Browse Topic: Sensors and actuators

Items (8,026)
Technological innovations in military vehicles are essential for enhancing efficiency, safety, and operational capability in complex scenarios. Advances such as navigation system automation and the introduction of autonomous vehicles have transformed military mobility. State estimators enable the precise monitoring of critical variables that are not directly accessible by sensors, providing real-time information to controllers and improving dynamic response under variable conditions. Their integration is crucial for the development of advanced control systems. This study aims to develop and compare parameter and states estimators for military heavy vehicles using three methodologies: particle filter, extended Kalman filter, and moving horizon state estimation. Computational simulations employ Pacejka’s magic formula to model tire behavior, and the vehicle modeling is based on a simplified quarter-car model, with an emphasis on longitudinal dynamics. In the end, the estimators are
Barros, Leandro SilvaSousa, Daniel Henrique BrazRodrigues, Gustavo SimãoLopes, Elias Dias Rossi
Driven by technological advances in artificial intelligence, sensors, connectivity and sustainable mobility, autonomous buses are a reality in many contexts where their application is viable and efficient. The potential of the technology is a clear theme and has been widely discussed over the last two decades, due to various factors such as reducing accidents, increasing operating cost efficiency, improving the efficiency of public transport, reducing environmental impact and offering mobility solutions for increasingly congested urban areas. Due to the implementation of the General Safety Regulation (GSR II) in the European Union, with the aim of reducing traffic accidents and paving the way for fully autonomous vehicles, autonomous vehicles are getting closer to becoming a viable reality on the streets and highways of developed countries [1]. In order to guarantee the necessary safety in autonomous systems, data reliability is fundamental. To this end, it is essential to implement
Gameiro, JoãoPirocchi, AmandaMatias, BrendaPaterlini, BrunoSouza, Kerylli deAngelone, LucaGama, Ulisses
In rocketry competitions, such as the International Rocket Engineering Competition (IREC), unguided sounding rockets are the most commonly used, relying solely on aerodynamic stability to make necessary trajectory corrections during flight. However, this approach has limitations since these vehicles lack mechanisms to ensure apogee accuracy. The active control of a sounding rocket involves methods for orienting and stabilizing the vehicle during flight, using inertial sensors, GPS, and aerodynamic surfaces. These systems allow continuous trajectory and stability adjustments by processing real-time data. In this context, this work proposes the development of a PID-based attitude control system, aligned with IREC guidelines, to improve the accuracy of rocket apogee. For the PID controller design, the second method of the Ziegler-Nichols rule was adopted, based on a linearized transfer function, to calculate the control loop gains. Gain Scheduling technique was employed to estimate gains
Oliveira Junior, Wilson Luiz deFazzolari, Heloise AssisPaiva Carvalho, Carlos Alberto de
The modern vehicle electrical architecture consists, on average, of 30 integrated electronic modules (ABS, infotainment, instrument panel, etc.), also known as Electronic Control Units (ECUs), and approximately 300 peripherals such as sensors (collision, temperature, oxygen, position, pressure, etc.) and actuators (window motor, mirror motor, relays, airbag inflator, windshield wiper, etc.). This increase in component integration imposes significant challenges to system installation and design. The interconnection of multiple devices renders harness design an arduous and time-consuming task, especially when conducted manually, resulting in error-prone and suboptimal outcomes. Such a scenario highlights the pressing need for studies on harness routing optimization in the automotive industry. Historically, wiring harness design practices have transitioned from manual approaches to the adoption of advanced computational tools. This methodological transition encompasses the use of various
Ribeiro, ThiagoReis, BrenoBarreto, ZeusGaleno, AntônioPereira, MarceloFerreira, Fláavio Fabrício V. M.
Traffic abnormal detection is crucial in intelligent transportation systems, while the heterogeneity and weak spatio-temporal correlation of multi-source data make it difficult for traditional methods to effectively fuse and utilize multimodal information. Most of the existing studies use data-level or decision-level fusion, which fails to fully exploit the feature complementarity of multi-source data, resulting in limited detection accuracy. To this end, we propose a multi-source data fusion anomaly detection method based on graph autoencoder (GAE) and diffusion graph neural network (DiffGNN). First, a unified data preprocessing and fusion strategy is designed to perform feature-level fusion of data from on-board sensors, infrastructures, and external environments to eliminate inconsistencies in data format, temporal alignment, and spatial distribution. Then, GAE is employed for potential graph structure feature extraction to enhance the global representation of the data on the basis
Wang, YaguangXiao, YujieMa, Ying
Researchers from RMIT University have developed a wearable wound monitoring device with integrated sensors that could reduce infection risks by minimizing the need for frequent physical contact.
Planetary and lunar rover exploration missions can encounter environments that do not allow for navigation by typical, stereo camera-based systems. Stereo cameras meet difficulties in areas with low ambient light (even when lit by floodlights), direct sunlight, or washed-out environments. Improved sensors are required for safe and successful rover mobility in harsh conditions. NASA Goddard Space Flight Center has developed a Space Qualified Rover LiDAR (SQRLi) system that will improve rover sensing capabilities in a small, lightweight package. The new SQRLi package is developed to survive the hazardous space environment and provide valuable image data during planetary and lunar rover exploration.
