Browse Topic: Starters and starting

Items (3,058)
This SAE Standard describes guarding to help prevent hazardous machine movement caused by activation of the starter motor by bypassing the starter control system. This document is applicable to off-road, self-propelled work machines, as identified in SAE J1116, and agricultural tractors, as defined in ANSI/ASAE S390, which have the potential for hazardous machine movement as a result of bypassing the starter control system and powering of the starter motor
OPTC1, Personnel Protection (General)
Front End Accessory Drive (FEAD) systems are used in automobiles to transfer power from the engine-to-engine accessory components such as the alternator, water pump, etc. using a Belt and Tensioner. The emergence of Mild hybrid technologies has led to the replacement of alternator with Belt-driven Integrated Starter-generator (B-ISG). In conventional configuration of FEAD, the power transfer is in single direction but in mild hybrid engine power transfer is bidirectional: tight and slack side of the Belt changes as per Torque assist or Regeneration mode. The presence of an integrated starter-generator (ISG) in a belt transmission places excessive strain on the FEAD System and necessitates checking the dynamic performance of FEAD System thoroughly. Study of Increase in Engine Torque in existing Vehicle was done to understand its effect on various system. This vehicle is Mild Hybrid and consists of Belt-driven Integrated Starter generator system. Increase in Engine torque lead to
Kumar, AdityaGupta, AvinashBharti, Anil Kant
ABSTRACT PPG formulates N-methyl pyrrolidone free (NMP−free) cathodes for Li−ion batteries capable of delivering sufficient power for automotive starting, lighting and ignition (SLI) as well as adequate charge capacity for powering auxiliary electronics. In this paper, NMP−free energy cathodes and power cathodes were formulated using developmental binders, and refinement of carbon/binder ratio and slurry mix procedure. Learnings from the energy and power cathode development were conceptually combined in the formulation of capacity enhanced power cathodes. These cathodes were evaluated electrochemically via power capability and rate capability testing in battery coin cells, as well as in 0.5 Ah multilayer pouch cells. Carbon content was found to be a critical factor in attaining high cold crank performance. This work represents significant steps toward potential commercialization of NMP−free cathode coated foil for Li−ion batteries. Citation: S. Esarey, A. Kizzie, C. Woodley, I. Matts
Esarey, Samuel L.Kizzie, AustinWoodley, ChristopherMatts, IanHellring, StuartZhou, ZhilianTerrago, Gina
ABSTRACT The department of defense currently uses a number of models of vehicle start batteries with the “6T” form factor. These batteries are typically found in almost every vehicle in the DOD fleet and other systems that require 28VDC power. The use of power and energy on the battlefield is significantly changing and the Warfighter now requires a “start” battery that is used for more than just starting, lighting and ignition (SLI) for the vehicle. Lithium ion battery technologies are showing great promise in addressing these challenges by providing higher power capability for extended silent watch, battery monitoring and extended cycle life. One concern, however, is their ability to operate at low temperatures. One of the most challenging aspects of battery use in military applications is their operation at extreme high and low temperatures. These wide temperature swings can potentially have a dramatic effect on cycle life and performance. One significant concern, especially for
Marcel, MikeKnakal, TonyHelm, JeffFagan, BaileyAlexander, Les
ABSTRACT Vehicles on today’s battlefield need batteries for more than just starting, lighting and ignition (SLI) loads. Power requirements and the need to provide this power during silent watch scenarios have been steadily increasing as modern vehicles use increasingly more sophisticated communications and other vetronics systems. Along with this need for more power is a need to communicate to the warfighter the state of their vehicle batteries. Battery management that provides the warfighter with accurate information about the current state of charge and health of their vehicle batteries will allow them to use the energy in their batteries without fear of not being able to start their vehicle after a silent watch. Lithium Ion batteries, particularly Nanophosphate, show great potential for providing long life, high capacity, lightweight, safe solutions to these issues, enhancing the warfighter’s capabilities in the field
