Browse Topic: Aircraft instruments

Items (515)
Aerospace manufacturers are leveraging multicore processors and modularity to design smarter cockpit displays and avionic computers that are smaller and capable of supporting more applications from a single line replaceable unit (LRU). Some are also starting to embed more of the processing required to enable cockpit display applications within the display itself, rather than having it enabled by an associated LRU. The development of new electric vertical takeoff and landing (eVTOL) aircraft and avionics companies changing their approach to the development of safety critical computers and aircraft networking technologies are some of the aerospace industry factors driving this design trend. In the U.S., the Department of Defense (DoD) embracing the Modular Open Systems Approach (MOSA) across the purchase of all new aircraft technologies is influencing design changes in cockpit displays and aircraft computers as well
Faults if not detected and processed will create catastrophe in closed loop system for safety critical applications in automotive, space, medical, nuclear, and aerospace domains. In aerospace applications such as stall warning and protection/prevention system (SWPS), algorithms detect stall condition and provide protection by deploying the elevator stick pusher. Failure to detect and prevent stall leads to loss of lives and aircraft. Traditional Functional Hazard and Fault Tree analyses are inadequate to capture all failures due to the complex hardware-software interactions for stall warning and protection system. Hence, an improved methodology for failure detection and identification is proposed. This paper discusses a hybrid formal method and model-based technique using System Theoretic Process Analysis (STPA) to identify and diagnose faults and provide monitors to process the identified faults to ensure robust design of the indigenous stall warning and protection system (SWPS). The
Kale, AlexanderMadhuranath, GaneshShanmugham, ViswanathanNanda, ManjuSingh, GireshDurak, Umut
David, AharonMuelaner, Jody E.Rezende, Rene Nardi
This SAE Aerospace Standard (AS) defines minimum performance standards (MPS) for fuel flowmeters, fuel flow indicators, and fuel flow transmitters. The fuel flow indicators and transmitters are intended for use in 14 CFR Part 23, 25, 27, and 29 aircraft equipped with reciprocating and turbine engines. Multiple function displays are not within the scope of this SAE Aerospace Standard (refer to AS6296
A-4FLW Fuel Flowmeters
The dynamic model is built in Siemens Simcenter Amesim platform and simulates the performances on track of JUNO, a low energy demanding Urban Concept vehicle to take part in the Shell Eco-Marathon competition, in which the goal is to achieve the lowest fuel consumption in covering some laps of a racetrack, with limitations on the maximum race time. The model starts with the longitudinal dynamics, analysing all the factors that characterize the vehicle’s forward resistance, like aerodynamic forces, altimetry changes and rolling resistance. To improve the correlation between simulation and track performances, the model has been updated with the implementation of a Single-Track Model, including vehicle rotation around its roll axis, and a 3D representation of the racetrack, with an automatic trajectory following control implemented. This is crucial to characterise the vehicle’s lateral dynamics, which cannot be neglected in simulating its performances on track. Analysis of suspension
De Carlo, MatteoDragone, PaoloTempone, Giuseppe PioCarello, Massimiliana
With the advancement of automotive industries, the need for wireless connectivity between vehicle and smartphone is increasing. To meet the demand for wireless connectivity, Bluetooth plays a vital role. Testing Bluetooth systems is challenging and complex when development cycles of the system involve multiple partners. The system under test must fulfil consumers expectation of Bluetooth functionality paired with their personal devices. Despite many advances and existence of a few reliable systems, hardware limitation, and lack of standardization in Bluetooth test system are some of the prolonged issues. Throughout the course, various capabilities and existing traditional Bluetooth testing system practice were researched, which majorly at a system level (Black box). The gap of such testing is the escape of defect which involves the interoperability of multiple profiles like AVRCP, HFP, and A2DP. This paper focuses on a reliable testing approach which is based on packet level testing
Selokar, Ashish KishorIqbal, MD FarhanAnilkumar, SandhyaTavhare, Sarika
Machine learning is used for the research and development of ITS services and the rider assistance for on-road motorcycle racing. Meanwhile, rider assistance systems for off-road motorcycles have yet to be developed, partly due to the complexity of the measurement conditions, as described in the previous paper. This research aims to create a reliable AI which is capable of classifying typical jump behaviors in off-road riding by machine learning to create a rider assistance system for off-road motorcycles. Motorcycle manufacturers and certain research institutes use motion sensors to collect data, but the data is obtained from a limited number of vehicles and riders. The creation of a rider assistance system requires a large amount of validation data. Furthermore, it is desirable to achieve the target with data that can be measured in mass-produced vehicles, which will make it possible to collect data even from general users. In addition, recent machine learning models are black boxes
Uto, YukiTokunaga, HisatoInaba, TaichiHigashi, Takayuki
This document is intended to highlight critical design issues that a panel designer should understand when designing panels for NVIS applications. It is not intended to be a discussion of the benefits of one lighting technology versus another. Refer to ARP4168 for a more complete discussion of these lighting technologies
