Browse Topic: Control systems

Items (5,586)
This article provides a comprehensive review of existing literature on AI-based functions and verification methods within vehicular systems. Initially, the introduction of these AI-based functions in these systems is outlined. Subsequently, the focus shifts to synthetic environments and their pivotal role in the verification process of AI-based vehicle functions. The algorithms used within the AI-based functions focus primarily on the paradigm of deep learning. We investigate the constituent components of these synthetic environments and the intricate relationships with vehicle systems in the verification and validation domain of the system. In the following, alternative approaches are discussed, serving as complementary methods for verification without direct involvement in synthetic environment development. These approaches include data-oriented methodologies employing statistical techniques and AI-centric strategies focusing solely on the core deep learning algorithm
Aslandere, TurgayDurak, Umut
Due to manufacturing, assembly, and actuator wear, slight deviations between the actual and logical positions of various gears in a transmission system may accumulate, affecting shift quality, reducing shift accuracy, and causing operational anomalies. To address this issue, a self-learning method based on the top dead center (TDC) and lower dead center (LDC) was proposed, specifically for the hybrid gearbox of an electric torque converter (eTC) module and a double-input shaft gearbox (DIG). The linear active disturbance rejection control (LADRC) method was employed to estimate and manage the nonlinear resistance during the motion of the shifting motor. To simplify the controller parameter problem, the nutcracker optimization algorithm (NOA) was utilized to tune the LADRC parameters, thereby optimizing the position self-learning process. The control strategy was modeled using MATLAB/SIMULINK, and its reasonableness was verified through hardware-in-the-loop (HIL) tests. Based on these
Hong, HanchiQuan, Kangningd’Apolito, LuigiXu, Li
Accurate and responsive trajectory tracking is a critical challenge in intelligent vehicle control system. To improve the adaptability and real-time performance of intelligent vehicle trajectory tracking controllers, we propose a genetic algorithm adaptive preview (GAAP) scheme that offline optimizes the preview distance based on vehicle speed and reference path curvature. The goal is to obtain the optimal preview distance that balances tracking accuracy, stability, and real-time performance. By establishing a relationship between optimal preview distance, speed, and curvature, we enhance real-time performance through online table checking during trajectory tracking. Our trajectory tracking error model takes into account not only position errors but also heading errors. A feedback–feedforward trajectory tracking controller is then designed to achieve rapid responses without compromising robustness. Simulation tests conducted under straight circular arc condition and double lane change
Cheng, KehanZhang, HuanhuanHu, ShengliNing, Qianjia
This paper aims to describe a quarter-car suspension test bench automation process to be utilized in an academic environment. The project is made up of pneumatic system modeling and control system design. An analysis of the bench’s pneumatic system is carried out. This pneumatic system is composed of a pneumatic actuator and a proportional directional control valve, which are responsible for generating the road profile. It is proposed a model to compensate the non-linearities present in the pneumatic system measurement process and the disturbances caused by the under test suspension system, as well as a control strategy for small displacements of the load through linear control approaches, which provide the necessary flexibility to directly influence the parameters affecting the dynamics of the excitation system platform’s displacement, thereby reducing the complexity of the controller design to be adopted. Furthermore, analyses are conducted on the effectiveness of the control in
Siqueira, Matheus AmaralGomes, Pedro CarvalhoTeixeira, Evandro Leonardo SilvaFortaleza, Eugênio Libório FeitosaMorais, Marcus Vinicius Girão
The advancement of the automotive industry towards automation has fostered a growing integration between this field and automation. Future projects aim for the complete automation of the act of driving, enabling the vehicle to operate independently after the driver inputs the desired destination. In this context, the use of simulation systems becomes essential for the development and testing of control systems. This work proposes the control of an autonomous vehicle through fuzzy logic. Fuzzy logic allows for the development of sophisticated control systems in simple, easily maintainable, and low-cost controllers, proving particularly useful when the mathematical model is subject to uncertainties. To achieve this goal, the PDCA method was adopted to guide the stages of defining the problem, implementation, and evaluation of the proposed model. The code implementation was done in Python and validated using different looping scenarios. Three linguistic variables were used, one with three
Branco, César Tadeu Nasser MedeirosSantos, Rafael Celestino