Marcel, MikeAlexander, LesKnakal, TonyFagan, Bailey
ABSTRACT Saft has continued to develop lithium-ion replacement batteries for the traditional lead-acid batteries for use in military vehicles. Saft’s 24 volt Xcelion 6T® delivers power at high rate that surpasses the delivered capacity of two lead-acid batteries. The battery design is tailored to support high rates, even at extreme cold temperatures, to support the mission needs for silent watch and starting for military vehicles. An additional design variant is now available, the Xcelion 6T Energy, to provide 30% more energy while still delivering excellent cranking capability. Both products are industrialized and in use in large new vehicle programs. Additionally, development continues on a MIL-PRF-32565 compliant version with release to market expected in 2019
Ferguson, ScottBrenner, CandiceCox, JasmineHensley, KeithRuth, Nicole
ABSTRACT Various system level characteristics and parameters must be considered when incorporating an Integrated Starter / Generator (ISG) into the electrical architecture of a ground vehicle. Three techniques will be discussed in the context of system level performance and efficiency. Dynamic Field Weakening will be discussed as a method to shift the operating envelope of the machine / drive pair to dynamically manage operating efficiency with experimental data shown. Pulse Width Modulation – Rectification / Control (PWMRC) during generation mode will be with simulated and experimental results presented. Finally, the impact of low winding inductance machines, such as air core or iron-less, when operated in a field weakening mode will be discussed along with simulated operation
Brzezinski, BrentMarcel, MikeMurphree, Jay
ABSTRACT Predictive analysis of vehicle electrical systems is achievable by combining condition based maintenance (CBM) techniques and testing for statistical significance (TSS). When paired together, these two fundamentally sound sciences quantify the state of health (SOH) for batteries, alternators, starters, and electrical systems. The use of a communication protocol such as SAE J1939 allows for scheduling maintenance based on condition and not a traditional time schedule
Rini, GuyZachos, Mark
ABSTRACT The overall goal of the program was to demonstrate use of Li-ion 6T –type batteries for commercial and military applications with a stable supplier base and verified business case. In the first phase of this program we demonstrated that Lithium-Ion 6T batteries can be successfully used in commercial vehicles as starter batteries. The results include the field testing of three battery suppliers in Class 8 truck tractors in a two different climate regions. For a future phase of the testing more challenging battery applications The Lithium-Ion 6T batteries would be used to power vehicle loads in addition to starting the engine. The applications we have identified include: 1) hotel load-idle reduction, 2) ePTO-Engine Start/Stop, 3) Hydraulic-Electric Lift-Gate
Tomic, JasnaToomey, LaurenceBloch-Rubin, TedGallo, Jean-Baptiste
ABSTRACT The demand for increased export power generation and ground vehicle electrification are escalating trends due to the warfighter’s expanding mission requirements. Today’s low-voltage alternators used in some fielded ground vehicle’s power systems supply up to 650ADC, or 18kW. Future demand for vehicle export power generation is expected to reach and exceed 100kW. A majority of electric machines capable of meeting this level of power generation rely on rare-earth elements such as Neodymium (Nd), Samarium (Sm), Dysprosium (Dy) and Terbium (Tb). Due to diminished reserves in the United States, availability abroad and price volatility, continued use of rare-earth permanent magnet materials may not be viable. The expanding demand for vehicle power is on a trajectory which surpasses the U.S. ability to reliably harvest or procure rare-earth magnet materials. As such, electric machine topologies that utilize zero rare-earth magnet materials are being considered for ISG (integrated
Riley, KatherineConway, ShanShanLee, Seong T.Jung, Yong-BaeZanardelli, Wesley G.Wright, Ronnie L.
