Browse Topic: Control systems

Items (5,629)
With the rapid adoption of electric vehicles (EVs), ensuring the reliability, safety, and cost-effectiveness of power electronic subsystems such as onboard chargers, DC-DC converters, and vehicle control units (VCUs) has become a critical engineering focus. These components require thorough validation using precise calibration and communication protocols. This paper presents the development and implementation of an optimized software stack for the Universal Measurement and Calibration Protocol (XCP), aimed at real-time validation of VCUs using next-generation communication methods such as CAN, CAN-FD, and Ethernet. The stack facilitates read/write access to the ECU’s internal memory in runtime, enabling efficient diagnostics, calibration, and parameter tuning without hardware modifications. It is designed to be modular, platform-independent, and compatible with microcontrollers across different EV platforms. By utilizing the ASAM-compliant protocol architecture, the proposed system
Uthaman, Sreekumar
Sunroof-equipped vehicles are gaining rapid popularity in India, especially among young and urban users. However, unsafe practices like occupants protruding through the sunroof during driving have led to increasing injuries and fatalities, particularly in sudden braking or collisions. This behavior, prohibited under the Motor Vehicles Act, remains an overlooked safety risk in today’s vehicles. This paper presents an industry-first innovation: an Automated Safety Alarm and Speed Control System designed to detect and prevent sunroof misuse. Using integrated photoelectric and infrared beam sensors, the system detects human extension beyond the sunroof boundary while the vehicle is in motion. Upon detection, it triggers a tiered safety response: an immediate dashboard warning, an audible alert if vehicle speed exceeds 15 km/h and an active speed limiter that restricts vehicle speed to 20 km/h until safe conditions are restored. This marks a shift from passive warnings to active vehicle
Padmanapan, GopiYadav, Sanjeev
The explosive growth of electric vehicles (EVs) calls forth the need for smart battery management systems that can perform health monitoring and predictive diagnostics in real-time. The conventional battery modelling methods mostly do not cover the complicated, dynamic behaviors coming from different usage patterns. The study outlines a structure that would use Reinforcement Learning (RL)-based AI agent as a part of the Battery Electrical Analogy (BEA) simulation platform. With the help of the AI agent, different health parameters such as State of Health (SOH), State of Charge (SOC), and the signs of early thermal runaway can be predicted in real-time. The suggested design takes advantage of the simulation-based approach to have the agent learn and utilizes a decentralized cloud architecture suitable for scaling and reducing the response time. The RL agent performs an essential role in the process by tagging along with the continuous learning and the adjustment of the battery
Pardeshi, Rutuja RahulKondhare, ManishSasi Kiran, Talabhaktula
In order to control the engine performance which is driven by the strict emission regulations and customer request for the improved fuel economy, precise air intake measurement and fuel control system are essential. In the modern engines, the mass air flow sensor (MAF) acts an important role which provides a precise estimation of air flow from the clean side ducting of air intake system to engine control unit module (ECU). The hot wire mass air flow sensor are mounted on the clean side of the air intake system in order to protect the sensing element from the contamination and to extend their lifespan as well as maintain its accuracy. It is essential to maintain a steady and a uniform airflow at the sensing element of the MAF sensor for reliable sensor reading at different engine speeds and varying engine load. However, the physical limitations of engine packaging inside the engine bay, limits the sensor placement. Incorrect sensor mounting can lead to errors in the airflow estimation
Sonone, Sagar DineshZope, MaheshKale, VishalPadmawar, HarshadSridhar, SKolhe, Vivek MPanwar, Anupam
In high-performance charging systems, managing higher currents is crucial for efficient battery charging. Elevated battery temperature is the main challenge for limiting the duration and effectiveness of high-current charging. Our proposal of control system addresses these barriers by optimizing charging time by maintaining optimal temperature ranges for the battery. This is achieved through innovative preconditioning solutions that are incorporated with active Battery cooling configurations. Our system features a unique preconditioning approach with dedicated active cooling circuit for the battery which will provide cooling to battery even though cabin HVAC (Heat Ventilation & Air-conditioning unit) is switched off. The active liquid cooling system ensures effective temperature management without additional energy consumption, while the dedicated Battery active liquid cooling system provides enhanced cooling capabilities for more demanding scenarios and preconditioning. By integrating
Badgujar, Pankaj RavindraBhosale, SubhashDave, Rajeev
One of agricultural tractors most important aspects is operator comfort. In addition to working long hours, tractor operators may be at risk for health problems due to vibrations and mechanical shocks. The tactile vibrations of a tractor are a major consideration when choosing one for agricultural use. This project's mandate includes a study of tractor vibration control problems. It is essential to investigate the governing system in order to determine the cause of the problem. Evaluating the vibrations transmitted via the tractor and using the design of experiments (DOE) approach to lessen vibrations on particular tactile regions were the study's goals. There are several measures currently under investigation which can be used to reduce the vibrations caused by resonance in this paper, these include reducing the natural frequency so as to be able to avoid resonance with the second order engine frequency and the damping coefficient; this will ensure the amplitude of vibration at
