Browse Topic: Architecture

Items (3,824)
Image dehazing techniques can play a vital role in object detection, surveillance, and accident prevention, especially in scenarios where visibility is compromised because of light scattering by atmospheric particles. To obtain a high-quality image or as an initial step in processing, it’s crucial to restore the scene’s information from a single image, given that this is an ill-posed inverse problem. The present approach utilized an unsupervised learning approach to predict the transmission map from a hazy image and used YOLOv8n to detect the car from a clear recovered image. The dehazing model utilized a lightweight parallel channel architecture to extract features from the input image and estimate the transmission map. The clear image is recovered using an atmospheric scattering model and given to the YOLOv8n for car detection. By incorporating dark channel prior loss during training, the model eliminates the need for a paired dataset. The proposed dehazing model with fewer
Dave, ChintanPatel, HetalKumar, Ahlad
Driven by the vast consumer marketplace, the electronics megatrend has reshaped nearly every sector of society. The advancements in semiconductors and software, originally built to serve consumer demand, are now delivering significant value to non-consumer industries. Today, electronics are making inroads into traditionally conservative, safety-critical sectors such as automotive and aerospace. In doing so, electronics—now further propelled by artificial intelligence—are disrupting the functional safety architectures of these cyber-physical systems. Electronics have created the world of cyber-physical systems, raising broader concerns about the broader category of product assurance. Product Assurance in the Age of Artificial Intelligence continues the work of previous SAE Edge Research Reports in examining open research challenges arising from this shift, particularly in automotive systems, as core electronic technologies (e.g., the combination of software and communications) have even
Razdan, Rahul
Conflicts between vehicles and pedestrians at unsignalized intersections occur frequently and often result in serious consequences. In order to alleviate traffic flow congestion at unsignalized intersections caused by accidents, reduce vehicle congestion time and waiting time, and improve intersection safety as well as intersection access efficiency, a speed guidance algorithm based on pedestrian-to-vehicle (P2V) and vehicle-to-pedestrian (V2P) communication technologies is proposed. The method considers the heading angle (direction of motion) of vehicles and pedestrians and combines the post encroachment time (PET) and time to collision (TTC) to determine whether there is a risk of collision, so as to guide the speed of vehicles. Network simulator NS3 and traffic flow simulation software SUMO are used to verify the effectiveness of the speed guidance strategy proposed in this article. The experimental findings demonstrate that the speed guidance strategy introduced in this article
Sun, YuanyuanWang, KanLiu, WeizhenLi, Wenli
A cutting-edge EV powertrain NVH laboratory has been established at Dana Incorporated’s world headquarters in Ohio, significantly enhancing its capabilities in EV powertrain NVH development. This state-of-the-art, industry-leading facility is specifically designed to address diverse NVH requirements for EV powertrain development and validation processes. This capability substantially reduces development time for new drivetrain systems. Key features of the laboratory include a hemi-anechoic chamber, two AC asynchronous load motors, an acoustically isolated high-speed input motor, and two battery emulators capable of accommodating both low and high-voltage requirements. The NVH laboratory enables engineers to evaluate system performance and correlate results with digital twin models. This capability supports the optimization of NVH characteristics at both the system and component levels, as well as the refinement of CAE models for enhanced design precision. This paper details the design
Cheng, Ming-TeZugo, Chris
Sound power is a commonly used metric to quantify acoustic sources like AC motor in electrified powertrain. Testing for sound power determination is often performed in an anechoic environment to create free-field conditions around the unit. To eliminate the influence of extraneous noise sources, the anechoic facilities must be further isolated from driver and absorber dynamometers. These dynamometers are needed for running the AC motors in the desired speed and load conditions. For early detection of potential issues, it is advantageous to have the capability for engineers to conduct acoustic tests in standard laboratory environments. These may include non-acoustically treated rooms, presence of extraneous noise sources (e.g., driver and absorber dynos), etc. In such environments, sound intensity-based sound power determination methods could be utilized. The sound intensity-based approach is covered in ISO 9614 standard. The norm is to sweep an intensity probe on a sound source in
