Browse Topic: Vehicle networking
Modern vehicles require sophisticated, secure communication systems to handle the growing complexity of automotive technology. As in-vehicle networks become more integrated with external wireless services, they face increasing cybersecurity vulnerabilities. This paper introduces a specialized Proxy based security architecture designed specifically for Internet Protocol (IP) based communication within vehicles. The framework utilizes proxy servers as security gatekeepers that mediate data exchanges between Electronic Control Units (ECUs) and outside networks. At its foundation, this architecture implements comprehensive traffic management capabilities including filtering, validation, and encryption to ensure only legitimate data traverses the vehicle's internal systems. By embedding proxies within the automotive middleware layer, the framework enables advanced protective measures such as intrusion detection systems, granular access controls, and protected over-the-air (OTA) update
With the increasing connectivity of modern vehicles, cybersecurity threats have become a critical concern. Intrusion Detection Systems (IDS) play a vital role in securing in-vehicle networks and embedded vehicle computers from malicious attacks. This presentation shares about an IDS framework designed specifically for POSIX-based operating systems used in vehicle computers, leveraging system-level monitoring, anomaly detection, and signature-based methods to identify potential security breaches. The proposed IDS integrates lightweight behavioral analysis to ensure minimal computational overhead while effectively detecting unauthorized access, privilege escalation, communication interface monitoring etc. By employing a combination of rule-based and OS datapoints, the system enhances threat detection accuracy without compromising real-time performance. Practical series deployments demonstrate the effectiveness of this approach in mitigating cyber threats in automotive environments
The rapid evolution of in-vehicle electronic systems toward zonal based architectures introduces a new layer of complexity in automotive diagnostics. Traditional architectures, built on Controller Area Network (CAN) and Local Interconnect Network (LIN) protocols, operate on a uniform Real-Time Operating System (RTOS), enabling simplified and consistent diagnostic workflows across Electronic Control Units (ECUs). However, next-generation platforms must accommodate diverse communication protocols (e.g., CAN, LIN, DoIP, SOME/IP) and heterogeneous operating systems (e.g., RTOS, Linux, QNX), resulting in fragmented and inflexible diagnostic processes. This paper presents a Diagnostic controller that addresses these challenges by enabling unified, scalable, and adaptive diagnostic capabilities across modern vehicle platforms. The proposed system consolidates protocol handling at the application level, abstracts diagnostic complexities, and allows cross-platform communication through
IEEE-1394b, Interface Requirements for Military and Aerospace Vehicle Applications, establishes the requirements for the use of IEEE Std 1394™-2008 as a data bus network in military and aerospace vehicles. The portion of IEEE Std 1394™-2008 standard used by AS5643 is referred to as IEEE-1394 Beta (formerly referred to as IEEE-1394b.) It defines the concept of operations and information flow on the network. As discussed in 1.4, this specification contains extensions/restrictions to “off-the-shelf” IEEE-1394 standards and assumes the reader already has a working knowledge of IEEE-1394. This document is referred to as the “base” specification, containing the generic requirements that specify data bus characteristics, data formats, and node operation. It is important to note that this specification is not designed to be stand-alone; several requirements leave the details to the implementations and delegate the actual implementation to be specified by the network architect/integrator for a
The SAE J1939 communications network is developed for use in heavy-duty environments and is suitable for horizontally integrated vehicle industries. The SAE J1939 communications network is applicable for light-duty, medium-duty, and heavy-duty vehicles used on-road or off-road, and for appropriate stationary applications which use vehicle-derived components (e.g., generator sets). Vehicles of interest include, but are not limited to, on-highway and off-highway trucks and their trailers, construction equipment, and agricultural equipment and implements. SAE J1939-71 is the SAE J1939 reference document describing SAE J1939 parameter (SP) and message (PG) definitions, SLOT (standard data encoding) definitions, conventions and notations used to specify the parameter (SP) placement in PG data, conventions for text data parameters, and conventions for PG transmission rates. This document previously contained the majority of the SAE J1939 OSI application layer data parameters and messages for
This document establishes methods to obtain, store, and access data about the health of a fiber optic network using commercially available inline optical power monitoring sensors. This document is intended for: Managers Engineers Technicians Contracting officers Third party maintenance agencies Quality assurance
Axiomatic AX141155, compact CAN-Bluetooth® Low Energy Converter, is IP67-rated, CE, FCC, and vibration compliant for off-highway. Operate in SAE J1939 interface or CAN (protocol independent) Bridge modes. Power from 12V, 24V or 48Vdc and temperature range from 30 to +85°C. Configure via the Axiomatic CAN2BT app on compatible Apple iOS or Android devices. axiomatic.com
