communication protocol depending on the range and reliability requirements of the application. Designing these WSN applications also depends on the following factors. First, the environment under which devices operate varies with the industries and products they are employed in. Second, the energy availability for these devices is limited so higher signal strength for transmission and retransmission reduces the lifetime of these nodes significantly and finally, the size of networks is increasing hence scheduling and routing of messages becomes critical as well. These factors make simulation for these applications essential for evaluating the performance of WSNs before physical deployment of
Items per page:
50
1 – 50 of 8026