This research addresses the pivotal role of active anti-roll bars in mitigating vehicle body roll during cornering, thereby enhancing overall stability, maneuverability, and comfort. The proposed approach integrates two distinct control methodologies—a straightforward error proportional controller and a reinforcement learning (RL)-based controller. Each front and rear active anti-roll bar applies a roll-reducing torque computed by the proportional controller during cornering. However, this torque alone proves insufficient in effectively damping roll oscillations induced by road irregularities. The RL-based controller leverages observations encompassing inertial measurement unit data (roll rate, pitch rate, and vertical acceleration), and wheel vertical displacements and employs the roll as a reward signal. This controller calculates two additional corrective torques. These torques are seamlessly incorporated by both front and rear anti-roll bars alongside the proportional controller
Marotta, RaffaeleStrano, SalvatoreTerzo, MarioTordela , Ciro
This SAE Aerospace Recommended Practice (ARP) provides an algorithm aimed to analyze flight control surface actuator movements with the objective to generate duty cycle data applicable to hydraulic actuator dynamic seals
A-6A3 Flight Control and Vehicle Management Systems Cmt
With the technology of electronic chassis control systems of automobile is widely used, the functional interaction between brake system and the other electronic systems may lead to brake boost degradation. Therefore, it is necessary to find out brake boost degradation events in the quite large number of driving scenarios. To solve the difficulty of thoroughly and quickly searching for brake boost degradation conditions in the large number of driving scenarios, based on Mechatronic-Hardware-In-the-Loop (M-HIL) technology, this paper constructs an electrical chassis system M-HIL bench to verify the function and performance of the electronic brake control system under actual chassis system conditions. To search and locate the brake boost degradation conditions rapidly and enhance the searching efficiency of levels boundary of affecting factors for brake boost degradation, firstly, based on pair-wise coverage combinatorial testing, brake boost degradation occurrence rate is estimated and
Guo, XiaotongLi, LunChen, ZhichengZhang, LiliangYan, LupingWang, WeiZh, Bing
The traditional braking system has been unable to meet the redundant safety requirements of the intelligent vehicle for the braking system. At the same time, under the change of electrification and intelligence, the braking system needs to have the functions of braking boost, braking energy recovery, braking redundancy and so on. Therefore, it is necessary to study the redundant braking boost control of the integrated electro-hydraulic braking system. Based on the brake boost failure problem of the integrated electro-hydraulic brake system, this paper proposes a redundant brake boost control strategy based on the Integrated Brake Control system plus the Redundant Brake Unit configuration, which mainly includes fault diagnosis of Integrated Brake Control brake boost failure, recognition of driver braking intention based on pedal force, pressure control strategy of Integrated Brake Control brake boost and pressure control strategy of Redundant Brake Unit brake boost. The designed control
Dexing, LaoLuping, YanQinghai, SuiLong, CaoShang, GaoZhigang, ChenMingxing, RenZhicheng, Chen
As the automotive industry progresses towards electrification, driven by need for sustainability and reduced emissions, the traction inverter emerges as pivotal component of electric vehicles (EVs). Serving as the interface between the vehicle’s control systems, motor and battery. The traction inverter’s performance directly impacts the efficiency, sustainability and overall functionality of electric drive systems. A critical function of the traction inverter is measurement of phase currents in each motor phase, enabling precise control of the motor’s torque and rational speed. This capability is essential for optimizing efficiency, enhancing performance and ensuring safety key aspects of modern electric vehicle technology. This paper introduces method for measuring phase currents in Permanent Magnet Synchronous Motors (PMSM) utilizing the Enhanced Versitile Analog-Digital-Converter (EVADC) integrated within Infineon’s Aurix Tricore. This technology preferred for its rapid conversion
Birari, Ashwini Anil
On-Board-Diagnostics (OBD) are crucial for ensuring the proper functioning of Engine’s emission control system by continuously monitoring various sensors and components. When the failure is detected, the Check Engine Light is triggered on Vehicle’s dashboard, alerting the driver to seek professional service to address the issue. However, the task of developing the monitoring strategies and performing robust calibration is challenging and time consuming. Model in loop (MIL) Simulation and testing is a technique used to understand and estimate the behavior of a system or sub system. The diagnostics model can be tested and refined within the model-based environment allowing a complex system to be efficiently regulated. MIL framework could be explored at various stages of development from early in the design phase to later stages of series developments through vehicle fleet data. This framework allows early identification and correction of errors and bugs in a standalone dependent
Kumar, AmitHegde, KarthikChalla, KrishnaH, YASHWANTH
This paper presents a comprehensive implementation of various Conduit frameworks designed to manage the hygiene of Simulink models in control systems and enhance them to meet industry standards such as MAB, MISRA, Polyspace, and CERT. The core challenge addressed is the minimization of repetitive work and the elimination of cognitive workload. Beginners often struggle to create Simulink models that adhere to industry standards, and keeping track of all the standards can be challenging. Given the complexity and size of these models, manual processing is time-consuming. Our Conduit frameworks help enhance their models for adherence to those standards, improving efficiency by up to 95% and utilizing machine intelligence to process large amounts of code efficiently. The Conduit frameworks also automate non value added (NVA) activities, including updates in properties of variables, checking for unwanted data types that develop during internal calculations of Simulink blocks, and variable