Baviskar, Shreyasdhobale, VishwajeetBhangare, AmitKunde, SagarWagh, Sachin
Thermal comfort is increasingly recognized as a vital component of the in-vehicle user experience, influencing both occupant satisfaction and perceived vehicle quality. At the core of this functionality is the Climate Control Module (CCM), a dedicated embedded Electronic Control Unit (ECU) within automotive HVAC system [6]. The CCM orchestrates temperature regulation, airflow distribution, and dynamic environmental adaptation based on sensor inputs and user preferences. This paper introduces a comprehensive Hardware-in-the-Loop (HIL) [3] testing framework to validate CCM performance under realistic and repeatable conditions. The framework eliminates the dependencies on physical input devices—such as the Climate Control Head (CCH) and Infotainment Head Unit (HU)—by implementing virtual interfaces using real-time controller, and Dynamic System modelling framework for plant models. These virtual components replicate the behaviour of physical systems, enabling closed loop testing with high
More, ShwetaShinde, VivekTurankar, DarshanaPatel, DafiyaGosavi, SantoshGhanwat, Hemant
The increasing adoption of electric vehicles (EVs), efficient and accurate battery modeling has become crucial for reliable performance evaluation and control system design. However, maintaining high accuracy in simulations generally requires complex computations, which can limit real-time applicability and scalability. High-fidelity battery models often require significant computational time, making them unsuitable for real-time simulations and large-scale system integration. This paper presents the application of Simulink Reduced Order Models (ROM) to simplify the simulation of EV batteries while maintaining acceptable levels of accuracy. The EV simulation environment has been developed in MATLAB/Simulink to analyze Battery Management System (BMS) control system design and assess EV system level performance. This simulation platform consists of BMS and other important EV controller models and high-fidelity plant models for battery and powertrain systems. While these high-fidelity
Vernekar, Kiran
The invention tackles the main drawback of traditional electric vehicle charge ports which use Vehicle Control Unit (VCU) communication intensively and tend to have separate actuators to fulfill the locking function and requirements. These existing systems do not only limit autonomous operation of the charging lid in ignition-off condition but they also add mechanical complexity and packaging space, as well. To overcome these limitations, this research work introduces a Smart Charge Port Housing (CPH), which combines a rotary actuator with an onboard microcontroller and single shaft self-locking device, which allows intelligent and autonomous control of the flaps without relying on vehicle wide control networks. The actuator can remember the last position that the charging lid was in so it can be operated even while the VCU is in the inactive state. The integrated self-locking functionality is achieved by using a specially designed hinge shaft that allows a certain free play for
Mohunta, SanjayKhadake, Sagar
For regions with cold climate, the range of an electric bus becomes a serious restriction to expanding the use of this type of transport. Increased energy consumption affects not only the autonomous driving range, but also the service life of the batteries, the schedule delays and the load on the charging infrastructure. The aim of the presented research is to experimentally and computationally determine the energy consumption for heating the driver's cabin and passenger compartment of an electric bus during the autumn-winter operation period, as well as to identify and analyze ways to reduce this energy consumption. To determine the air temperature in the passenger compartment, a mathematical model based on heat balance equations was used. This model was validated using data from real-world tests. The research was conducted at a proving ground under two conditions: driving at a constant speed and simulating urban bus operation with stops and door openings. The causes of heat loss in
Kozlov, AndreyTerenchenko, AlexeyStryapunin, Alexander
This paper presents a novel Hardware-in-the-Loop (HiL) testing framework for validating panoramic Sunroof systems independent of infotainment module availability. The increasing complexity of modern automotive features—such as rain-sensing auto-close, global closure, and voice-command operation—has rendered traditional vehicle-based validation methods inefficient, resource-intensive, and late in the development cycle. To overcome these challenges, a real-time HiL system was developed using the Real time simulation, integrated with Simulink-based models for simulation, control, and fault injection. Unlike prior approaches that depend on complete vehicle integration, this methodology enables early-stage testing of Sunroof ECU behavior across open, close, tilt, and shade operations, even under multi-source input conflicts and fault conditions. Key innovations include the emulation of real-world conditions such as simultaneous voice and manual commands, sensor faults, and environmental
Ghanwat, HemantLad, Aniket SuryakantJoshi, VivekMore, Shweta