A-20A Crew Station Lighting
While being the first to fly, the Wright Brothers were also the first and last complete “one stop shop” of aviation: the only case in human flight in which the same individuals personally carried out the research, development, testing, manufacturing, operation, maintenance, air control, flight simulation, training, setup, operation, and more. Since then, these facets gradually fragmented and drifted away from the aircraft. This report discusses the phenomenon of aircraft operation’s “fading humans,” including the development of flight instruments to support it, its growing automation, the emerging artificial intelligence paradigm, and the lurking cyber threats that all over the place. Controlling Aircraft – From Humans to Autonomous Systems: The Fading Humans examines the “fading” process itself, including its safety aspects, current mitigation efforts, ongoing research, and the unsettled topics that still remain. Click here to access The Mobility Frontier: Cybersecurity on the Air
David, Aharon
This AS covers subsonic and supersonic Mach meter instruments which, when connected to sources of static (Ps), and total (Pt), or impact (Pt-Ps), pressure provide indication of Mach number. These instruments are known as Type A. This AS also covers servo-operated repeater or digital display instruments which indicate Mach number when connected to the appropriate electrical output of a Mach transducer of Air Data Computer. These instruments are known as Type B
A-4ADWG Air Data Subcommittee
This AS defines instruments which use inputs of static and pitot pressure equal to those which are utilized to establish the pressure altitude and speed of that aircraft. These pressures are applied to the instrument ports to provide means for generation of an aural warning whenever the aircraft reaches or exceeds the maximum operating limit speed. This Over Speed Warning Instrument function may be incorporated as part of an Air Data Computer, or an Air Speed Indicator, or an Air Speed/Mach Number Indicator, or other instruments. In those cases where the Over Speed Warning Instrument is part of another instrument, the standards contained herein apply only to the Over Speed Warning Instrument function. Each aircraft type and model has a defined maximum operating limit speed curve or curves which are a part of the airframe manufacturer's type certification approval data; this limit speed data shall be available from the subject airframe manufacturer as published in the operating manual
A-4ADWG Air Data Subcommittee
This document establishes acceptable design criteria for instrument and cockpit illumination for general aviation aircraft
A-20A Crew Station Lighting
This SAE Standard establishes a uniform test procedure and performance requirements for off throttle steering and obstacle avoidance capabilities of personal watercraft. Personal watercrafts intended to be operated by a single operator who either stands or kneels in a tray located behind a moveable handlepole are exempted from this SAE Standard. This SAE Standard does not apply to outboard powered personal watercraft and jet powered surfboards
Personal Watercraft Committee
Garmin International, Inc Olathe, KS 800-800-1020
This document includes recommendations of installations of adequate landing and taxiing lighting systems in aircraft of the following categories: a Single engine personal and/or liaison type b Light twin engine c Large multiengine propeller d Large multiengine turbojet e Military high performance fighter and attack f Helicopter which are subject to the following CFR Parts certification: Part 23 – Airworthiness Standards: Normal, Utility, Acrobatic and Commuter Aircrafts Part 25 – Airworthiness Standards: Transport Category Aircrafts Part 27 – Airworthiness Standards: Normal Category Rotorcraft Part 29 – Airworthiness Standards: Transport Category Rotorcraft
A-20B Exterior Lighting Committee
This specification covers the chromaticity and transmission requirements of aircraft lighting and light transmitting ware in descending order of transmission. It is intended for use in aviation lighting
A-20B Exterior Lighting Committee
This SAE Aerospace Information Report (AIR) relates considerations for design test procedures and test data evaluation for qualification of tire spray deflection devices
A-5 Aerospace Landing Gear Systems Committee
This SAE Aerospace Recommended Practice recommends general criteria for the development and installation of an aircraft emergency signal system to permit any crew member (flight or cabin) to inform all other crew members that an emergency evacuation situation exists and that an evacuation has been or should be immediately started
S-9B Cabin Interiors and Furnishings Committee
This SAE Aerospace Standard (AS) covers the following basic types: Type I - Pitot pressure, straight and L-shaped, electrically heated. Type II - Pitot and static pressures, straight and L-shaped, electrically heated
A-4ADWG Air Data Subcommittee
This SAE Aerospace Standard (AS) specifies minimum performance requirements for pressure altimeter systems other than air data computers. This document covers altimeter systems that measure and display altitude as a function of atmospheric pressure. The pressure transducer may be contained within the instrument display case or located remotely. Requirements for air data computers are specified in AS8002. Some requirements for nontransducing servoed altitude indicators are included in AS791. This document does not address RVSM requirements because general RVSM requirements cannot be independently detailed at the component level. The instrument system specified herein does not include aircraft pressure lines. Unless otherwise specified, whenever the term “instrument” is used, it is to be understood to be the complete system of pressure transducer components, any auxiliary equipment, and display components. The test procedures specified herein apply specifically to mechanical type