ABSTRACT This paper presents energy management strategy that includes a novel power split and optimization approach for the FED BRAVO program. AVL is responsible for developing and delivering the full hybrid propulsion system integrated into the Fuel Efficient Demonstrator (FED) Bravo vehicle, designed by PRIMUS. The developed energy management algorithm calculates component energy availability, driver demanded torque and manages the distribution of power between propulsion components. This includes a real-time, road load calculated power split between the three propulsion sources, namely Internal Combustion Engine (ICE), Integrated Starter Generator (ISG) and Front Motor (FMOT). Additionally, unique challenges of power split arose between the different propulsion sources due to the particular powertrain architecture selected for this vehicle i.e. a combined through the road and parallel hybrid structure. Specifically, the paper will discuss via case study the road load based power
Holtz, Jeffery BUppal, Faisal J
ABSTRACT The advantages of lithium-based batteries over lead acid batteries have created great interest in developing safe and cost effective drop-in replacements. To achieve the required cost effectiveness and safety of the battery, Battery Management Systems (BMS) are critical to avoid over-charging, over-discharging, and continuously and accurately determining the State of Charge (SOC), State of Health (SOH), and State of Life (SOL) of the battery. In a program funded through a U.S. Army–TARDEC SBIR, the authors developed and tested a military-grade BMS that includes: (1) a Kalman Filter-based SOC estimation algorithm with better than 5% accuracy; (2) continuous cell monitoring to avoid over-charging or over-discharging; (3) active and passive cell balancing; (4) an innovative, low cost, and high-accuracy current sensing method; and (5) vehicle-level communication capability. Our BMS uses a modular, universal architecture that supports any lithium-based chemistry, pack size, or
Pilvelait, BruceRentel, Carlos H.Finger, WilliamRuckman, LarryFogg, DavidPlett, Gregory L.Marcel, Mike
ABSTRACT Due to the recent fluctuations in the rare-earth magnet pricing and availability demands, switched reluctance machines (SRMs) have gained significant interest to be used in automotive and military applications. SRMs are known to have high power density/efficiency, low cost, easy manufacturability, wide constant power region, robust structure and high reliability. On the other hand, high acoustic noise and torque ripple have limited their wide spread usage in the past. This paper investigates the analyses, design and experimental verification of various acoustic noise reduction techniques for SRMs. The prototypes of 100 kW SRMs for military ground vehicles have been built with the implemented acoustic noise reduction techniques and were tested using a dynamometer special for electric and hybrid vehicle testing
Sozer, YilmazTylenda, JoshuaKutz, JohnWright, Ronnie L.
ABSTRACT Evolving requirements for combat vehicles to provide increased mission capability and/or crew safety necessitate the addition of components and add-on armor to currently-fielded vehicles. These new requirements result in increased weight and increased electrical needs, which result in reduced mobility. The APD is built from the ground up to optimize a powertrain solution using cutting-edge technology specifically designed for harsh military environments, for use in both vehicle retrofits and new vehicle designs. The APD combines an efficient 1000 hp engine, transmission, integrated starter generator, thermal management system, and lithium-ion batteries to maximize powerpack power density. The APD was designed for a 45-60 ton combat vehicle, but designing for scalability, reconfigurability, and using modern techniques and technology has allowed the APD to greatly improve the capability and flexibility of the powerpack and the technology can be applied to heavier or lighter
Claus, MikeLaRoy, DavidNickel, DavidPanagos, ConstantinePesys, TomasSkillman, NewtonSrodawa, JohnTadros, Maged
ABSTRACT This paper highlights a range of available Integrated Starter Generator (ISG) and power-electronic controller designs for power generation and hybrid vehicle applications ranging from 35 – 160kW. It addresses the potential for improved integrated system efficiency over traditional alternator-based system solutions. Robustness of ISG-based systems is evaluated in the paper, particularly when integrated into military vehicles and placed in demanding environments. A range of product realizations is presented, from low-cost solutions intended for higher volume production, to high performance solutions employing state of the art technology. Experience in transitioning from high performance to production-ready realizations is included in support of this evaluation. ISG generators range up to 160 kW also providing considerable power at idling speed, and crank start capability at low voltage and low temperatures. Their slim design allows for flexible mounting conditions. A family of
Johnson, S. ArnieLarson, JodyEhrhart, PeterSteffen, Jens
ABSTRACT Most hybrid electric vehicle (HEV) applications require the utilization of electric motors that have high torque/power density, high efficiency, a wide speed range and reliability. Interior permanent magnet (IPM) synchronous motors comprised of rare-earth magnet material is the most common electric motor class used for HEVs. However, recent fluctuations in the rare-earth magnet pricing and availability demands the search for zero rare-earth motor topologies as an alternative to IPM for use in HEVs. Switched reluctance machines (SRMs) are rare-earth free alternatives with simple and very robust construction, high efficiency/reliability, high torque at low speed, more thermal capability, and a wide constant power region. Nonetheless, they have several disadvantages which emerge from the nature of the torque production in SRMs, such as high torque ripple, high vibration, and substantial acoustic noise. This paper investigates the acoustic noise mitigation techniques of SRMs with
Sozer, YilmazTylenda, JoshuaKutz, JohnWright, Ronnie L.
