Browse Topic: Connectivity

Items (726)
The increased connectivity of vehicles expands the attack surface of in-vehicle networks, enabling attackers to infiltrate through external interfaces and inject malicious traffic. These malicious flows often contain anomalous semantic information, potentially leading to misleading control instructions or erroneous decisions. While most semantic-based anomaly detection methods for in-vehicle networks focus on extracting semantic context, they often overlook interactions and associations between multiple semantics, resulting in a high false positive rate (FPR). To address these challenges, the Adaptive Structure Graph Attention Network Model (AS-GAT) is proposed for in-vehicle network anomaly detection. Our approach combines a semantic extractor with a continuously updated graph structure learning method based on attention weight similarity constraints. The semantic extractor identifies semantic features within messages, while the graph structure learning module adaptively updates the
Luo, FengLuo, ChengWang, JiajiaLi, Zhihao
The term Software-Defined Vehicle (SDV) describes the vision of software-driven automotive development, where new features, such as improved autonomous driving, are added through software updates. Groups like SOAFEE advocate cloud-native approaches – i.e., service-oriented architectures and distributed workloads – in vehicles. However, monitoring and diagnosing such vehicle architectures remain largely unaddressed. ASAM’s SOVD API (ISO 17978) fills this gap by providing a foundation for diagnosing vehicles with service-oriented architectures and connected vehicles based on high-performance computing units (HPCs). For service-oriented architectures, aspects like the execution environment, service orchestration, functionalities, dependencies, and execution times must be diagnosable. Since SDVs depend on cloud services, diagnostic functionality must extend beyond the vehicle to include the cloud for identifying the root cause of a malfunction. Due to SDVs’ dynamic nature, vehicle systems
Boehlen, BorisFischer, DianaWang, Jue
Cybersecurity, particularly in the automotive sector, is of paramount importance in today’s digital age. With the advent of connected commercial vehicles, which leverage telematics for efficient fleet management, the landscape of automotive cybersecurity is rapidly evolving. These vehicles, integral to logistics and transportation businesses, are becoming increasingly connected, thereby escalating the risks associated with cybersecurity threats. These commercial vehicles are becoming prime targets for cyber-attacks due to their connectivity and the valuable data they hold. The potential consequences of these cyber-attacks can range from data breaches to disruptions in fleet operations, and even safety risks. This paper analyses the unique challenges faced by the commercial vehicle sector, such as the need for robust telematics systems, secure communication channels, and stringent data protection measures. Case studies of notable cybersecurity incidents involving commercial vehicles are
Mahendrakar, ShrinidhiMadarla, ManojGangapuram, SivaDadoo, Vishal
In an era where automotive technology is rapidly advancing towards autonomy and connectivity, the significance of Ethernet in ensuring automotive cybersecurity cannot be overstated. As vehicles increasingly rely on high-speed communication networks like Ethernet, the seamless exchange of information between various vehicle components becomes paramount. This paper introduces a pioneering approach to fortifying automotive security through the development of an Ethernet-Based Intrusion Detection System (IDS) tailored for zonal architecture. Ethernet serves as the backbone for critical automotive applications such as advanced driver-assistance systems (ADAS), infotainment systems, and vehicle-to-everything (V2X) communication, necessitating high-bandwidth communication channels to support real-time data transmission. Additionally, the transition from traditional domain-based architectures to zonal architectures underscores Ethernet's role in facilitating efficient communication between
Appajosyula, kalyanSaiVitalVamsi
Virtualization features such as digital twins and virtual patching can accelerate development and make commercial vehicles more agile and secure. There is one sure-fire way to secure commercial vehicles from cyber-attacks. “You just remove the connectivity,” quipped Brandon Barry, CEO of Block Harbor Cybersecurity and the moderator of a panel session on “cybersecurity of virtual machines” at the SAE COMVEC 2024 conference in Schaumburg, Illinois. Obviously, that train has left the station - commercial vehicles of all types, including trains, are only becoming more automated and connected, which increases the risks for cyber-attacks. “We have very connected vehicles, so attacks can be posed not just through powertrain solutions but also through telemetry, infotainment systems connected to different applications and services, and also through cloud platforms,” said Trisha Chatterjee, current product support and data specialist for fuel cell and hydrogen technology at Accelera by Cummins