Kumar, AdityaIppili, Rajani
Damping treatments play a key role in the definition of efficient acoustic packages for passenger cars with all types of propulsion systems. Many damper configurations are similar for all vehicles including treatments of wheelhouses, spare wheel area, roof panels etc. However, there are some characteristics of car body acoustics in electric vehicles, which need to be considered in the definition of the efficient damping package. This paper investigates the impact of the high voltage (HV) battery on interior noise related characteristics of the car body using laser scanning vibrometry (LSV) and 3D sound intensity test methods. It is shown that both methods lead to similar conclusions in terms of proper distribution of damping material. Furthermore, findings are used in the damping package case study resulting in two additional proposals of the damping layout with different lightweight and acoustic requirements. Lab evaluation of the new damping package variants are conducted by laser
Unruh, OliverGielok, Martin
Demonstrating deadline adherence for real-time tasks is a common requirement in all safety norms. Timing verification has to address two levels: the code level (worst-case execution time) and the scheduling level (worst-case response time). Determining which methodology is suited best depends on the characteristics of the target processor. All contemporary microprocessors try to maximize the instruction-level parallelism by sophisticated performance-enhancing features that make the execution time of a particular instruction dependent on the execution history. On multi-core systems, the execution time additionally is influenced by interference effects on shared resources caused by concurrent activities on the different cores, which are not controlled by the scheduling algorithm. In the avionics domain, the new FAA AC 20-193 / EASA AMC 20-193 guidance documents formalize predictability aspects of multi-core systems and derive adequate measures for timing verification. Timing verification
Kaestner, DanielGebhard, GernotHuembert, ChristianPister, MarkusWegener, SimonFerdinand, Christian
The authors have witnessed a notable surge in the number of designs and in the guidance material for electric and hybrid aircraft. FAA and EASA have continued to evaluate the safety of Propulsion Battery Systems (PBS), with a focus on thermal runaway containment testing. As a result, a harmonization white paper [7] was issued to provide a certification path for Thermal Runaway (TR) Hazards, followed by an EASA certification memorandum on the acceptable approaches for the certification of Electric/Hybrid Propulsion Systems (EHPS). Recently, an FAA Advisory Circular (draft) was issued for the “powered-lift” aircraft that feature these propulsion battery systems. Despite the advances made by electric/hybrid aircraft manufacturers and the aviation authorities, there is still a missing piece of the puzzle. Mainly, engineering work still needs to be done to properly integrate the EHPS architecture to achieve safety objectives. The burden is still on systems engineering to propose their own
Hanna, MichaelWalker, Cherizar
Researchers from MIT and the Institute of Science and Technology Austria have developed a computational technique that makes it easier to quickly design a metamaterial cell from smaller building blocks like interconnected beams or thin plates, and then evaluate the resulting metamaterial’s properties.
Muelaner, Jody EmlynMoran, MatthewPhillips, Paul
Abdul Hamid, Umar ZakirEastman, Brittany
IEEE-1394b, Interface Requirements for Military and Aerospace Vehicle Applications, establishes the requirements for the use of IEEE Std 1394™-2008 as a data bus network in military and aerospace vehicles. The portion of IEEE Std 1394™-2008 standard used by AS5643 is referred to as IEEE-1394 Beta (formerly referred to as IEEE-1394b.) It defines the concept of operations and information flow on the network. As discussed in 1.4, this specification contains extensions/restrictions to “off-the-shelf” IEEE-1394 standards and assumes the reader already has a working knowledge of IEEE-1394. This document is referred to as the “base” specification, containing the generic requirements that specify data bus characteristics, data formats, and node operation. It is important to note that this specification is not designed to be stand-alone; several requirements leave the details to the implementations and delegate the actual implementation to be specified by the network architect/integrator for a
AS-1A Avionic Networks Committee
This document was prepared by the SAE AS-1A2 Committee to establish techniques for validating the Network Terminal (NT) complies with the NT requirements specified in AS5653, Revision B. Note that this verification document only verifies the specific requirements from AS5653 and does not verify all the requirements invoked by documents that are referenced by AS5653. The procuring authority may require further testing to verify the requirements not explicitly defined in AS5653 and in this verification document.