ABSTRACT Saft has developed a competitively-priced lithium-ion replacement for the traditional lead-acid batteries for use in the next generation of military vehicles. Saft’s 24 volt Xcelion 6T® delivers power at high rate that surpasses the delivered capacity of two lead-acid batteries. The battery design is tailored to support high rates, even at extreme cold temperatures, to support the mission needs for silent watch and starting for military vehicles. The product is now industrialized and commercially available for integration in the next generation of vehicles
Ferguson, ScottBrenner, CandiceCox, JasmineFoote, BenHensley, KeithRuth, Nicole
Modern automotive powertrains are operated using many control devices under a wide range of environmental conditions. The exhaust temperature must be controlled within a specific range to ensure low exhaust-gas emissions and engine-component protection. In this regard, physics-based exhaust-temperature prediction models are advantageous compared with the conventional exhaust-temperature map-based model developed using engine dyno testing results. This is because physics-based models can predict exhaust-temperature behavior in conditions not measured for calibration. However, increasing the computational load to illustrate all physical phenomena in the engine air path, including combustion in the cylinder, may not fully leverage the advantages of physical models for the performance of electric control units (ECUs). This study proposes an onboard physics-based exhaust-temperature prediction model for a mass-produced engine to protect the engine exhaust system and reduce exhaust emissions
Yamaguchi, SeiyaTomita, MasayukiUrakawa, ShinjiOokubo, Seiichi
For heavy-duty vehicles equipped with automated mechanical transmission (AMT), the control of automatic clutch torque is crucial during the start-up process. However, the difficulty of controlling clutch torque is exacerbated by differences in driver’s starting intentions, changes in vehicle mass, and road gradient. Therefore, this article proposes the clutch starting torque optimization strategy based on intelligent recognition of driver’s starting intention, vehicle mass, and road gradient. First, an intelligent recognition strategy is proposed based on the combination of data-driven and onboard transmission control unit (TCU) algorithms, which improves the accuracy of recognizing the driver’s intention to start as well as the vehicle mass and road gradient. Based on the vehicle’s historical state data information, the predictive model is trained offline using a long–short-term memory (LSTM) network to obtain predicted parameter identification results, which are then used to
Geng, XiaohuLiu, WeidongLei, YulongFu, YaoXue, Maohan
Decarbonization and a continuous reduction in exhaust emissions from combustion engines are key objectives in the further development of modern powertrains. In order to address both aspects, the DE4LoRa research project is developing an innovative hybrid powertrain that is characterized by the highly flexible combination of two electric motors with a monovalent compressed natural gas (CNG) engine. This approach enables highly efficient driving in purely electric, parallel and serial operating modes. The use of synthetic CNG alone leads to a significant reduction in CO2 emissions and thus in the climate impact of the drivetrain. With CNG-powered engines in particular, however, methane and other tailpipe emissions of climate gases and pollutants must also be minimized. This is possible in particular through efficient exhaust gas aftertreatment and an effective operating strategy of the powertrain. This publication presents measurement results that examine the critical aspect of cold
Noone, PatrickHerold, TimBeidl, Christian
An Integrated Starter Generator (ISG) was integrated between an opposed piston two stroke engine and a 32 speed binary shift transmission for use in the Advanced Powertrain Demonstrator (APD). The initial design of the ISG integration and accompanying frequency domain torsional vibration analysis was performed considering driveline characteristics within the normal operating speed range of the engine. After a short period of time, the ISG suffered a catastrophic failure. The root cause of this failure is analyzed with special attention to the torsional behavior of the system. Multiple methods are employed to assess the torsional behavior including time domain torsional analysis. The time domain torsional analysis revealed that a significant number of torsional vibration cycles were occurring outside of the normal operating range of the engine as the engine accelerated from engine cranking speed to engine idle speed. The cycle accumulation during these short excursions through resonance