A-4ADWG Air Data Subcommittee
This SAE Standard provides test procedures, requirements, and guidelines for motorcycle turn signal lamps. It does not apply to mopeds
Motorcycle Lighting Standards Committee
Incidents where a piece of ground support equipment or personnel damages an aircraft under the control of ground or maintenance operations that requires corrective action by aircraft maintenance personnel. Operations include, but are not limited to servicing, line maintenance, heavy maintenance, and aircraft movement, e.g., marshalling/pushback/tow/reposition/taxi
AGE-3 Aircraft Ground Support Equipment Committee
The current development of automotive lighting strives towards more and more lighting installations on vehicles. Additionally, to that, manufacturers start animating these lighting installations as coming home or leaving home greetings from the car to the driver. In a previous paper we have shown, that these additional animations are in fact not distracting to other road users and when used correctly, e.g. in a sequential turn indicator, can be beneficial to the overall traffic safety. This study then aims to investigate the potential influence of illuminated logos on road safety. European lawmakers forbid the use of illuminated advertisements on vehicles to minimize the danger of distraction for other road users and thereby negatively influencing traffic safety. As of now, active illumination of the manufacturer’s logo is considered an advertisement. For this, a test vehicle was setup with two high luminance monitors, one at the front, one at the back, capable of producing 4000 cd/m2
Kobbert, JonasHamm, MichaelHinterwaelder, ChristianBullough, John D.
This document deals with ground and flight test of airplane installed Environmental Control Systems (ECS), Figure 1. The ECS provide an environment, controlled within specified operational limits of comfort and safety, for humans, animals, and equipment. These limits include the following: pressure, temperature, humidity, ventilation air velocity, ventilation rate, wall temperature, audible noise, vibration, and environment composition (ozone, contaminants, etc.). The ECS are composed of equipment, controls, and indicators that supply, distribute, recycle and exhaust air to maintain the desired environment
AC-9 Aircraft Environmental Systems Committee
This document covers information concerning the use of oxygen when flying into and out of high elevation airports for both pressurized and non-pressurized aircraft. Oxygen requirements for pressurized aircraft operating at high altitudes have for decades emphasized the potential failures that could lead to a loss of cabin pressurization coupled with the potential severe hypoxic hazard that decompressions represent. This document is intended to address the case where the relationship between cabin and ambient pressures are complicated by operations at high terrestrial altitudes. Operators who fly into these high-altitude airports should address the issues related to this environment because it carries the potential for insidious hypoxia and other conditions which can affect safety. It provides information to consider in developing operational procedures to address hypoxia concerns consistent with regulatory mandates. In some sections, procedures are discussed that may mitigate the
A-10 Aircraft Oxygen Equipment Committee
This document considers the cooling of equipment installed in equipment centers, which usually consist of rack-mounted equipment and panel mounted equipment in the flight deck. Instances where these two locations result in different requirements are identified. This document generally refers to the cooled equipment as E/E equipment, denoting that both electrical and electronic equipment is considered, or as an E/E equipment line-replaceable-unit (LRU). The majority of cooled equipment takes the form of LRUs. The primary focus of this document is E/E equipment which uses forced air cooling to keep the equipment within acceptable environmental limits. These limits ensure the equipment operates reliably and within acceptable tolerances. Cooling may be supplied internally or externally to the E/E equipment case. Some E/E equipment is cooled solely by natural convection, conduction, and radiation to the surrounding environment. This document discusses specification requirements, system
AC-9 Aircraft Environmental Systems Committee
This SAE Aerospace Standard (AS) provides a method for gas turbine engine performance computer programs to be written using Fortran COMMON blocks. If a “function-call application program interface” (API) is to be used, then ARP4868 and ARP5571 are recommended as alternatives to that described in this document. When it is agreed between the program user and supplier that a particular program shall be supplied in Fortran, this document shall be used in conjunction with AS681 for steady-state and transient programs. This document also describes how to take advantage of the Fortran CHARACTER storage to extend the information interface between the calling program and the engine subroutine
S-15 Gas Turbine Perf Simulation Nomenclature and Interfaces
This SAE Aerospace Recommended Practice (ARP) applies to Point-Of-Use, Central and Mobile Pre-Conditioned Air Equipment. It does not apply to aircraft mounted equipment
AGE-3 Aircraft Ground Support Equipment Committee