AS-1A Avionic Networks Committee
This document establishes test plans/procedures for the AS5643 Standard that by itself defines guidelines for the use of IEEE-1394b as a data bus network in military and aerospace vehicles. This test specification defines procedures and criteria for testing device compliance with the AS5643 Standard.
AS-1A Avionic Networks Committee
This document was prepared by the SAE AS-1A2 Committee to establish techniques for verifying that Network Controllers (NCs), Network Terminals (NTs), switches, cables, and connectors comply with the physical layer requirements specified in AS5653B. Note that this verification document only verifies the specific requirements from AS5653B and does not verify all of the requirements invoked by documents that are referenced by AS5653B. The procuring authority may require further testing to verify the requirements not explicitly defined in AS5653B and in this verification document.
AS-1A Avionic Networks Committee
Most electric 2-wheelers on the market today seek to replace combustion engine vehicles from 50cc to 150cc which equates to an electric motor power between 2 and 12 kW. The traction voltage level of these vehicles is mostly between 44V and 96V. However, the actual choice of voltage on a specific vehicle seems to be arbitrary and higher voltage does not necessarily correlate with higher motor power. This paper seeks to highlight considerations and tradeoffs which feed the choice of traction voltage levels. Important criteria are electrical safety standards and their impact on vehicle electrical architecture, the performance and availability of key electronics parts such as capacitors, MOSFETs, and gate drivers, while also highlighting functional safety aspects. This paper shows by a comprehensive analysis of the motor drive that for the vehicle class mentioned above the traction voltage level can be kept below 60V without any performance impact, while also ensuring electrical and
Schmitt, Stefan
Hurricane evacuations generate high traffic demand with increased crash risk. To mitigate such risk, transportation agencies can adopt high-resolution vehicle data to predict real-time crash risks. Previous crash risk prediction models mainly used limited infrastructure sensor data without covering many road segments. In this article, we present methods to determine potential crash risks during hurricane evacuation from an emerging alternative data source known as connected vehicle data that contain vehicle speed and acceleration information collected at a high frequency (mean = 14.32, standard deviation = 6.82 s). The dataset was extracted from a database of connected vehicle data for the evacuation period of Hurricane Ida on Interstate-10 in Louisiana. Five machine learning models were trained considering weather features and different traffic characteristics extracted from the connected vehicle data. The results indicate that the Gaussian process boosting and extreme gradient
Syed, Zaheen E MuktadiHasan, Samiul
Brake-by-wire systems have received more and more attention in the recent years, but a close look on the available systems shows, that they have not reached full by-wire level yet. Most systems are still using hydraulic connections between main cylinder and the brake calipers on at least one axle to ensure functional safety. Mostly, this is the front axle, since the front brakes have to convert more kinetic energy during braking manoeuvers. Electromechanical actuators are currently used for rear brakes in hybrid brake-by-wire applications solely, since a loss of the front brake calipers can lead to severe conditions and control loss of the vehicle during braking. Further, the higher mass of battery electric vehicles (BEVs) leads to much higher braking forces on both axles and to increased sizes of the electromechanical calipers. This article presents a concept for a brake-by-wire system for battery electric vehicles, which features electromechanical brake actuators on all corners and a
Heydrich, MariusLenz, MatthiasIvanov, ValentinStoev, JulianLecoutere, Johan
Improving the efficiency of Battery Electric Vehicles (BEVs) is crucial for enhancing their range and performance. This paper explores the use of virtual tools to integrate and optimise various systems, with a particular focus on thermal management. The study considers global legislative drive cycles and real-world scenarios, including hot and cold weather conditions, charging cycles, and towing. A virtual vehicle model is developed to include major contributors to range prediction and optimisation, such as thermal systems. Key components analysed include high voltage (HV) and low voltage (LV) consumers (compressors, pumps, fans), thermal system performance and behaviour (including cabin climate control), thermal controllers, and thermal plant models. The emergent behaviour resulting from the interaction between hardware and control systems is also examined. The methodology involves co-simulation of hardware and control models, encompassing thermal systems (coolant, refrigerant, cabin
Tourani, AbbasPrice, ChristopherDutta, NilabzaMoran Ruiz, Eduardo