Srodawa, John
The aerospace industry heavily relies on NASGRO as a standard method for crack propagation analysis, despite encountering challenges due to variations in stress gradients across flight missions. In response to this issue, this paper introduces a pioneering methodology that integrates stress gradients at each time point throughout a mission, computed cycle by cycle using NASGRO. The study meticulously evaluates the feasibility and efficacy of this approach against established industry-standard procedures, focusing on the critical topic of low cycle fatigue (LCF) and underscoring the significance of damage-tolerant design principles. The methodology encompasses the design of an H-sector in Ansys Workbench, the execution of stress analysis for a typical flight mission profile, and the systematic extraction of stress gradients for each cycle at the pivotal crack nucleation point. Subsequently, NASGRO is employed to estimate life cycles using both industry-standard baseline methodologies
Karandikar, Rishi SuhasKumar, Niraj
In pursuing sustainable automotive technologies, exploring alternative fuels for hybrid vehicles is crucial in reducing environmental impact and aligning with global carbon emission reduction goals. This work compares methanol and naphtha as potential suitable alternative fuels for running in a battery-driven light-duty hybrid vehicle by comparing their performance with the diesel baseline engine. This work employs a 0-D vehicle simulation model within the GT-Power suite to replicate vehicle dynamics under the Worldwide Harmonized Light Vehicles Test Cycle (WLTC). The vehicle choice enables the assessment of a delivery application scenario using distinct cargo capacities: 0%, 50%, and 100%. The model is fed with engine maps derived from previous experimental work conducted in the same engine, in which a full calibration was obtained that ensures the engine's operability in a wide region of rotational speed and loads. The calibration suggested that the engine could operate in a selected
Iñiguez, ErasmoMarco-Gimeno, JavierMonsalve-Serrano, JavierGarcia, Antonio
The concern with global warming has led to the creation of legislation aimed at minimizing this phenomenon. As a result, the development of technologies to minimize vehicle emissions and reduce fuel consumption has gained market share. A promising alternative is the use of a belt starter generator (BSG): an electric machine to replace the vehicle’s alternator. This research analyzes the effects of introducing a 12 V BSG into a flex-fuel vehicle, specifically examining its impact on fuel economy and CO2 emissions when using both gasoline and ethanol. The utilization of a low-voltage BSG in a flex-fuel vehicle has not been previously studied. Numerical simulations and experimental fuel consumption and CO2 emissions tests were performed for the normal production flex-fuel baseline configuration and the vehicle with the 12 V BSG, following the standards ABNT NBR 6601 and ABNT NBR 7024. The use of the BSG led to a 10.06% reduction in CO2 emission in the urban cycle for the vehicle running
Lins, AliceHanriot, SergioSales, Luis Carlos Monteiro
Measurements of air–fuel ratio (AFR) and λ (AFRactual/AFRstoich) are crucial for understanding internal combustion engine (ICE) performance. However, current λ sensors suffer from long light-off times (on the order of seconds following a cold start) and limited time resolution. In this study, a four-color mid-infrared laser absorption spectroscopy (LAS) sensor was developed to provide 5 kHz measurements of temperature, CO, CO2, and NO in engine-out exhaust. This LAS sensor was then combined with 1 kHz hydrocarbon (HC) measurements from a flame ionization detector (FID), and the Spindt exhaust gas analysis method to provide 1 kHz measurements of λ. To the authors’ knowledge, this is the first time-resolved measurement of λ during engine cold starts using the full Spindt method. Three tests with various engine AFR calibrations were conducted and analyzed: (1) 10% lean, (2) stoichiometric, and (3) 10% rich. The measurements were acquired in the exhaust of a light-duty truck with an 8
Stiborek, Joshua W.Kempema, Nathan J.Schwartz, Charles J.Szente, Joseph J.Loos, Michael J.Goldenstein, Christopher S.