In today’s medical equipment market, reliability is not a luxury — it is a necessity. Every adjustment, every movement, and every interaction with the equipment must be performed flawlessly to ensure patient safety, caregiver efficiency, and long-term service life. Behind this design and precision are highly engineered motion control components, such as gas springs, electric linear actuators, and dampers, that ensure safe, ergonomic operation of medical equipment across a wide range of healthcare applications.
In automotive applications a power electronic converter is used for energy conversion between battery and electrical machine. For high performance drives a lightweight design is demanded. Additionally, a higher efficiency of the inverter results in lower cooling requirements but is often achieved by increasing component weight. Hence, thermal modeling of the components and their interactions is essential to determine the best compromise between weight, efficiency and cooling requirements. In traction inverters the DC-link capacitors, power modules, high voltage electrical connections and low voltage devices dissipate power. In this paper the focus is on the thermal modeling of the DC-link capacitor, power modules and high voltage electrical connections and their system, as the performance of the inverter is defined by these components. The thermal models are derived based on physical properties and geometries. First, the DC-link capacitor thermal model is presented and considers the
Blaschke, Wolfgang MaximilianMengoni, LeonardPflüger, RobinKulzer, André Casal
To address the limitations of conventional overspeed detection methods, this study proposes a vehicle overspeed detection approach based on the fusion of millimeter-wave radar (MWR) and vision sensors. The MWR captures target position and velocity data, while the vision sensor acquires vehicle image information. Radar-detected points are mapped onto visual images through coordinate transformation, and the Intersection over Union (IoU) method is employed to associate radar points with vision-detected vehicle bounding boxes. Subsequently, for radar-detected points exceeding the speed threshold, the corresponding vehicle images are identified, enabling real-time overspeed detection and data acquisition. This method not only facilitates prompt identification of speeding behavior but also extracts the associated vehicle images, ensuring both accuracy and informational integrity in overspeed monitoring. Experimental results demonstrate that the proposed method achieves high speed measurement
Li, YuanchenWu, ZhichaoXu, HaiboSong, LiangliangHuang, Hao
The rapid evolution of autonomy in Off-Highway Vehicles (OHVs)—spanning agriculture, mining, and construction—demands robust cybersecurity strategies. Sensor-control systems, the cognitive core of autonomous OHVs, operate in harsh, connectivity-limited environments. This paper presents a structured approach to applying threat modeling to these architectures, ensuring secure-by-design systems that uphold safety, resilience, and operational integrity.
Kotal, Amit
Tool management remains a persistent challenge in manufacturing, where misplaced or poorly calibrated tools such as torque guns and screwdrivers cause downtime, quality defects, and compliance risks. The Internet of Things (IoT) is transforming tool management from manual entries in spreadsheets and logs to real-time, data-driven solutions that enhance operational efficiency. With ongoing advancements in IoT architecture, a range of cost-effective tracking approaches is now available, including Ultra-Wideband (UWB), Bluetooth Low Energy (BLE), Wi-Fi, RFID, and LoRaWAN. This paper evaluates these technologies, comparing their trade-offs in accuracy, scalability, and cost for tool-management scenarios such as high-precision station tracking, zonal monitoring, and wide-area yard visibility. Unlike prior work that focuses on asset tracking in general, this study provides an ROI-driven, scenario-based comparison and offers recommendations for selecting appropriate technologies based on
Patel, Shravani Prashant
Functional safety is driven by number of standards like in automotive its driven by ISO26262, in Aerospace its driven by DO-178C, and in Medical its driven by IEC 60601. Automotive electronic controllers must adhere to state-of-the-art functional safety standard provided by ISO26262. A critical functional safety requirement is the Fault Handling Time Interval (FHTI), which includes the Fault Detection Time Interval (FDTI) and Fault Reaction Time Interval (FRTI). The requirements for FHTI are derived from Failure Mode Effect Analysis (FMEA) conducted at the system level. Various fault categories are analyzed, including electrical faults (e.g., short to battery, short to ground, open circuits), systemic faults (e.g., sensor value stuck, sensor value beyond range), and communication faults (e.g., incorrect CAN message signal values). Controllers employ strategies such as debouncing and fault time maturity to detect these faults. Numerous FDTI requirements must be verified to ensure
Lengare, SunilYadav, VikaskumarShiraskar, Pallavi
Recent advancements in energy efficient wireless communication protocols and low powered digital sensor technologies have led to the development of wireless sensor network (WSN) applications in diverse industries. These WSNs are generally designed using Bluetooth Low Energy (BLE), ZigBee and Wi-Fi communication protocol depending on the range and reliability requirements of the application. Designing these WSN applications also depends on the following factors. First, the environment under which devices operate varies with the industries and products they are employed in. Second, the energy availability for these devices is limited so higher signal strength for transmission and retransmission reduces the lifetime of these nodes significantly and finally, the size of networks is increasing hence scheduling and routing of messages becomes critical as well. These factors make simulation for these applications essential for evaluating the performance of WSNs before physical deployment of
Periwal, GarvitKoparde, PrashantSewalkar, Swarupanand
Items per page:
1 – 50 of 8026