Model-Based Systems Engineering (MBSE) enables requirements, design, analysis, verification, and validation associated with the development of complex systems. Obtaining data for such systems is dependent on multiple stakeholders and has issues related to communication, data loss, accuracy, and traceability which results in time delays. This paper presents the development of a new process for requirement verification by connecting System Architecture Model (SAM) with multi-fidelity, multi-disciplinary analytical models. Stakeholders can explore design alternatives at a conceptual stage, validate performance, refine system models, and take better informed decisions. The use-case of connecting system requirements to engineering analysis is implemented through ANSYS ModelCenter which integrates MBSE tool CAMEO with simulation tools Motor-CAD and Twin Builder. This automated workflow translates requirements to engineering simulations, captures output and performs validations. System
Upase, BalasahebShroff, Roopesh
Abstract Real-world driving data is an invaluable asset for several types of transportation research, including emissions estimation, vehicle control development, and public infrastructure planning. Traditional methods of real-world driving data collection use expensive GPS-based data logging equipment which provide advanced capabilities but may increase complexity, cost, and setup time. This paper focuses on using the Google Maps application available for smartphones due to the potential to scale-up real-world driving data logging. Samples of the potential data processing and information that can be gathered by such a logging methodology is presented. Specifically, two months of Google Maps driving data logged by a rural Michigan resident on their smartphone may provide insights on their driving range, duration, and geographic area of coverage (AOC) to guide them on future vehicle purchase decisions. Aggregating such statistics from crowd-sourcing real-world driving data via Google
Manoj, AshwinYin, SallyAhmed, OmarVaishnav, ParthStefanopoulou, AnnaTomkins, Sabina
This paper presents a highly integrated 4-in-1 power electronics solution for 800V electric vehicle applications, combining on-board charging (OBC), DC boost charging, traction drive, and high-voltage/low-voltage (HV/LV) power conversion in a single housing. Integration is achieved through the use of motor windings for charging and a custom-designed three-port transformer that magnetically couples HV and LV batteries while ensuring galvanic isolation. The system also employs a three-phase open-ended winding machine (OEWM) to support both single-(1P) and three-phase (3P) AC charging. A dual-bank DC/DC architecture allows for seamless integration of a redundant auxiliary power module (APM), enhancing functional safety and autonomy. In AC charging mode, the three-level (3L) T-type inverter operates as a Vienna rectifier for 3P charging and as a totem-pole power factor correction (PFC) circuit for 1P charging, with the motor windings utilized as PFC inductors. In DC boost charging mode
Wang, YichengTaha, WesamAnand, Aniket
Vehicles with SAE J3016TM Level 3 systems are exposed to road infrastructure, Vulnerable Road Users (VRUs), traffic and other actors on roadways. Hence safe deployment of Level 3 systems is of paramount importance. One aspect of safe deployment of SAE Level 3 systems is the application of functional safety (ISO 26262) to their design, development, integration, and testing. This ensures freedom from unreasonable risk, in the event of a system failure and sufficient provisions to maintain Dynamic Driving Task (DDT) and to initiate Minimum Risk Maneuver (MRM), in the presence of random hardware and systematic failures. This paper explores leveraging ISO 26262 standard to develop architectural requirements for enabling SAE Level 3 systems to maintain DDT and MRM during fault conditions and outlines the importance of fail-operability for Level 3 systems, from a functional safety perspective. At a high-level, UN Regulation No. 157 – Automated Lane Keeping Systems (ALKS) is used as a baseline
Mudunuri, Venkateswara RajuJayakumar, Namitha
Thanks to greatly increased energy density of battery, the average driving range of an electric vehicle has been advanced quite a lot. However, drastic reduction of driving range in cold ambient conditions still greatly restricts the wide application of electric vehicles. This paper presents a methodology of establishing multi-discipline coupled full vehicle model in AMESim to investigate the energy consumption of a pure electric vehicle in cold ambient conditions. Different strategies of battery heating through Positive Temperature Coefficient (PTC) part and/or combination of Motor Waste Heat Recovery (MWHR) were also investigated to study whether there is an improvement of driving range. Firstly, basic framework of the full vehicle model established in AMESim was introduced. Next, modeling details of individual sub-systems were illustrated respectively. Then, full vehicle energy consumption test was carried out in -7°C ambient condition to check the simulation accuracy. Finally, a
Zhou, ShuaiLiu, HuaijuYU, HuiliYan, XuYan, Junjie
Recent years have seen a strong move towards Software Defined Vehicles (SDV) concept as it is seen as an enabler for advancing the mobility by integrating complex technologies like Artificial Intelligence (AI) and Connected Autonomous Driving (CAD) into the vehicle. However, this comes with fundamental changes to the vehicle’s Electrical/Electronic (EE) architecture which require novel testing approaches. This paper presents FEV’s SDV Hardware-In- The-Loop (HIL) test setup which focuses on testing the developed HPC-based software. The functionality of the SDV HIL test setup is demonstrated by testing the software of multiple technologies within the High Performance Computer (HPC) environment like ADAS and teleoperation virtual control units with Over-the-air (OTA) up- dates capability. Test results show the effectiveness of utilizing FEV’s HIL setup in developing and validating the software of SDV platforms.
