Browse Topic: Sensors and actuators

Items (7,992)
In automotive applications a power electronic converter is used for energy conversion between battery and electrical machine. For high performance drives a lightweight design is demanded. Additionally, a higher efficiency of the inverter results in lower cooling requirements but is often achieved by increasing component weight. Hence, thermal modeling of the components and their interactions is essential to determine the best compromise between weight, efficiency and cooling requirements. In traction inverters the DC-link capacitors, power modules, high voltage electrical connections and low voltage devices dissipate power. In this paper the focus is on the thermal modeling of the DC-link capacitor, power modules and high voltage electrical connections and their system, as the performance of the inverter is defined by these components. The thermal models are derived based on physical properties and geometries. First, the DC-link capacitor thermal model is presented and considers the
Blaschke, Wolfgang MaximilianMengoni, LeonardPflüger, RobinKulzer, André Casal
To address the limitations of conventional overspeed detection methods, this study proposes a vehicle overspeed detection approach based on the fusion of millimeter-wave radar (MWR) and vision sensors. The MWR captures target position and velocity data, while the vision sensor acquires vehicle image information. Radar-detected points are mapped onto visual images through coordinate transformation, and the Intersection over Union (IoU) method is employed to associate radar points with vision-detected vehicle bounding boxes. Subsequently, for radar-detected points exceeding the speed threshold, the corresponding vehicle images are identified, enabling real-time overspeed detection and data acquisition. This method not only facilitates prompt identification of speeding behavior but also extracts the associated vehicle images, ensuring both accuracy and informational integrity in overspeed monitoring. Experimental results demonstrate that the proposed method achieves high speed measurement
Li, YuanchenWu, ZhichaoXu, HaiboSong, LiangliangHuang, Hao
The rapid evolution of autonomy in Off-Highway Vehicles (OHVs)—spanning agriculture, mining, and construction—demands robust cybersecurity strategies. Sensor-control systems, the cognitive core of autonomous OHVs, operate in harsh, connectivity-limited environments. This paper presents a structured approach to applying threat modeling to these architectures, ensuring secure-by-design systems that uphold safety, resilience, and operational integrity.
Kotal, Amit
Functional safety is driven by number of standards like in automotive its driven by ISO26262, in Aerospace its driven by DO-178C, and in Medical its driven by IEC 60601. Automotive electronic controllers must adhere to state-of-the-art functional safety standard provided by ISO26262. A critical functional safety requirement is the Fault Handling Time Interval (FHTI), which includes the Fault Detection Time Interval (FDTI) and Fault Reaction Time Interval (FRTI). The requirements for FHTI are derived from Failure Mode Effect Analysis (FMEA) conducted at the system level. Various fault categories are analyzed, including electrical faults (e.g., short to battery, short to ground, open circuits), systemic faults (e.g., sensor value stuck, sensor value beyond range), and communication faults (e.g., incorrect CAN message signal values). Controllers employ strategies such as debouncing and fault time maturity to detect these faults. Numerous FDTI requirements must be verified to ensure
Lengare, SunilYadav, VikaskumarShiraskar, Pallavi
The first step in designing or analyzing any structure is to understand “right” set of loads. Typically, off-road vehicles have many access doors for service or getting into cab etc. Design of these doors and their latches involve a knowledge of the loads arising when the door is shut which usually involves an impact of varying magnitudes. In scenarios of these impact events, where there is sudden change of velocity within few milliseconds, produces high magnitude of loads on structures. One common way of estimating these loads using hand calculations involves evaluating the rate-of-change-of-momentum. However, this calculation needs “duration of impact”, and it is seldom known/difficult to estimate. Failing to capture duration of impact event will change load magnitudes drastically, e.g. load gets doubled if time-of-impact gets reduced from 0.2 to 0.1 seconds and subsequently fatigue life of the components in “Door-closing-event” gets reduce by ~7 times. For these problems, structures
Valkunde, SangramGhate, AmitGagare, Kiran
Electrification applications are increasingly moving towards higher voltage systems to enable greater power delivery and faster battery charging. This trend is particularly evident in the shift from 400V to 800V systems, which offers several benefits and poses unique technical challenges. Higher voltage systems reduce current flow, minimizing energy losses, and improving overall efficiency. This is crucial for applications like electric vehicles and off-highway machinery, where efficient power management is essential. One of the primary benefits of increasing the DC link voltage beyond the 400V is the ability to support higher power levels. Additionally, higher voltage systems can reduce the size and weight of power components, contributing to more compact and lightweight designs. However, transitioning to 800V systems introduces several technical challenges in power electronics design. Key components such as power components (IGBT, MOSFET etc.) must be optimized to handle higher