Gehm, Ryan
Original equipment manufacturers, Tier 1 suppliers, and the rest of the value chain, including the semiconductor industry, are reshaping their product portfolios, development processes, and business models to support this transformation to software-defined vehicles (SDVs). The focus on software is rippling out through the automotive sector, forcing the industry to rethink organization, leadership, processes, and future roadmaps. The Software-defined Vehicle: Its Current Trajectory and Execution Challenges assesses the state of SDVs and explores the potential hurdles to execution and examines the work being done in the industry. The goal is to evaluate whether the implementation of SDVs will encounter the same fate as electrification or autonomous technologies, which after some level of disillusionment, are expected to pick up momentum in a more mature way. Click here to access the full SAE EDGETM Research Report portfolio
Goswami, Partha
ABSTRACT The advent of both new bidirectional communications capabilities and increasing levels of automation to offload driver workload is requiring the vehicle’s architecture to evolve substantially. Military vehicles of the US Armed Forces are subject to even greater cybersecurity threats. New vehicle hardware includes many sensors, cameras and other systems to capture road, weather and traffic conditions. These systems will be communicating the data both internally and externally from the vehicle. In addition, the vehicles will send and receive data via multiple communications protocols. Each of these communication protocols have unique capabilities and inherent weaknesses with regard to secure communications. With this vehicle evolution, and with the pervasive cyber threats, the vehicle will have to be architected for holistic vehicle cyber situational awareness. The US Army and US Marine Corps need to be fully versed and trained to recognize threats and effectively deal with them
McCormick, Scott J.Farnsworth, Elaina
Abstract Increased connectivity, burgeoning functionality, as well as surging software and integration complexity all conspire to blur the lines for requirements sourcing and implementation of new Ground Vehicles
Ridge, MikeShull, Forrest
ABSTRACT As the Army invests in the integration of VICTORY (Vehicular Integration for C4ISR/EW Interoperability) into its ground vehicle platforms, it becomes clear there are multiple ways to achieve interoperable if not common implementation across the fleet. There are positive and negatives associated with each of the possible VICTORY configurations that ultimately achieve the same results. This paper will outline, compare, and evaluate the 3 most popular implementation configurations. Both the Army and Marines are developing programs to implement VICTORY as a means of network improvement as well as more effective connectivity. A deeper understanding of the different architectures will reinforce what works well and achieves the goal, and provides insight into technical and operational areas that may be in need of some refinement or modification. The information provided by the analysis in all options can help guide the integration in a more successful direction by establishing a
Elms, Brett
ABSTRACT Antennas are critical to providing digital connectivity to our warfighters. Military mobile networks are much more constrained in operation compared to commercial wireless networks. Military vehicles are limited in size, and must support a large number of different radios. Challenges to both the network and the mobile vehicles require antennas to perform to higher standards. Antenna performance tradeoffs are presented, along with a description of antenna integration methods and emerging technologies to solve integration challenges
Cox, Brian J.
ABSTRACT The concept of handheld control systems with modular and/or integrated display provides the flexibility of operator use that supports the needs of today’s warfighters. A human machine interface control system that easily integrates with vehicle systems through common architecture and can transition to support dismounted operations provides warfighters with functional mobility they do not have today. With Size, Weight and Power along with reliability, maintainability and availability driving the needs of most platforms for both upgrade and development, moving to convertible (mounted to handheld) and transferrable control systems supports these needs as well as the need for the warfighter to maintain continuous control and command connectivity in uncertain mission conditions
Roy, Monica V.
