Browse Topic: Sensors and actuators
In the automotive industry, the zonal architecture is a design approach that organizes a vehicle’s electronic and communication systems into specific zones. These zones group components based on their function and physical location, enabling more efficient integration and simplified communication between the vehicle’s various systems. An important aspect of this architecture is the implementation of the Controller Area Network (CAN) protocol. CAN is a serial communication protocol developed specifically for automotive applications, allowing various electronic devices within a vehicle, such as sensors, actuators, and Electronic Control Units (ECUs), to communicate with each other quickly and reliably, sharing information essential for the vehicle’s operation. However, due to its limitations, there is a need for more efficient protocols like Automotive Ethernet and Controller Area Network Flexible (CAN FD), which allow for higher transmission rates and larger data packets. To centralize
Recognizing the significant challenges inherent in the analysis of periodic gas flow through reciprocating engines, one can easily appreciate the value of studying the steady flow through cylinder heads, manifolds, and exhaust systems. In these studies, flow benches are the cornerstone of the experimental apparatus needed to validate theoretical results or to perform purely experimental analysis. The Metal-Mechanics Department of IFSC owns a SuperFlow model SF-110 flow bench that has suffered some in house maintenance and received electronic sensors to allow computerized data acquisition. As the essential original sensors in this flow bench were liquid column manometer (for pressure difference across the test subject) and micromanometer (for pressure difference across the orifice plate used to measure the flow), the essential new sensors are electronic differential pressure sensors (installed in parallel with the original ones). In recent decades, however, the use of a mass air flow
This SAE Aerospace Recommended Practice (ARP) provides an algorithm aimed to analyze flight control surface actuator movements with the objective to generate duty cycle data applicable to hydraulic actuator dynamic seals
The goal of this work is to increase the accuracy and efficiency of hose cutting operations in small scale industries is by designing and building an automatic hose-cutting equipment. The device uses a computer-controlled system to autonomously cut pipes of various sizes and lengths. By means of a stepper motor-driven, rapidly spinning blade, the cutting process is accomplished. Additionally, the machine has sensors that measure the hose's length and modify the cutting position as necessary. Premium components and materials are used in the machine's construction; these are chosen for their performance and longevity. The device is able to boost cut precision and raise industry production all around from 100% to 190% efficient system thereby decreasing labor and time needed for hose cutting operations
LIDAR-based autonomous mobile robots (AMRs) are gradually being used for gas detection in industries. They detect tiny changes in the composition of the environment in indoor areas that is too risky for humans, making it ideal for the detection of gases. This current work focusses on the basic aspect of gas detection and avoiding unwanted accidents in industrial sectors by using an AMR with LIDAR sensor capable of autonomous navigation and MQ2 a gas detection sensor for identifying the leakages including toxic and explosive gases, and can alert the necessary personnel in real-time by using simultaneous localization and mapping (SLAM) algorithm and gas distribution mapping (GDM). GDM in accordance with SLAM algorithm directs the robot towards the leakage point immediately thereby avoiding accidents. Raspberry Pi 4 is used for efficient data processing and hardware part accomplished with PGM45775 DC motor for movements with 2D LIDAR allowing 360° mapping. The adoption of LIDAR-based AMRs
This project presents the development of an advanced Autonomous Mobile Robot (AMR) designed to autonomously lift and maneuver four-wheel drive vehicles into parking spaces without human intervention. By leveraging cutting-edge camera and sensor technologies, the AMR integrates LIDAR for precise distance measurements and obstacle detection, high-resolution cameras for capturing detailed images of the parking environment, and object recognition algorithms for accurately identifying and selecting available parking spaces. These integrated technologies enable the AMR to navigate complex parking lots, optimize space utilization, and provide seamless automated parking. The AMR autonomously detects free parking spaces, lifts the vehicle, and parks it with high precision, making the entire parking process autonomous and highly efficient. This project pushes the boundaries of autonomous vehicle technology, aiming to contribute significantly to smarter and more efficient urban mobility systems
Items per page:
50
1 – 50 of 7803