Browse Topic: Architecture

Items (4,112)
As the automotive industry transitions toward software-defined vehicles and highly connected ecosystems, cybersecurity is becoming a foundational design requirement. A challenge arises with the advent of quantum computing, which threatens the security of widely deployed cryptographic standards such as RSA and ECC. This paper addresses the need for quantum-resilient security architectures in the automotive domain by introducing a combined approach that leverages Post-Quantum Cryptography (PQC) and crypto-agility. Unlike conventional static cryptographic systems, our approach enables seamless integration and substitution of cryptographic algorithms as standards evolve. Central to this work is the role of Hardware Security Modules (HSMs), which provide secure, tamper-resistant environments for cryptographic operations within vehicles. We present how HSMs can evolve into crypto-agile, quantum-safe platforms capable of supporting both hybrid (RSA/ECC + PQC) and fully post-quantum
Kuntegowda, Jyothi
This paper examines the technological and architectural transformations critical for advancing Software-Defined Vehicles (SDVs), emphasizing the decoupling of hardware from software. It highlights the limitations of traditional development models and proposes modern architectural approaches, including MPU-based designs and virtualization techniques, to foster flexible and scalable software ecosystems. Central to this vision is the concept of a Virtual Development Kit (VDK), which enables the design, validation, and scaling of SDVs even before physical hardware is available. The VDK integrates hardware platform emulators, operating systems, software stacks, and middleware optimized for high-performance computing (HPC) environments, providing developers with tools for early-stage testing, debugging, and integration while minimizing dependence on physical prototypes. As the automotive industry increasingly relies on software-defined features as primary drivers of innovation and
Khan, Misbah UllahGupta, Vishal
This study presents the design and implementation of an advanced IoT-enabled, cloud-integrated smart parking system, engineered to address the critical challenges of urban parking management and next-generation mobility. The proposed architecture utilizes a distributed network of ultrasonic and infrared occupancy sensors, each interfaced with a NodeMCU ESP8266 microcontroller, to enable precise, real-time monitoring of individual parking spaces. Sensor data is transmitted via secure MQTT protocol to a centralized cloud platform (AWS IoT Core), where it is aggregated, timestamped, and stored in a NoSQL database for scalable, low-latency access. A key innovation of this system is the integration of artificial intelligence (AI)-based space optimization algorithms, leveraging historical occupancy patterns and predictive analytics (using LSTM neural networks) to dynamically allocate parking spaces and forecast demand. The cloud platform exposes RESTful APIs, facilitating seamless
Deepan Kumar, SadhasivamS, BalakrishnanDhayaneethi, SivajiBoobalan, SaravananAbdul Rahim, Mohamed ArshadS, ManikandanR, JamunaL, Rishi Kannan
Modern vehicles require sophisticated, secure communication systems to handle the growing complexity of automotive technology. As in-vehicle networks become more integrated with external wireless services, they face increasing cybersecurity vulnerabilities. This paper introduces a specialized Proxy based security architecture designed specifically for Internet Protocol (IP) based communication within vehicles. The framework utilizes proxy servers as security gatekeepers that mediate data exchanges between Electronic Control Units (ECUs) and outside networks. At its foundation, this architecture implements comprehensive traffic management capabilities including filtering, validation, and encryption to ensure only legitimate data traverses the vehicle's internal systems. By embedding proxies within the automotive middleware layer, the framework enables advanced protective measures such as intrusion detection systems, granular access controls, and protected over-the-air (OTA) update
M, ArvindPraneetha, Appana DurgaRemalli, Ravi Teja
Software-defined vehicles are those whose functionalities and features are primarily governed by software, thus allowing continuous updates, upgrades, and the introduction of new capabilities throughout their lifecycle. This shift from hardware-centric to software-driven architectures is a major transformation that reshapes not only product development and operational strategies but also business models in the automotive industry. An SDV operating system provides the base platform to manage vehicle software and enable those advanced functionalities. Unlike traditional embedded or general-purpose operating systems, it is designed to meet the particular demands of modern automotive architectures. Reliability, safety, and security become crucial because even minor faults may have serious consequences. Key challenges to be handled by the SDV OS include how to handle software bugs, perform real-time processing, address functional safety and SOTIF compliance, adhere to regulations, minimize
Khan, Misbah UllahGupta, Vishal
The growing adoption of electric vehicles (EVs), particularly those utilizing High-Voltage battery systems, demands fast-charging infrastructure that ensures high efficiency and power quality. The proposed GJO algorithm is employed to optimize the control and switching parameters of the Vienna rectifier, thereby improving harmonic performance and conversion efficiency without altering the converter hardware. This paper focuses solely on control optimization of the Vienna rectifier topology and does not include DC–DC isolation or galvanic separation. Filter components are modeled with equivalent series resistance (ESR) to account for incremental losses. Simulation results demonstrate that the Golden Jackal optimization (GJO) based control reduces input current THD to 2.09%, has a power factor of 0.998, and achieves an efficiency of 98.53%, representing a fractional but consistent improvement over conventional control methods such as SSA, ALO, and PSO. These findings highlight the
R, Mohammed AbdullahN, Kalaiarasi
Off-highway equipment operates in an environment defined by extremes - extreme loads, extreme duty cycles, extreme temperatures and extreme expectations. OEMs and fleet operators face mounting pressure to deliver more power, more uptime and more precision from platforms that are becoming increasingly compact, intelligent and complex. Whether the task is hauling, lifting, dumping, clearing or moving materials, the equipment must deliver consistent, reliable performance without compromise. This pressure is reshaping the mobile-hydraulic ecosystem. The industry is steadily shifting away from piecemeal systems and toward integrated, intelligent power architectures that maximize efficiency across the entire vehicle. Leaders in this space, Eaton among them, demonstrate how a system-level approach to PTOs, hydraulic pumps and control valves is enabling a new generation of off-highway innovation.
Bogdan, Corneliu
Items per page:
1 – 50 of 4112