ABSTRACT The concept of handheld control systems with modular and/or integrated display provides the flexibility of operator use that supports the needs of today’s warfighters. A human machine interface control system that easily integrates with vehicle systems through common architecture and can transition to support dismounted operations provides warfighters with functional mobility they do not have today. With Size, Weight and Power along with reliability, maintainability and availability driving the needs of most platforms for both upgrade and development, moving to convertible (mounted to handheld) and transferrable control systems supports these needs as well as the need for the warfighter to maintain continuous control and command connectivity in uncertain mission conditions
Roy, Monica V.
ABSTRACT Connected and automated vehicles (CAVs) leverage onboard sensing and external connectivity using Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I) and Vehicle-to-Everything (V2X) technologies to "know" the upcoming operating environment with some degree of certainty, significantly narrowing prior information gaps. These technologies have been traditionally developed and used for driver assistance and safety but are now being used to operate the vehicle more efficiently [1–5]. The eco-driving algorithm, which leverages the data available through these streams, performs two key functions: (1) acceleration smoothing and (2) eco-approach and departure (Eco-AND) at signalized intersections. The algorithm uses information from neighboring vehicles and signalized intersections to calculate an energy-efficient speed trajectory. This paper presents the development of an Android-based driver advisory application that leverages cellular Internet connectivity and Traffic
Bhagdikar, PiyushGankov, StasRengarajan, SankarSarlashkar, JayantHotz, Scott
ABSTRACT The modern battlefield demands a high degree of electronic capability for both on board processing and off board command and control. The trend for additional electronic systems on board combat vehicles continues to increase at a geometric rate. Battlefield demands and operational scenarios have resulted in a greater need for, advanced sensor technology, increased processing power, greater connectivity and systems interoperability (VICTORY). The integration of these advanced sensors with communications place a large bandwidth and power demand on the vehicle infrastructure. This paper will identify an advanced vehicle electronic architecture enabled by the latest high density processing technologies. An architecture has been developed and is under continued investigation at GDLS. The architecture includes deterministic network technology for spatial and temporal coherence of the sensor data. It provides a mission capability that is crew centric for any function at any crew
Silveri, Andrew
ABSTRACT The goal of Secure Wireless Communications is to provide controlled access to classified or controlled unclassified information (CUI) over any RF transport in the field – between vehicles and end users alike. Secure – yet simplified – system deployment, node integration, managed accessibility, network situational awareness, and configuration management are all essential for maintainability. Citation: D. Jedynak, C. Kawasaki, D. Gregory, “Managing Next Generation Open Standard Vehicle Electronics Architectures”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 13-15, 2019
Gregory, DavidNelson, Jeff
ABSTRACT FEV North America will discuss application of advanced automotive cybersecurity to smart vehicle projects, - software safety - software architecture and how it applies to similar features and capabilities across the fleet of DoD combat and tactical vehicles. The analogous system architectures of automotive and military vehicles with advanced architectures, distributed electronic control units, connectivity to networks, user interfaces and maintenance networks and interface points clearly open an opportunity for DoD to leverage the technology techniques, hardware, software, management and human resources to drive implementation costs down while implementing fleet modifications, infrastructure methodology and many of the features of the automotive cyber security spectrum. Two of the primary automotive and DoD subsystems most relevant to Cyber Security threat and protection are the automotive connected vehicles analogous to the DoD Command, Control, Communications, Computers
Chhawri, SumeetTarnutzer, StephanTasky, ThomasLane, Gerald R.