Hatkar, Chetan ManoharPipaliya, Akash
In the agricultural industry, the logistics of transporting and storing bales, used as cattle feed, pose significant challenges for large scale farms. Traditional storage of bales in barns is labor-intensive, high in capital expenditure and requires multiple trips of transport vehicle on and off the field. Improper handling during this transition can lead to substantial losses in time, resources and loss of hay. This development aims to eliminate the last-mile transportation step, by enabling year-round storage of bales directly in the field. A patented wrapping material, along with strategic orientation of wrapped bales, enhances their resistance to weather conditions. Field experiments demonstrated that this innovative material not only protects the bales from adverse environmental factors but also effectively retains their nutrient and moisture content. A critical aspect of this solution is ensuring the correct orientation of the wrap seams, as the bales are continuously rotated
Kadam, Pankaj
Tillage, a fundamental agricultural practice involving soil preparation for planting, has traditionally relied on mechanical implements with limited real-time data collection or adjustment capabilities. The lack of real-time data and implement statistics results in fleet managers struggling to track performance, driver behavior, and operational efficiency of the implements. Lack of data on vehicle performance can result in unexpected breakdowns and higher maintenance costs, ensuring compliance with regulations is challenging without proper data tracking, potentially leading to fines and legal issues. Bluetooth-enabled mechanical implements for tillage operations represent an emerging frontier in precision agriculture, combining traditional soil preparation techniques with modern wireless technology. Implement mounted battery powered BLE (Bluetooth Low Energy) modules operated by solar panel based rechargeable batteries to power microcontroller. When Implement is operational turns
Kaniche, OnkarRajurkar, KartikGokhale, SourabhaVadnere, Mohan
In today’s competitive environment, speed to market is important in ensuring the success of the product. Hence, accelerating the process of product verification and validation becomes imperative. One way to make the testing process more efficient is to integrate virtual verification and physical testing into the workflow. Multiple design options can be evaluated virtually, and then the shortlisted design can be evaluated using physical testing. However, for this integration to work, the virtual model should match the behavior of the physical model ‘exactly.’ How much ‘exact’ is good enough, can be quantified by means of correlation. This work explores the concept of ‘correlation’ and different approaches to quantifying it. The approach for comparing ‘direct’ outputs like hydraulic actuators forces or stress and strains measured using gages from tests, with the simulation outputs is the most feasible option. Also, a chassis case study is used to demonstrate crack initiation life
Deshpande, Amit AnandDesale, Amit
Manufacturers need pragmatic guidance when choosing network protocols that must balance responsiveness, high data throughput, and long-term maintainability. This paper presents a step-by-step, criteria-driven framework that scores protocols on six practical dimensions, real-time behavior, bandwidth, interoperability, security, IIoT readiness, and legacy support and demonstrates the approach on both greenfield and brownfield scenarios. By combining vendor specifications, peer-reviewed studies, and field experience, the framework delivers transparent, weighted rankings designed to help engineers make defensible deployment choices. This paper explores how network protocols can be mapped to different layers of the automation pyramid, ranging from field-level communication to enterprise-level. For example, Profinet is shown to be highly effective for time-critical applications such as robotic assembly and motion control due to its deterministic, real-time ethernet capabilities. Meanwhile
Tarapure, Prasad
Recent advancements in energy efficient wireless communication protocols and low powered digital sensor technologies have led to the development of wireless sensor network (WSN) applications in diverse industries. These WSNs are generally designed using Bluetooth Low Energy (BLE), ZigBee and Wi-Fi communication protocol depending on the range and reliability requirements of the application. Designing these WSN applications also depends on the following factors. First, the environment under which devices operate varies with the industries and products they are employed in. Second, the energy availability for these devices is limited so higher signal strength for transmission and retransmission reduces the lifetime of these nodes significantly and finally, the size of networks is increasing hence scheduling and routing of messages becomes critical as well. These factors make simulation for these applications essential for evaluating the performance of WSNs before physical deployment of