Selective catalytic reduction (SCR) of oxides of nitrogen (NOx) with gaseous ammonia is the leading technology used to meet on- and off-highway NOx emission standards across the world. In typical SCR systems, a low-pressure injector introduces a solution of urea and water (UWS) into hot exhaust gases leading to atomization and subsequent spray processes that finally lead to production of gaseous ammonia. Through their synergetic effect, the UWS injector and mixing enhancement devices (such as static mixers or baffles) help deliver a uniform mixture of ammonia and NOx to the SCR catalyst with minimal urea-derived solid deposits. To develop an efficient and robust aftertreatment system, it is essential to have experimental and simulation capabilities to assess the behavior of sprays under flow conditions representative of engine exhaust. The experimental part of the present work uses an optically accessible, cold- or hot-flow capable test section (called Insitu test section) that allows
Munnannur, AchuthBlessinger, MatthewLiu, Z. Gerald
Two research fields are presented in this paper covering new lighting functions. In the first part, a study is presented that evaluates distraction by light animations. 41 test subjects were involved, and a situation was constructed with several traffic participants and an animated-light vehicle parked so as to be conspicuously within the test subjects’ view. 91% of the test subjects stated they felt little or no distraction or impairment from the light display on the parked car. 29% noticed something conspicuous about the test vehicle. 22% indicated they had noticed the car’s lights flashing as its central locking system was operating. Only 7%—three of the 41 participants—noticed the animations in addition to their traffic monitoring. Of these, two said they didn’t feel disturbed at all by the animations while the third found it only very slightly distracting. Nobody said the distraction or impairment was “neutral”, “little bit” or “strong”. So this study concludes that there is no
Hamm, MichaelHinterwaelder, ChristianKobbert, Jonas
This report identifies the reasons for, and results associated with, the conduct of a flight simulation research project evaluating the effect of low powered laser beam illumination of pilot crewmembers operating in the navigable airspace. This evaluation was primarily concerned with the possible degradation of pilot performance when illuminated by a laser while operating in an airport terminal area where pilot workloads are normally at their maximum
G-10OL Operational Laser Committee
This SAE Aerospace Standard (AS) provides a system of graphic symbols and line codings that are intended primarily for usage in hydraulic and pneumatic system schematic diagrams for all types of aircraft
A-6 Aerospace Actuation, Control and Fluid Power Systems
This Aerospace Standard covers Flight Director Equipments which display to the pilot a computed command for the operation of an aircraft in accordance with selected Mode(s). The term “Equipment” may include controls, displays, computers, etc. and may include sensors if furnished as a part of the Flight Director
A-4 Aircraft Instruments Committee
Following a number of high-visibility collisions between aircraft on the airport surface, overall taxi operations have been brought under greater scrutiny. In addition, observation of taxi operations and the results of associated research programs have revealed that the efficiency of taxi operations could be significantly improved with available technologies and by applying a human centered design approach. Surface operations displays have been tested in prototype form and a number of manufacturers are moving toward product definition. This document provides guidance on the design of elements, which may be part of surface operations displays whose objectives would be to enhance safety and to improve overall efficiency of aircraft operations on the airport surface. Such efficiency increases should be realized not only in day-to-day operations, but should also be manifested in training for surface operations. This document sets forth functional and design recommendations concerning the
G-10EAB Executive Advisory Group
This SAE Aerospace Standard (AS) covers one type of maximum-allowable-airspeed instrument which gives a continuous indication of both indicated airspeed and maximum allowable airspeed not exceeding 650 knots
A-4 Aircraft Instruments Committee
This SAE Aerospace Standard (AS) covers automatic pilots intended for use on aircraft to automatically operate the primary and trim aerodynamic controls to maintain stable flight and/or to provide maneuvering about any of the three axes through servo control. Automatic control functions essential for primary or augmented flight control are excluded
A-4 Aircraft Instruments Committee
This SAE Aerospace Recommended Practice (ARP) sets forth design and operational recommendations concerning the human factors/crew interface considerations and criteria for vertical situation awareness displays. This is the first of two recommended practice documents that will address vertical situation awareness displays (VSAD). This document will focus on the performance/planning types of display (e.g., the map display) and will be limited to providing recommendations concerning human factored crew interfaces and will not address architecture issues. This document focuses on two types of VSAD displays: a coplanar implementation of a profile display (side projection) and a conventional horizontal map display; and a 3D map display (geometric projection). It is intended for head down display applications. However, other formats or presentation methods, such as HUDs, HMDs and 3D audio presentations may become more feasible in the future. Even though the relationship of the vertical
G-10EAB Executive Advisory Group
The recommendations of this document apply to such aircraft as are able to perform both normal angle and steep IMC approaches, the latter being defined as those approaches having a final approach segment angle greater than 4°. Such aircraft can include both conventional and STOL fixed-wing aircraft, commercial air transport and/or utility and normal category helicopters, compound helicopters and powered lift vehicles (tiltrotors, tiltfans, tiltwings, etc
G-10EAB Executive Advisory Group
Items per page:
1 – 50 of 515