Browse Topic: High voltage systems
Direct current (DC) systems are increasingly used in small power system applications ranging from combined heat and power plants aided with photovoltaic (PV) installations to powertrains of small electric vehicles. A critical safety issue in these systems is the occurrence of series arc faults, which can lead to fires due to high temperatures. This paper presents a model-based method for detecting such faults in medium- and high-voltage DC circuits. Unlike traditional approaches that rely on high-frequency signal analysis, the proposed method uses a physical circuit model and a high-gain observer to estimate deviations from nominal operation. The detection criterion is based on the variance of a disturbance estimate, allowing fast and reliable fault identification. Experimental validation is conducted using a PV system with an arc generator to simulate faults. The results demonstrate the effectiveness of the method in distinguishing fault events from normal operating variations. The
Zero emission vehicles are essential for achieving sustainable and clean transportation. Hybrid vehicles such as Fuel Cell Electric Vehicles (FCEVs) use multiple energy sources like batteries and fuel cell stacks to offer extended driving range without emitting greenhouse gases. Optimal performance and extended life of the important components like the high voltage battery and fuel-cell stack go a long way in achieving cost benefits as well as environmental safety. For this, energy management in FCEVs, particularly thermal management, is crucial for maintaining the temperature of these components within their specified range. The fuel cell stack generates a significant amount of waste heat, which needs to be dissipated to maintain optimal performance and prevent degradation, whereas the battery system needs to be operated within an optimal temperature range for its better performance and longevity. Overheating of batteries can lead to reduced efficiency and potential safety hazards
Increasing the mission capability of ground combat and tactical vehicles can lead to new concepts of operation that enhance safety and effectiveness of warfighters. High-temperature power electronics enabled by wide-bandgap semiconductors such as silicon carbide can provide the required power density to package new capabilities into space-constrained vehicles and provide features including silent mobility, boost acceleration, regenerative braking, adaptive cooling, and power for future protection systems and command and control (C2) on the move. An architecture using high voltage [1] would best satisfy the ever-increasing power demands to enable defense against unmanned aerial systems (UAS) and offensive directed energy (DE) systems for advanced survivability and lethality capabilities.
The interaction of electric, electronic (E/E) and mechanical components defines the quality of a BEV’s powertrain. Component selection, their integration and calibration aim at meeting legal requirements for EMC and safety as well as competitive targets for efficiency, NVH and driving comfort. These tasks in particular need attention on electromagnetic events on the DC bus, the high-power electronics of inverters, the e-motors, and the drive shaft. Each component within this environment is defined by its electromechanical features with variabilities selected from a large set of operating parameters. Consequently, a complete powertrain and its controllers give rise to endless combinations for powertrain operation. How to understand and avoid risk laden and ineffective parameter options, how to find powertrain control parameters for safe, efficient and comfortable operation? And how to find solutions within competitive development timeframes? Particular issues include high voltage risks
While electric powertrains are driving 48V adoption, OEMs are realizing that xEV and ICE vehicles can benefit from a shift away from 12-volt architectures. In every corner of the automotive power engineering world, there are discussions and debates over the merits of 48V power networks vs. legacy 12V power networks. The dialogue started over 20 years ago, but now the tone is more serious. It's not a case of everything old is new again, but the result of a growing appetite for more electrical power in vehicles. Today's vehicles - and the coming generations - require more power for their ADAS and other safety systems, infotainment systems and overall passenger comfort systems. To satisfy the growing demand for low-voltage power, it is necessary to boost the capacity of the low-voltage power network by two or three times that of the late 20th century. Delivering power is more efficient at a higher voltage, and today, 48V is the consensus voltage for that higher level.
Sound power is a commonly used metric to quantify acoustic sources like AC motor in electrified powertrain. Testing for sound power determination is often performed in an anechoic environment to create free-field conditions around the unit. To eliminate the influence of extraneous noise sources, the anechoic facilities must be further isolated from driver and absorber dynamometers. These dynamometers are needed for running the AC motors in the desired speed and load conditions. For early detection of potential issues, it is advantageous to have the capability for engineers to conduct acoustic tests in standard laboratory environments. These may include non-acoustically treated rooms, presence of extraneous noise sources (e.g., driver and absorber dynos), etc. In such environments, sound intensity-based sound power determination methods could be utilized. The sound intensity-based approach is covered in ISO 9614 standard. The norm is to sweep an intensity probe on a sound source in
Improving the efficiency of Battery Electric Vehicles (BEVs) is crucial for enhancing their range and performance. This paper explores the use of virtual tools to integrate and optimise various systems, with a particular focus on thermal management. The study considers global legislative drive cycles and real-world scenarios, including hot and cold weather conditions, charging cycles, and towing. A virtual vehicle model is developed to include major contributors to range prediction and optimisation, such as thermal systems. Key components analysed include high voltage (HV) and low voltage (LV) consumers (compressors, pumps, fans), thermal system performance and behaviour (including cabin climate control), thermal controllers, and thermal plant models. The emergent behaviour resulting from the interaction between hardware and control systems is also examined. The methodology involves co-simulation of hardware and control models, encompassing thermal systems (coolant, refrigerant, cabin
To promote the electric performance and safety of development for EV mobility, optimization methodology and design guide of high voltage bolted joint should be newly developed. This paper describes the development process of multi-physics (electrical, mechanical, thermal) FEA methodology, various experimental tests and establishment of optimization methodology of busbar bolted joint design in terms of bolt preload validation and joint temperature rise. The various key factors on high voltage joint tightening are quantitatively studied by utilizing this optimized methodology.