Periwal, GarvitKoparde, PrashantSewalkar, Swarupanand
Tool management remains a persistent challenge in manufacturing, where misplaced or poorly calibrated tools such as torque guns and screwdrivers cause downtime, quality defects, and compliance risks. The Internet of Things (IoT) is transforming tool management from manual entries in spreadsheets and logs to real-time, data-driven solutions that enhance operational efficiency. With ongoing advancements in IoT architecture, a range of cost-effective tracking approaches is now available, including Ultra-Wideband (UWB), Bluetooth Low Energy (BLE), Wi-Fi, RFID, and LoRaWAN. This paper evaluates these technologies, comparing their trade-offs in accuracy, scalability, and cost for tool-management scenarios such as high-precision station tracking, zonal monitoring, and wide-area yard visibility. Unlike prior work that focuses on asset tracking in general, this study provides an ROI-driven, scenario-based comparison and offers recommendations for selecting appropriate technologies based on
Patel, Shravani Prashant
This study presents a methodology to develop a new 25kWh battery pack for off-highway application. Initially an enclosure space is extracted from tractor model maintaining minimum space with adjacent components. Based on available space, various combination of cell form factors and different cell chemistries are evaluated considering operating ambient temperature range (-20 to 45 deg C) and charge/discharge rate 1C. Cylindrical NMC type cell with indirect cooling system fulfils all our technical requirements. However, complete battery pack thermal simulation is carried out for ensuring battery pack safety and limited deterioration with different discharge rate and wider temperature range. The battery pack model contains multiple cells, bricks, and modules with numerous coolant pipes and flow channels. Cell characterization experimental data is used for estimating cell thermal capacity and IR behavior. Battery pack model is tested with different Charge/discharge rates. Five
Nain, AjayLamba, Shamsherjayagopal, Sdhir, Anish
This paper describes the design and characteristics of the knock sensor. The sensor is already used as a commodity product for automotive applications and used by all automotive OEMs for spark ignited combustion engines. With the arrival of the electronic fuel injection on the two wheelers, further optimization of the combustion can be obtained. Although there are many publications on the engine knock strategy, little is known publicly about the sensor itself. The knock sensor is an accelerometer based on a piezoelectric component; it provides an analog signal of the engine vibration. The Electronic Control Unit will filter the signal according to a specific strategy and defines the presence and intensity of the engine knock. The ECU will act accordingly on the ignition timing. The inner structure as well as the mechanical and electrical interface are described in this article.
van Est, JeroenPrieu, Corentin
The use of alternative fuels, such as biofuels and synthetic fuels in small mobility engines has become more common these days. Although these fuels contribute to the carbon neutrality, it is known that they do not have a certain fuel composition, which significantly affects the combustion characteristics of an engine, such as knocking and combustion duration. Therefore, to get the most out of these sustainable fuels, it is necessary to develop engine systems that are highly robust to variations in fuel composition. To achieve this goal, a method to sense fuel characteristics onboard using sensors already widespread in use or can be installed inexpensively is required. Although in-cylinder piezoelectric pressure sensors are useful for research in the laboratory, it is not suitable for the use in commercial engines because of its high cost. Therefore, the use of other sensors should be considered. The purpose of this study is to experimentally analyze what information related to
Hayashi, KoheiKim, JihoonYamasaki, Yudai
In motorcycle racing and other competitions, there is a technique to intentionally slide the rear wheel to make turns more quickly. While this technique is effective for high-speed riding, it is difficult to execute and carries risks such as falling. Therefore, an anti-sideslip control system that suppresses unintended or excessive sideslip is needed to ensure safe, natural, and smooth turning. In anti-sideslip control, the slip angle is usually used as a control parameter. However, for motorcycles, it is necessary to know the absolute direction of the vehicle's movement. To determine this, GPS or optical sensors are required, but using such sensors for driving is costly and may not provide accurate measurements due to contamination or other environmental factors, making it impractical. Therefore, an anti-sideslip control system was developed by calculating another parameter that indicates the characteristics of the slip angle, without measuring the slip angle itself, thus eliminating
Nakano, KyosukeKawai, KazunoriTakeuchi, Michinori