Surface Permanent Magnet Synchronous Motors (SPMSMs) have gained significant attention in modern industrial, automotive, and aerospace applications due to their high efficiency, power density, and superior dynamic performance. This paper explores the fundamental principles, control strategies, and optimization techniques for SPMSMs. The study focuses on advanced vector control methods, i.e., Field-Oriented Control (FOC), to achieve precise torque and speed regulation. Additionally, to ensure the safety and reliability of EV motors. Active discharge strategies used in EV motor drives focus on circuit topologies, control techniques, and implementation challenges. The paper also discusses a comparison of Sinusoidal Pulse Width Modulation (SPWM) and Space Vector Pulse Width Modulation (SVPWM) techniques, where the maximum speed of the motor is achieved. The findings highlight the potential of SPMSMs in high-performance applications, emphasizing future research directions in energy
Munnur, SwathiGandhi, NikitaTendulkar, SwatiMasand, DeepikaMurty, V. ShirishPeruka, Mahesh
Potholes are a common road hazard that significantly compromise road safety. Water filled potholes can be particularly dangerous. These hidden hazards may cause vehicles to hydroplane [1], leading to a loss of control and potential collisions. At night or in low visibility conditions, such potholes can appear deceptively shallow, increasing the risk of severe suspension damage or tire blowouts. Additionally, deep water intrusion can affect critical components such as the exhaust system, air intake, or electrical wiring, potentially leading to engine stalling or short circuits. This research proposes a novel approach for identifying and determining the depth of potholes, especially those that are filled with water. By integrating YOLO, cutting edge computer vision methods like stereo imaging and Lidar. We hope to create a system that can precisely detect and evaluate potholes' severity, reducing the risks connected to these road hazards. A structured 2k factorial Design of Experiment
Ashok, DeekshaKumar, PradeepSingh, Amandeep
Driver-in-the-Loop (DIL) simulators have become crucial tools across automotive, aerospace, and maritime industries in enabling the evaluation of design concepts, testing of critical scenarios and provision of effective training in virtual environments. With the diverse applications of DIL simulators highlighting their significance in vehicle dynamics assessment, Advanced Driver Assistance Systems (ADAS) and autonomous vehicle development, testing of complex control systems is crucial for vehicle safety. By examining the current landscape of DIL simulator use cases, this paper critically focuses on Virtual Validation of ADAS algorithms by testing of repeatable scenarios and effect on driver response time through virtual stimuli of acoustic and optical warnings generated during simulation. To receive appropriate feedback from the driver, industrial grade actuators were integrated with a real-time controller, a high-performance workstation and simulation software called Virtual Test
Sharma, ChinmayaBhagat, AjinkyaKale, Jyoti GaneshKarle, Ujjwala
After the implementation of BS-VI emission standards, effective exhaust after-treatment has become critical in minimizing harmful emissions from diesel engines. One significant challenge is the accumulation of hydrocarbons (HC) in the Diesel Oxidation Catalyst (DOC). Certain hydrocarbons may adsorb onto the catalyst surface yet remain unreactive, leading to potential operational inefficiencies. This phenomenon necessitates the desorption of unreactive hydrocarbons to allow space for more reactive species, thereby enhancing oxidation efficiency and overall catalyst performance. The process of desorption (DeSorb) is vital to maintaining the balance of reactive hydrocarbons within the DOC. When a vehicle is idling, unburnt fuel produces hydrocarbons that accumulate in the DOC. Upon acceleration, these hydrocarbons can lead to an uncontrolled rise in temperature, resulting in DOC push-out, catalyst damage, and downstream impacts on the Diesel Particulate Filter (DPF). To mitigate these
K, SabareeswaranK K, Uthira Ramya BalaRaju, ManikandanK J, RamkumarYS, Ananthkumar
The past decade has seen a systemic shift in the automotive landscape and the constituent parts of a vehicle. The automotive industry has shifted from a primarily hardware components industry to a software heavy industry, with software controlling majority of the vehicle functions. Coupled with the ability to fully update or evolve a vehicle’s capabilities or functionalities, post point of sale through software updates, the technical, commercial and service landscape of the automotive industry is rapidly changing. This has brought increasing focus to the concept of Software Defined Vehicle, where the vehicle is not only constantly evolving, but is also becoming more personalised by leveraging data collected through the life of the vehicle. This requires a rethink of the current development and deployment approaches for vehicles, which are software-intensive. In this paper, we introduce a novel four-step system engineering framework for the safe development and deployment of Software
El Badaoui, HalimaJame-Elizebeth, MariatKhastgir, SiddarthaJennings, Paul
The proliferation of connectivity features (V2X, OTA updates, diagnostics) in modern two-wheelers significantly expands the attack surface, demanding robust security measures. However, the anticipated arrival of quantum computers threatens to break widely deployed publickey cryptography (RSA, ECC), rendering current security protocols obsolete. This paper addresses the critical need for quantum-resistant security in the automotive domain, specifically focusing on the unique challenges of two-wheeler embedded systems. This work presents an original analytical and experimental evaluation of implementing selected Post-Quantum Cryptography (PQC) algorithms, primarily focusing on NIST PQC standardization candidates (e.g., lattice-based KEMs/signatures like Kyber/Dilithium), on microcontroller platforms representative of those used in two-wheeler Electronic Control Units (ECUs) - typically ARM Cortex-M series devices characterized by limited computational power, memory (RAM/ROM), and strict
Mishra, Abhigyan
Items per page:
1 – 50 of 5629