Obando, DavidAlzu'bi, HamzehCarreón Vásquez, ErwinAlrousan, QusayAlnajdawi, Mohammad SamiTasky, Thomas
Software Defined Vehicle (SDV) is gaining attraction in the automotive industry due to its wide range of benefits like remote software/feature upgrade, scalable functionality, Electronic Control Unit (ECU) commonization, remote diagnostics, increased safety, etc. To obtain all these benefits, ECUs need to be designed accordingly. ECU hardware must be designed to support a range of vehicles with a variety of loading, scalable features, power distribution, levels of processing, and networking architecture. Each domain has unique challenges to make the ECU economical and robust to operating conditions without compromising performance. This paper illustrates the critical hardware design challenges to accommodate a scalable SDV architecture. This paper focuses electrical interface design to support wide range of input/output port loads, scalable functionality, and robust diagnostics. Also, flexibility of microprocessor processing capability, ECU networking, and communication complexity are
Hasan, S.M. NayeemIrgens, Peter
Automotive technologies have been rapidly evolving with the introduction of electric powertrains, Advanced Driver-Assistance Systems (ADAS) and Over-The-Air (OTA) upgradability. Existing decentralized architectures are not an optimal choice for these applications, due to significant increases in cost and complexity. The transition to centralized architectures enables heavy computation to be delegated to a limited number of powerful Electronic Control Units (ECUs) called domain or zone controllers. The remaining ECUs, known as smart actuators, will perform well defined and specific tasks, receiving new parameters from the dedicated domain/zone controller over a network. Network bandwidth and time synchronization are the two major challenges in this transition. New automotive standards have been developed to address these challenges. Automotive Ethernet and Time Sensitive Networking (TSN) are two standards that are well-suited for centralized architectures. This paper presents a
Ayesh, MostafaBandur, VictorPantelic, VeraWassyng, AlanWasacz, BryonLawford, Mark
The rapid adoption of electric vehicles (EVs), driven by stricter emissions norms, is transforming both urban and rural mobility. However, significant challenges remain, particularly concerning the charging infrastructure and battery technology. The limited availability of charging stations and the reliance on current high-energy-density cells restrict the overall effectiveness of the e-mobility ecosystem. These constraints lead to shorter vehicle ranges and longer charging times, contributing to range anxiety—one of the most critical barriers to widespread EV adoption. Adding to these challenges, auxiliary systems, especially air-conditioning (AC) systems, significantly impact energy consumption. Among all auxiliary systems, the AC system is the most energy-intensive, often exacerbating range anxiety by reducing the distance an EV can travel on a single charge. Hence, it is essential to focus on enhancing the efficiency of AC systems. This involves redefining and optimizing system
Sen, SomnathJadhav, YashSingh, KaramjeetSorte, SwapnilAnwar, Md Tahir
This study focuses on the dynamic behavior and ride quality of three different modes of oil-gas interconnected suspension systems: fully interconnected mode, left-right interconnected mode, and independent mode. A multi-body dynamics model and a hydraulic model of the oil-gas suspension were established to evaluate the system's performance under various operating conditions. The research includes simulations of pitch and roll excitations, as well as ride comfort tests on different road surfaces, such as Class B roads and gravel roads. The analysis compares the effectiveness of the modes in suppressing pitch and roll movements and their impact on overall ride comfort. Results show that the independent mode outperforms the other two in minimizing roll, while the fully interconnected mode offers better pitch control but at the cost of reduced comfort. These findings provide valuable insights for the future design and optimization of oil-gas interconnected suspension systems, especially in
Xinrui, WangChen, ZixuanZhang, YunqingWu, Jinglai