To mitigate greenhouse emissions such as carbon monoxide (CO), carbon dioxides (CO2), oxide of nitrogen (NOx) and particulate matter reduction Government of India implemented Bharat Stage VI (BS-VI) norms from year 2020. Moving to more stringent emission norms poses challenges for automakers in several ways such as meeting exhaust emissions, on board diagnostic, drivers’ inducement, and particulate filter monitoring on vehicle. It is imperative to upgrade engine management system for on-board diagnostics (OBD) that refers to a vehicles self-diagnostic and reporting ability. On board diagnostics systems enables owner of vehicle to gain access of the various vehicle sub-systems. OBD-II standards were made more rigid, requiring the malfunction indicator lamp (MIL) to be activated if emission-related components fail. Also, vehicle emissions carbon monoxide (CO), oxide of nitrogen (NOx) and particulate matter not to exceed OBD thresholds. Consequently, the use of specific oxide of nitrogen
Jagtap, PranjalSyed, KaleemuddinChaudhari, SandipKhairnar, GirishBhoite, VikramReddy, Kameswar
Measurement plays a crucial role in the precise and accurate management of automotive subsystems to enhance efficiency and performance. Sensors are essential for achieving high levels of accuracy and precision in control applications. Rapid technical advancements have transformed the automobile industry in recent years, and a wide range of novel sensor devices are being released to the market to speed up the development of autonomous vehicle technology. Nonetheless, stricter regulations for reliable pressure sensors in automobiles have resulted from growing legal pressures from regulatory bodies. This work proposes and investigates a tribo electric nano sensor that is affected by a changing parameter of the separation distance between the device's primary electrode and dielectric layers. The system is being modeled using the COMSOL multiphysics of electrostatics and the tribo-electric effect. Open circuit electric potential and short circuit surface charge density are two of the
P, GeethaK, NeelimaSudarmani, RC, VenkataramananSatyam, SatyamNagarajan, Sudarson
Brake failures in the vehicles can cause hazardous accidents so having a better monitoring and emergency braking system is very important. So, this project consists of an autonomous brake failure detector integrated with Automatic Braking using Electromagnetic coil braking which detects the braking failure at the time and applied the combinations of the brakes, to overcome this kind of accidents. So, here the system comprises of IR sensor circuit, control unit and electromagnetic braking system. How it works: The IR sensor monitors the brake wire, and if the wire is broken, the control unit activates the electromagnetic brakes, stopping the vehicle in a safe manner. This system enhances vehicle safety by ensuring immediate braking action without driver intervention. Key advantages include real-time brake monitoring, reduced mechanical wear, quick response time, and an automatic failsafe mechanism. The system’s minimal reliance on hydraulic components also makes it suitable for harsh or
Raja, SelvakumarJohn, GodwinSiddarth, J PSenthilkumar, AkashMathew, AbhayR. S., NakandhrakumarNandagopal, SasikumarArumugam, Sivasankar
This paper presents a comprehensive overview of the methodology employed in leveraging CFD for optimizing HVAC kinematics, focusing on reducing the operating torque by improvising the flap geometry. The aim here is to utilize the CFD simulation in order to predict the torque generated on the actuator motor connected to the flap when the flap is placed in high speed airflow and based on this value work out an optimized geometry of the flap, since its geometry plays a significant role when it comes to determining the torque values. Different flap geometry imparts different torque on motor. This torque is generated because of the force acting on the flap which is acting as a buffer in the path of airflow. The torque generated should be less than the stall torque of the actuator motor in order for smooth performance/movement of the flap. Initial geometry of the flap generated a torque of around 82.5 Ncm which was much higher than the recommendation limit. So in order to bring these torque
Madaan, AshishKumar, RaviBehera, SureshChauhan, Arpit
The work presents a micro-electromechanical system (MEMS) temperature sensor that has been designed using COMSOL Multiphysics 6.0 software for use in predicting the temperature of automotive parts. Due to its versatility, the shape of this design employs a meander, and this involves joule heating physics. It clearly shows the variation of resistance with temperature. For this design, Nitinol nano material is used because of the following advantages: Enhanced Shape Memory Effect, Superior Super elasticity, Increased Surface Area, Increased Surface Area, Improved Biocompatibility, Tunable Properties, Enhanced Mechanical Properties. Nitinol having high strength to weight ratio find its application in aerospace industry. This sensor works based on the principle of temperature dependence of resistance; that is, the resistance of the material increases or decreases based on temperature. It is observed that Nitinol has low von Mises stress, proving the safety nature of the material in
P, Geetha
Items per page:
1 – 50 of 7992