Agrawal, VipulTE, HarikrishnaN, PrajithaKumar, KosalaramanVenkat, HarishShaji, Anish
As vehicle emission standards are becoming stringent worldwide because of the looming climate crisis, it is important to control the pollutants that vehicles emit. To achieve the stringent emission target, it has become a priority to enhance the capability of Emission Control System (ECS) which consist of Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF) and Selective Catalytic Reduction (SCR) sub-systems. One of the bottlenecks is the limited operating temperature range of the after-treatment system. In modern emission control systems, the temperature characteristics should always be optimized to have the best efficiency involving chemical conversions. To achieve this optimal operating temperature, different thermal control strategies are followed in the Engine and emission control unit. Temperature sensor values are one of the primary inputs for thermal management strategies. In the event of temperature sensor malfunction, the ECS performance is affected due to
Kumar, AmitV H, YashwanthKumar, RamanHegde, KarthikManojdharan, Arjungopal
In the present times it is the responsibility of the vehicle manufacturer to reduce and monitor the emissions that their vehicle is emitting into the environment. One such vehicle emission which is very harmful for the environment is Nitrogen Oxides (NOx). All internal combustion engine operated vehicles will have NOx sensor in them to monitor the NOx getting generated by the engine. The information from this sensor is crucial in order to take the correct action by the vehicle emission control system to treat NOx before releasing it to the environment. Hence it is very important to detect the failure in NOx sensors. This paper addresses the challenges in identifying NOx sensor failures, specifically concerning complex and time-consuming diagnostic methods that require dosing of fuel for testing. The conventional approach involves NOx sensor rationality checks, heating catalysts, and comparing engine outlet NOx and vehicle outlet NOx sensor values. To overcome these limitations, this
Ramesh, Prashanth MysoreVelichappattil, Anvar Hussain
ABSTRACT This paper describes work to develop a hands-free, heads-up control system for Unmanned Ground Vehicles (UGVs) under an SBIR Phase I contract. Industry is building upon pioneering work that it has done in creating a speech recognition system that works well in noisy environments, by developing a robust key word spotting algorithm enabling UGV Operators to give speech commands to the UGV completely hands-free. Industry will also research and develop two sub-vocal control modes: whisper speech and teeth clicks. Industry is also developing a system that will enable the Operator to drive a UGV, with a high level of fidelity, to a location selected by the Operator using hands-free commands in conjunction with image segmentation and video overlays. This Phase I effort will culminate in a proof-of-concept demonstration of a hands-free, heads-up system, implemented on a small UGV, that will enable the Operator have a high level of fidelity for control of the system
Brown, JonathanGray, Jeremy P.Blanco, ChrisJuneja, AmitAlberts, JoelReinerman, Lauren
ABSTRACT Can convolutional neural networks (CNNs) recognize gestures from a camera for robotic control? We examine this question using a small set of vehicle control gestures (move forward, grab control, no gesture, release control, stop, turn left, and turn right). Deep learning methods typically require large amounts of training data. For image recognition, the ImageNet data set is a widely used data set that consists of millions of labeled images. We do not expect to be able to collect a similar volume of training data for vehicle control gestures. Our method applies transfer learning to initialize the weights of the convolutional layers of the CNN to values obtained through training on the ImageNet data set. The fully connected layers of our network are then trained on a smaller set of gesture data that we collected and labeled. Our data set consists of about 50,000 images recorded at ten frames per second, collected and labeled in less than 15 man-hours. Images contain multiple
Kawatsu, ChrisKoss, FrankGillies, AndyZhao, AaronCrossman, JacobPurman, BenStone, DaveDahn, Dawn
ABSTRACT There is a need to better understand how operators and autonomous vehicle control systems can work together in order to provide the best-case scenario for utilization of autonomous capabilities in military missions to reduce crew sizes and thus reduce labor costs. The goal of this research is to determine how different levels of autonomous capabilities in vehicles affect the operator’s situational awareness, cognitive load, and ability to respond to road events while also responding to other auditory and visual tasks. Understanding these interactions is a crucial step to eventually determining the best way to allocate tasks to crew members in missions where crew size has been reduced due to the utilization of autonomous vehicles. Citation: J. E. Cossitt, C. R. Hudson, D. W. Carruth, C. L. Bethel, “Dynamic Task Allocation and Understanding of Situation Awareness Under Different Levels of Autonomy in Closed-Hatch Military Vehicles”, In Proceedings of the Ground Vehicle Systems
Cossitt, Jessie E.Hudson, Christopher R.Carruth, Daniel W.Bethel, Cindy L.