As global regulations on automotive tailpipe emissions become increasingly stringent, developing precise tailpipe emissions models has garnered significant attention to fulfill onboard monitoring requirements without some drawbacks associated with traditional sensor-based systems. Within the European Union, there is consideration of mandating real-time measurement of emission constituents to enable driver warnings in cases where constituent standards are exceeded. Presently, available technology renders this approach cost-prohibitive and technologically challenging, with most sensor suppliers either unable to meet the demand or unwilling to justify the development costs associated with sensor commercialization. Efforts to circumvent the sensor-based approach through first principle models, incorporating thermokinetics, have proven to be both computationally expensive and lacking in accuracy during transient operations. We propose a data-driven solution based on DL (deep learning) to
Hashemi, AshtonSchlingmann, Dean
Driver’s license examinations require the driver to perform either a parallel parking or a similar maneuver as part of the on-road evaluation of the driver’s skills. Self-driving vehicles that are allowed to operate on public roads without a driver should also be able to perform such tasks successfully. With this motivation, the S-shaped maneuverability test of the Ohio driver’s license examination is chosen here for automatic execution by a self-driving vehicle with drive-by-wire capability and longitudinal and lateral controls. The Ohio maneuverability test requires the driver to start within an area enclosed by four pylons and the driver is asked to go to the left of the fifth pylon directly in front of the vehicle in a smooth and continuous manner while ending in a parallel direction to the initial one. The driver is then asked to go backwards to the starting location of the vehicle without stopping the vehicle or hitting the pylons. As a self-driving vehicle should do a much
Cao, XinchengGuvenc, Levent
Due to the objectives of achieving high fuel efficiency and drivability performance, a dual-drive hybrid system with two motors has been developed. Various drive modes are presented based on engine status, requested driver torque and power, as well as C0 status in different working conditions. The transition control of drive mode change poses a unique challenge for the dual-drive hybrid system. This study discusses the control strategies for transitioning between drive modes. The first type of transition mode is divided into four distinct phases. In the second mode transition, there are three phases: the synchronization phase involving P1 torque intervention, the C0 lock-up phase involving frozen P1 torque control and adjustment of C0 clutch torque and pressure correlation, and finally, the torque exchange phase. The third type of transition includes a dedicated torque transition phase followed by a C0 disengaged phase and concluding with a speed synchronization phase. Lastly, in the
Jing, JunchaoZhang, JunzhiLiu, YiqiangHuang, WeishanXing, Yanhong
It is widely recognized that internal combustion engines (ICE) are needed for transport worldwide for years to come, however, demands on ICE fuel efficiency, emissions, cost, and performance are extremely challenging. Gasoline compression ignition (GCI) is one approach to achieve demanding efficiency and emissions targets. At Aramco Research Center-Detroit, an advanced, multi-cylinder GCI engine was designed and built using the latest combustion system, engine controls, and lean aftertreatment. The combustion system uses Aramco’s PPCI-diffusion process for ultra-low NOx and smoke. A P2 48V mild hybrid system was integrated on the engine for braking energy recovery and improved cold starts. For robust low-load operation, a 2-step valvetrain system was used for exhaust rebreathing. Test data showed that part-load fuel consumption was reduced 7 to 10 percent relative to a competitive 2.0L European diesel engine. The GCI engine produced “near-zero” tailpipe emissions of NOx, smoke, HC, and
Sellnau, MarkWhitney, ChristopherShah, AshishSari, RafaelKlemm, WilliamCleary, David
The proposed Euro-7 regulations are expected to build on the significant emissions reductions that have already been achieved using advanced Euro VI compliant after treatment systems (ATS). The introduction of in-service conformity (ISC) requirements during Euro VI paved the way for enabling compliance during real-world driving conditions. The diverse range of applications and resulting operating conditions greatly impact ATS design and the ability of the diesel particulate filter (DPF) to maintain performance under the most challenging boundary conditions including cold starts, partial/complete regenerations, and high passive soot burn operation. The current study attempts to map the particle number (PN) filtration performance of different DPF technologies under a variety of in-use cycles developed based on field-data from heavy duty Class-8 / N3 vehicles. Access to such performance maps can allow original equipment manufacturers (OEMs) to select DPF technologies to suit different