Connected and autonomous vehicles (CAVs) and their productization are a major focus of the automotive and mobility industries as a whole. However, despite significant investments in this technology, CAVs are still at risk of collisions, particularly in unforeseen circumstances or “edge cases.” It is also critical to ensure that redundant environmental data are available to provide additional information for the autonomous driving software stack in case of emergencies. Additionally, vehicle-to-everything (V2X) technologies can be included in discussions on safer autonomous driving design. Recently, there has been a slight increase in interest in the use of responder-to-vehicle (R2V) technology for emergency vehicles, such as ambulances, fire trucks, and police cars. R2V technology allows for the exchange of information between different types of responder vehicles, including CAVs. It can be used in collision avoidance or emergency situations involving CAV responder vehicles. The
A new industry-first open platform for developing the software-defined vehicle (SDV) combines processing, vehicle networking and system power management with integrated software. NXP Semiconductors' new S32 CoreRide Platform was designed to run “multiple time-critical, safety-critical, security-critical applications in parallel,” Henri Ardevol, executive vice president and general manager of Automotive Embedded Systems for NXP Semiconductors, told SAE Media. NXP's new foundation platform for SDVs differs from the traditional approach of using multiple electronic control units (ECUs), each designed to handle specific vehicle system control tasks. Since each unit requires its own integration work, the integration workload exponentially increases with each additional ECU on a vehicle.
The automotive industry is currently undergoing a significant transformation characterized by technological and commercial trends involving autonomous driving, connectivity, electrification, and shared service. Vehicles are becoming an integral part of a much broader ecosystem. In light of various new developments, the Software-Defined Vehicle (SDV) concept is gaining substantial attention and momentum. SDV emphasizes the central role of software in realizing and enhancing vehicle functions, enriching features, improving performance, adapting to surrounding environment and external conditions, customizing user experience, addressing changing customer needs, and enabling vehicles to dynamically evolve over their entire life cycle. The advancements in vehicle Electrical/Electronic (E/E) architecture and various key technologies serve as the technical foundation for the emergence of SDV. This paper gives a definition of the SDV concept, provides views from different aspects, discusses the
The NMFTA’s Vehicle Cybersecurity Requirements Woking Group (VCRWG), comprised of fleets, OEMs and cybersecurity experts, has worked the past few years to produce security requirements for Vehicle Network Gateways. Vehicle Network Gateways play an important role in vehicle cybersecurity – they are the component responsible for assuring vehicle network operations in the presence of untrustworthy devices on the aftermarket or diagnostics connectors. This paper offers security requirements for these gateways in design, implementation and operation. The requirements are specified at levels of abstraction applicable to all vehicle networks down to CAN networks specifically. These requirements were captured using the https://github.com/strictdoc-project/strictdoc requirements management tool and will be made available also as a ReqIF format along with the paper at https://github.com/nmfta-repo/vcr-experiment.
Inverter is the power electronics component that drives the electrical motor of the electrical driven compressor (EDC) and communicates with the car network. The main function of the inverter is to convert the direct current (DC) voltage of the car battery into alternating current (AC) voltage, which is used to drive the three-phase electric motor. In recent days, inverters are present in all automotive products due to electrification. Inverter contains a printed circuit board (PCB) and electronic components, which are mounted inside a mechanical housing and enclosed by a protective cover. The performance of the electrical drive depends upon the functioning of the inverter. There is a strong demand from the customer to withstand the harsh environmental and testing conditions during its lifetime such as leakage, dust, vibration, thermal tests etc. The failure of the inverter leads to malfunction of the product, hence proper sealing and validation is necessary for inverters to protect
SAE J1939-82 compliance describes the compliance tests and procedures to verify an SAE J1939 electronic control unit (ECU) operates correctly on a SAE J1939 network. The purpose of these compliance procedures is to generate one or more test documents that outline the tests needed to assure that an ECU that is designed to operate as a node on a SAE J1939 network would do so correctly. SAE does not certify devices and these tests and their results do not constitute endorsement by SAE of any particular ECU. These tests are presented to allow testing of an ECU to determine self-compliance by the manufacturer of an ECU. The manufacturer can use its record of what procedures were run successfully to show the level of compliance with SAE J1939.
Items per page:
50
1 – 50 of 640