Electric vehicles rely on accurate estimation of battery states to operate safely and efficiently. Traditionally, the state estimation is pack level and based on empirical models developed to capture the dynamics of a representative battery pack and hence falls short in accounting for cell-to-cell variations. These variations become more pronounced as the cells age within a battery pack under non-homogeneous mechanical, thermal, manufacturing, and electrical conditions. It is challenging to adapt the traditional physics-based model to changing battery dynamics in real-time. To improve the state estimation at the cell level, a data-driven approach utilizing streamed data from vehicles enabled by connectivity has been shown in this paper. While traditional data-driven approaches result in large models and require large quantities of data for training, the proposed method relies on combining the underlying physics of the electrochemical model with novel data-driven modeling techniques
Gupta, ShobhitHegde, BharatkumarHaskara, IbrahimShieh, Su-YangChang, Insu
Today’s vehicle architectures build trust on a framework that is static, binary and rigid; tomorrow’s software defined vehicle architectures require a trust model that is dynamic, nuanced, and adaptive. The Zero Trust paradigm supports this dynamic need, but current implementations focus on protecting information, not considering the challenges that automobiles face interacting with the physical world. We propose expanding Zero Trust for cyber-physical systems by weighing the potential safety impact of taking action based on information provided against the amount of trust in the message and develop a method to evaluate the effectiveness of this strategy. This strategy offers a potential solution to the problems of implementing real-time responses to active attacks over vehicle lifetime.
Kaster, RobertMa, Di
SAE J1939 is a CAN-based standard used for connecting various ECUs together within a vehicle. There are also some related protocols sharing many of the features of SAE J1939 across other industries including ISO11783, RVC and NMEA 2000. The standard has enabled the easy integration of electronic devices into a vehicle. However, as with all CAN-based protocols, several vulnerabilities to cyberattacks have been identified and are discussed in this paper. Many are at the CAN-level, whilst others are in common with those protocols from the SAE J1939 family of protocols. This paper reviews the known vulnerabilities that have been identified with the SAE J1939 protocol at CAN and J1939-levels, along with proposed mitigation strategies that can be implemented in software. At the CAN-level, the weaknesses include ways to spoof the network by exploiting parts of the protocol. Denial of Service is also possible at the CAN-level. At the SAE J1939-level, weaknesses include Denial of Service type
Quigley, Christopher
The trend for the future mobility concepts in the automotive industry is clearly moving towards autonomous driving and IoT applications in general. Today, the first vehicle manufacturers offer semi-autonomous driving up to SAE level 4. The technical capabilities and the legal requirements are under development. The introduction of data- and computation-intensive functions is changing vehicle architectures towards zonal architectures based on high-performance computers (HPC). Availability of data-connection to the backend and the above explained topics have a major impact on how to test and update such ‘software-defined’ vehicles and entire fleets. Vehicle diagnostics will become a key element for onboard test and update operations running on HPCs, as well as for providing vehicle data to the offboard backend infrastructure via Wi-Fi and 5G at the right time. The standard for Service Oriented Vehicle Diagnostics (SOVD) supports this development. It describes a programming interface for
Mayer, JulianBschor, StefanFieth, Oliver
With the rapid development of intelligent connected vehicles, their open and interconnected communication characteristics necessitate the use of in-vehicle Ethernet with high bandwidth, real-time performance, and reliability. DDS is expected to become the middleware of choice for in-vehicle Ethernet communication. The Data Distribution Service (DDS), provided by the Object Management Group (OMG), is an efficient message middleware based on the publish/subscribe model. It offers high real-time performance, flexibility, reliability, and scalability, showing great potential in service-oriented in-vehicle Ethernet communication. The performance of DDS directly impacts the stable operation of vehicle systems, making accurate evaluation of DDS performance in automotive systems crucial for optimizing system design. This paper proposes a latency decomposition method based on DDS middleware, aiming to break down the overall end-to-end latency into specific delays at each processing stage
Yu, YanhuaLuo, FengRen, YiHou, Yongping