Viswanathan, SandeepSadek, GhadiReddy, VishalHe, SuhaoAlam, Rabeka
Recently, as part of the effort to enhance fuel efficiency and reduce costs for eco-friendly vehicles, the R-gearless system has been implemented in the TMED (P)HEV system. Due to the removal of the reverse gear, a distinct backward driving method needs to be developed, allowing the Electronic Motor (e-Motor) system to facilitate backward movement in the TMED (P)HEV system. However, the capability of backward driving with the e-Motor is limited because of partial failure in the high-voltage system of an R-gearless system. Thus, we demonstrate that it is possible to improve backward driving problems by applying a new fail-safe strategy. In the event of a high-voltage battery system failure, backward driving can be achieved using the e-Motor with constant voltage control by the Hybrid Starter Generator (HSG), as proposed in this study. The introduction of feed-forward compensation for variable constant voltage control allows for the securement of more active output power within the
Rho, JeongwonPark, ChilseongKim, TaejinKim, YonghyunHong, Eui SunPark, Daero
The need for even more efficient internal combustion engines in the road transportation sector is a mandatory step to reduce the related CO2 emissions. In fact, this sector impacts significantly on greenhouse gases worldwide, and the path toward hybrid and electric powertrains has just begun. In particular, in heavy-duty vehicles the full electrification of the powertrain is far to be considered as a really feasible alternative. So, internal combustion engines will still play a significant role in the near/medium future. Hence, technologies having a low cost to benefits (CO2 reduction) ratio will be favorably introduced in existing engines. Thermal management of engines is today a recognized area of research. Inside this area, the interest toward the lubricant oil has a great potential but not yet fully exploited. Engine oil is responsible of the mechanical efficiency of the engine which has a significant potential of improvement. A faster warm-up during a daily urban trip when the
Di Giovine, GiammarcoDi Battista, DavideCipollone, Roberto
The growing demand to lower greenhouse gas emissions and transition from fossil fuels, has put methanol in the spotlight. Methanol can be produced from renewable sources and has the property of burning almost soot-free in compression ignition (CI) engines. Consequently, there has been a notable increase in research and development activities directed towards exploring methanol as a viable substitute for diesel fuel in CI engines. The challenge with methanol lies in the fact that it is difficult to ignite through compression alone, particularly in low-load and cold start conditions. This difficulty arises from methanol's high octane number, relatively low heating value, and high heat of vaporization, collectively demanding a considerable amount of heat for methanol to ignite through compression. Previous studies have addressed the use of a pilot injection in conjunction with a larger main injection to lower the required intake air temperature for methanol to combust at low loads. While
Svensson, MagnusTuner, MartinVerhelst, Sebastian
The increasing need to reduce greenhouse gas emissions and shift away from fossil fuels has raised an interest for methanol. Methanol can be produced from renewable sources and can drastically lower soot emissions from compression ignition engines (CI). As a result, research and development efforts have intensified focusing on the use of methanol as a replacement for diesel in CI engines. The issue with methanol lies in the fact that methanol is challenging to ignite through compression alone, particularly at low-load and cold starts conditions. This challenge arises from methanol's high octane number, low heating value, and high heat of vaporization, all of which collectively demand a substantial amount of heat for methanol to ignite through compression. One successful project using methanol is the Fastwater project, where a diesel engine was converted to run on methanol, with 3% ignition improver, and installed in the pilot boat Pilot 120SE, that is running in real world conditions
Svensson, MagnusTuner, MartinVerhelst, Sebastian