Abstract This paper presents a fault-tolerant powertrain topology for series hybrid electric vehicles (SHEVs). The introduction of a redundant phase leg that is shared by three converters in a standard SHEV drive system allows to maximize the reliability improvement with minimal part-count increase. The new topology features fast response in fault detection and isolation, and post-fault operation at rated power throughput. The operating principle, control strategy, and fault diagnostic methods are elaborated. The substantially improved reliability over the standard topology is verified by the Markov reliability model. Time-domain simulation based on a Saber model has been conducted and the results have verified the feasibility and performance of the proposed SHEV drive system with fault-tolerant capability. The experimental results from a prototype have further validated the robust fault detection scheme and excellent post-fault performance
Song, YantaoWang, Bingsen
ABSTRACT Latencies as small as 170 msec significantly degrade ground vehicle teleoperation performance and latencies greater than a second usually lead to a “move and wait” style of control. TORIS (Teleoperation Of Robots Improvement System) mitigates the effects of latency by providing the operator with a predictive display showing a synthetic latency-corrected view of the robot’s relationship to the local environment and control primitives that remove the operator from the high-frequency parts of the robot control loops. TORIS uses operator joystick inputs to specify relative robot orientations and forward travel distances rather than rotational and translational velocities, with control loops on the robot making the robot achieve the commanded sequence of poses. Because teleoperated ground vehicles vary in sensor suite and on-board computation, TORIS supports multiple predictive display methods. Future work includes providing obstacle detection and avoidance capabilities to support
Kluge, Karl C.Lacaze, AlbertoCelle, Zach LaLegowik, SteveMurphy, KarlThomson, Rob
ABSTRACT A simulation capable of modeling grid-tied electrical systems, vehicle-to-grid (V2G) and vehicle-to-vehicle(V2V) resource sharing was developed within the MATLAB/Simulink environment. Using the steady state admittance matrix approach, the unknown currents and voltages within the network are determined at each time step. This eliminates the need for states associated with the distributed system. Each vehicle has two dynamic states: (1) stored energy and (2) fuel consumed while the generators have only a single fuel consumed state. One of its potential uses is to assess the sensitivity of fuel consumption with respect to the control system parameters used to maintain a vehicle-centric bus voltage under dynamic loading conditions
Jane, Robert S.Parker, Gordon G.Weaver, Wayne W.Goldsmith, Steven Y.
ABSTRACT Digital Image Correlation (DIC) technology developed for off-road vehicle dynamics at the University of Pretoria, South Africa, was recently assessed for all-season and all-terrain viability through a Foreign Technology Assessment Support (FTAS) program at the US Army Engineer Research and Development Center-Cold Regions Research and Engineering Laboratory (ERDC-CRREL) in Hanover, New Hampshire (NH). Advancements in camera technology have brought on the proliferation of inexpensive, high resolution and high frame-rate cameras. At the same time the increase in computational power of computers has allowed algorithms to determine the depth of a scene and enable the near real-time tracking of features on an image. These advancements have enabled the application of DIC to measure surface and velocity profiles as well as deformation from a reference state (for terrain or for tires). In large off-road vehicle dynamics DIC can be used to improve maneuverability of vehicles by
Shoop, S.Sopher, A.Stanley, J.Botha, T.Becker, C.Ells, S.
ABSTRACT For GDLS as an OEM in the defense industry working primarily as a system integrator, it is mission critical to develop a platform to weight/gauge/tradeoff requirements of various sub-systems in the final system product. Knowing sub-system performances in the final system on a physics bases, enables the system integrator more active roles in product R&D for requirement tradeoffs and price tag controls, instead of being passively driven solely by suppliers’ perspectives. Designing a light weight system while maintaining their mission profile, can lead to the use of more flexible structures thereby imposing additional dynamics affecting the integration of weapon systems into the vehicle structure. Added to this, the dynamics of electromechanical actuators, mechanical tolerances and discrete controllers, creates an environment, each of which is defined by its characteristic physics. This paper discusses a multi-physics approach used different brand named solvers best for different
D’Onofrio, DavidKuang, Zhian
Items per page:
1 – 50 of 5586