As the complexity of electrified powertrains and their architectures continue to grow and thrive, it becomes increasingly important and challenging for the supervisory torque controller to optimize the torque commands of the electric machines. The hybrid architecture considered in this paper consists of an internal combustion engine paired with at least one electric motor and a DC-DC switching converter that steps-up the input voltage, in this case the high voltage battery, to a higher output voltage level allowing the electric machines to operate at a greater torque range and increased torque responsiveness for efficient power delivery. This paper describes a strategy for computing and applying the losses of the converter during voltage transformation to determine the optimal engine and electric motor torque commands. The control method uses a quadratic fit of the losses at the power limits of the torque control system and on optimal motor torque commands, within the constraints of
The driving capability and charging performance of electric vehicles (EVs) are continuously improving, with high-performance EVs increasing the voltage platform from below 500V to 800V or even 900V. To accommodate existing low-voltage public charging stations, vehicles with high-voltage platforms typically incorporate boost chargers. However, these boost chargers incur additional costs, weight, and spatial requirements. Most mature solutions add a DC-DC boost converter, which results in lower charging power and higher costs. Some new methods leverage the power switching devices and motor inductance within the electric drive motor to form a boost circuit using a three-phase current in-phase control strategy for charging. This approach requires an external inductor to reduce charging current ripple. Another method avoids the use of an external inductor by employing a two-parallel-one-series topology to minimize current ripple; however, this reduces charging power and increases the risk
Heavy-duty vehicles, particularly those towing higher weights, require a continuous/secondary braking system. While conventional vehicles employ Retarder or Engine brake systems, electric vehicles utilize recuperation for continuous braking. In a state where HV Battery is at 100% of SOC, recuperated energy from vehicle operation is passed on to HPR and it converts electrical energy into waste heat energy. This study focuses on identification of routes which are critical for High Power Brake Resistors (HPRs), by analyzing the elevation data of existing charging stations, the route’s slope distribution, and the vehicle’s battery SOC. This research ultimately suggests a method to identify HPR critical vehicle operational routes which can be useful for energy efficient route planning algorithms, leading to significant cost savings for customers and contributing to environmental sustainability.
A device was developed that uses composite-based nonlinear transmission lines (NLTLs) for a complete high-power microwave system, eliminating the need for multiple auxiliary systems. The interest in NLTLs has increased in the past few decades because they offer an effective solid-state alternative to conventional vacuum-based, high-power microwave generators that require large and expensive external systems such as cryogenic electromagnets and high-voltage nanosecond pulse generators.
As the U.S. military embraces vehicle electrification, high-reliability components are rising to the occasion to support their advanced electrical power systems. In recent years, electronic device designers have started using wide band-gap (WBG) materials like silicon carbide (SiC) and gallium nitride (GaN) to develop the semiconductors required for military device power supplies. These materials can operate at much higher voltages, perform switching at higher frequencies, and feature better thermal characteristics. Compared to silicon, SiC-based semiconductors provide superior performance. The growing availability of these materials, in terms of access and cost, continues to encourage electrification. With the ever-present pressure of size, weight, and power (SWaP) optimization in military applications, and a desire to keep up with the pace of innovation, there's a need for capacitors that can deliver higher power efficiency, switching frequency, and temperature resistance under harsh
Pulsed field ablation (PFA) is a nonthermal method of tissue ablation technology that uses high amplitude pulsed electrical fields (PEF) to create irreversible electroporation (IRE) in tissues. Unlike traditional thermal ablation technologies, PFA does not rely on heating to damage and destroy tissue. Instead, PFA creates nanopores in cell membranes due to transient, high-voltage exposure that disrupts cell wall integrity, which leads to cell death.1
Reducing dust accumulation on any surface is key for lunar missions as dust can damage or impair the performance of everything from deployable systems to solar cells on the Moon’s surface. Electrodynamic dust shields (EDSs) are a key method to actively clean surfaces by running high voltages (but low currents) through electrodes on the surface. The forces generated by the voltage efficiently remove built up, electrically charged dust particles. Innovators at the NASA Kennedy Space Center have developed a new transparent EDS for removing dust from space and lunar solar cells among other transparent surfaces.
Items per page:
50
1 – 50 of 966