This paper presents a conceptual study on how to perform an 8-step software FMEA by adding a signal analysis step into the 7-step FMEA of AIAG-VDA1st edition. In 8-step software FMEA, structural analysis, functional analysis, and the newly added signal analysis steps correspond to software architecting. Thus, the 8-step software FMEA has the effect of integrating software architecting and FMEA, and this study defines it as integrated software FMEA. In the structure tree, the functionality-assigned elements are designed to produce their variables through signal analysis, and by utilizing this variable information, it is newly proposed that software FMEA can be linked and extended to dependent failure analysis and fault tree analysis. In addition, the optimization step uses the variable information to link failure mitigation and prevention measures to verification and validation tests with traceability, which is helpful to verify its results. Since the 7-step FMEA of AIAG-VDA1st edition
Han, PoongGyoo
A method for performance calculation and experimental method of a high voltage heater system in electric vehicles is proposed. Firstly, heater outlet temperature and pressure drop of the heater are used as metrics to compare simulation results with experimental data, thereby validating the established model. Then, simulations are performed on two heater flow channel configurations: a cavity flow channel and a cooling fin flow channel. It is observed that the latter significantly reduces the heating plate temperature. This reduction enhances the protection of heating elements and extends their operational lifespan, demonstrating the advantages of incorporating cooling fins into the flow channel structure. The optimization variables for multi-objective optimization include the fin unit length, fin height, fin thickness, fin width, and spacing between two adjacent rows of fins. The optimization objectives include pressure drop, heat transfer efficiency, and heating plate temperature
Gong, MingWang, XihuiWang, DongdongShangguan, Wen-Bin
To promote the electric performance and safety of development for EV mobility, optimization methodology and design guide of high voltage bolted joint should be newly developed. This paper describes the development process of multi-physics (electrical, mechanical, thermal) FEA methodology, various experimental tests and establishment of optimization methodology of busbar bolted joint design in terms of bolt preload validation and joint temperature rise. The various key factors on high voltage joint tightening are quantitatively studied by utilizing this optimized methodology.
Lee, Joon HaWu, ZhijunGerini-Romagnoli, MarcoNassar, Sayed
In hybrid electric vehicles (HEVs), optimizing energy management and reducing system losses are critical for enhancing overall efficiency and performance. This paper presents a novel control strategy for the boost converter in hybrid electric vehicles (HEVs), aimed at minimizing energy losses and optimizing performance by modulating to a higher boost converter voltage only when necessary. Traditional approaches to boost converter control often lead to unnecessary energy consumption by maintaining higher voltage levels even when not required. In contrast, the proposed strategy dynamically adjusts the converter's operation based on real-time vehicle demands, such as driver input, Engine Start-Stop (ESS) events, Active Electric Motor Damping (AEMD), entry and exit transitions for Engine Fuel Cut-Off (DFCO), Noise-Vibration-Harshness (NVH) events like lash-zone crossing and other specific operational conditions. The control strategy leverages predictive algorithms and real-time monitoring
Basutkar, AmeyaHuo, ShichaoSullivan, ClaireBerger, DanielTischendorf, Christoph
This paper introduces a novel approach to optimize battery power usage and optimal engine torque for Axle disconnect device engagement under power constrained scenarios for range extended hybrid vehicles. Range extended hybrid architecture provides benefits of BEV architecture and relief the range anxiety that BEV drivers often have. The Axle disconnect device helps improve the efficiency of the battery power usage when it is disconnected and provides better drivability and performance to fulfill driver demand when it is connected [1]. Under power constraint scenario, the disconnect device engagement could take too long or eventually fail to engage and result in degradation for drivability and vehicle level performance. This novel approach is utilizing the engine to either generate more power to spin up the disconnect motor faster under discharge limited case or generate less power to allow the disconnect motor to spin down under charge limited case. The effectiveness of this approach
Sha, HangxingMadireddy, Krishna ChaitanyaBanuso, AbdulquadriKhanal, ShishirRock, JoePatel, Nadirsh
Items per page:
1 – 50 of 3824