The problem of keeping the stable starting performance of diesel engine under high altitude and low temperature conditions has been done a lot of research in the field of diesel engine, but there is a lack of research on extreme conditions such as above 2000 meters above sea level and below 0°C. Aiming at solving the cold start problem of diesel engine in extreme environment, a set of chamber system of cold start environment diesel engine was constructed to simulate environment of 3000m altitude and -20°C. A series of experimental research was conducted on cold start efficiency optimization strategy of a certain type of diesel engine at 3000m altitude and -20°C. In parallel, a diesel engine model was constructed through Chemkin to explore the influence of the three parameters of compression ratio, stroke length, and fuel injection advance angle on the first cold start cycle of diesel engine at 4000m altitude and -20°C. The simulation results show that in altitude 4000m and -20°C
Fang, LiangChen, BoyuLou, DimingXu, KaiwenTan, PiqiangHu, ZhiyuanZhang, YunhuaZhen, Lei
In this paper, we present a novel algorithm designed to accurately trigger the engine coolant flow at the optimal moment, thereby safeguarding gas-engines from catastrophic failures such as engine boil. To achieve this objective, we derive models for crucial temperatures within a gas-engine, including the engine combustion wall temperature, engine coolant-out temperature, engine block temperature, and engine oil temperature. To overcome the challenge of measuring hard-to-measure signals such as engine combustion gas temperature, we propose the use of new intermediate parameters. Our approach utilizes a lumped parameter concept with a mean-value approach, enabling precise temperature prediction and rapid simulation. The proposed engine thermal model is capable of estimating temperatures under various conditions, including steady-state or transient engine performance, without the need for extra sensors. Moreover, it exhibits greater robustness compared to temperature estimation systems
Chang, InsuSun, MinEdwards, David
The recommended practice describes a design standard that defines the maximum recommended voltage drop of the starting motor main circuits, as well as control system circuits, for 12/24-V starter systems. The battery technologies used in developing this document include the flooded lead acid, gel cell, and AGM. Starting systems supported by NiCd, Lithium Ion, NiZn, etc., or Ultracaps are not included in this document. This document is not intended to be updated or modified to include starter motors rated at voltages above the nominal 24-V electrical system. The starter is basically an electrical-to-mechanical power converter. If you double the available battery power in, you double the peak mechanical power out and double the heat losses. This means that we have to pay special attention to how battery power changes when we change the battery voltage and the effects it may have in overpowering the cranking system. A new stand-alone document would need to be developed to address
null, null
Heavy-duty on-road engines are expected to conform to an ultralow NOx (ULNOx) standard of 0.027 g/kWh over the composite US heavy-duty transient federal test procedure (HD-FTP) cycle by 2031, a 90% reduction compared to 2010 emissions standards. Additionally, these engines are expected to conform to Phase 2 greenhouse gas regulations, which require tailpipe CO2 emissions under 579 g/kWh. This study experimentally demonstrates the ability of high fuel stratification gasoline compression ignition (HFS-GCI) to satisfy these emissions standards. Steady-state and transient tests are conducted on a prototype multi-cylinder heavy-duty GCI engine based on a 2010-compliant Cummins ISX15 diesel engine with a urea-SCR aftertreatment system (ATS). Steady-state calibration exercises are undertaken to develop highly fuel-efficient GCI calibration maps at both cold-start and warmed up conditions. A P1 hybrid architecture is proposed to enable the use of an integrated starter generator (ISG) capable
Viswanathan, Aravindh BabuMerritt, BrockSommers, StevenKumar, PraveenZhang, Yu
Automobiles are incorporated with advanced technologies to improve riding experience, safety, and vehicle management. Considering riding experience, major concern prevails in starting and charging system. For quick start and stop, implemented Integrated Starter Generator (ISG) in two wheelers. The ISG system consists of an ISG machine and ISG controller. ISG machine acts as motor during cranking and generator during charging, controlled by ISG controller. Automation kit is made with the help of real sensors, actuators, and microcontroller to monitor and log the performance characteristics of ISG system during te sting in rig level. Sensors continuously monitor the performance parameters and once the parameters are not meeting the specification, actuators stop the testing and raise the indication. All tested data are stored in cloud and taken for analysis. This automation kit served two purposes. One is eliminated test running on the failure sample for full long testing duration. Second
K, VishaliPatil, PratikKumaran, Adm V
Items per page:
1 – 50 of 3058