Many organizations have data stored in differing formats and various locations throughout the organization and often outside the organization. It is often difficult to access such data and to determine and access interconnected data and data derivatives. Developed at NASA Ames Research Center is a novel data management platform for managing interconnected data and its derivatives
In recent times there has been an upward trend in “Connected Vehicles”, which has significantly improved not only the driving experience but also the “ownership of the car”. The use of state-of-the-art wireless technologies, such as vehicle-to-everything (V2X) connectivity, is crucial for its dependability and safety. V2X also effectively extends the information flow between the transportation ecosystem pedestrians, public infrastructure (traffic management system) and parking infrastructure, charging and fuel stations, Etc. V2X has a lot of potential to enhance traffic flow, boost traffic safety, and provide drivers and operators with new services. One of the fundamental issues is maintaining trustworthy and quick communication between cars and infrastructure. While establishing stable connectivity, reducing interference, and controlling the fluctuating quality of wireless transmissions, we have to ensure the Security and Privacy of V2I. Since there are multiple and diverse
Sundar, ShyamPundalik, KrantiveerUnnikrishnan, Ushma
Based on advanced Automotive functionality, Vehicle networks has enabled the exchange of data to multiple domains and to meet these demands, more complex software applications, some of which require service-based cloud are developed. Exposure of data creates multiple threats for attacker to tamper security and privacy. Automotive cybersecurity topic has gained momentum based on multiple gaps identified in Automotive In vehicle and around the vehicle networks. In this paper, we provide an extensive overview on V2C (Vehicle to Cloud) and In-vehicle data protection, we also highlight methods to identify threats on any vehicle network connected to V2C and identify methods to verify security functionality using Fuzz or Penetration test protocol, we have identified gaps in existing security solutions and outline possible open issues and probable solution
Panda, JyotiprakashJain, Rushabh Deepakchand
Autonomous vehicle technologies have become increasingly popular over the last few years. One of their most important application is autonomous shuttle buses that could radically change public transport systems. In order to enhance the availability of shuttle service, this article outlines a series of interconnected challenges and innovative solutions to optimize the operation of autonomous shuttles based on the experience within the Shuttle Modellregion Oberfranken (SMO) project. The shuttle shall be able to work in every weather condition, including the robustness of the perception algorithm. Besides, the shuttle shall react to environmental changes, interact with other traffic participants, and ensure comfortable travel for passengers and awareness of VRUs. These challenging situations shall be solved alone or with a teleoperator’s help. Our analysis considers the basic sense–plan–act architecture for autonomous driving. Critical components like object detection, pedestrian tracking
Dehghani, AliSalaar, HamzaSrinivasan, Shanmuga PriyaZhou, LixianArbeiter, GeorgLindner, AlisaPatino-Studencki, Lucila
The industrial internet of things (IIoT) is the nervous system in manufacturing facilities worldwide, with programmable logic controllers (PLCs) serving as its vital synapses. This digital neural network is transforming isolated machines into interconnected ecosystems of unprecedented intelligence and efficiency. PLCs have evolved from simple control devices into sophisticated nodes in a vast, responsive network
Autonomous ground vehicles (AGV) are comprised of a network of interconnected components including sensors, drive-by-wire actuators, and on-board computing. This on-vehicle network is often connected to a larger network which may include a ground station, other autonomous systems, or remote servers. While AGV share many features with other mobile networked devices like cell phones, the AGV computing and networking architecture may be vulnerable in ways that other systems are not, and the consequences of an attack may result in more severe physical consequences. In this paper, we present a systematic study of the network architecture of an AGV system, a cross-domain evaluation of possible attack vectors for AGV, and an implementation of a simulated cyberphysical test range that reveals the real-world consequences of cyberphysical attacks on AGV
Goodin, ChristopherFuller, Sara C.Carruth, Daniel W.Moore, Kaneesha K.Skinner, Benjamin T.Mueller, Carl L.
Automated Vehicles (A)V development historically placed a significant focus on functionality and less on security. Programs such as Cybersecurity for Robotics and Autonomous Systems Hardening (CRASH) are addressing AV cybersecurity, strengthening security while simultaneously supporting the developer focus on functionality. This task is challenging due to continuous interaction by AVs with the environment through sensors and actuators, command and control, and remote connectivity. This paper presents an approach balancing functionality and security through an AV Zero-Trust Architecture (ZTA) which leverages authentication, cyber policy enforcement, and monitoring to detect and mitigate cyber-attacks. The AV ZTA approach is traceable to NIST 800-217 guidance for applying ZT concepts to Information Technology (IT) networks. The presented AV architecture example begins with a non-self-driving baseline, adding sensors, actuators, command/control, and remote connectivity. NIST 800-207
Murray, VictorLathrop, ScottMikulski, Dariusz
The deployment of autonomous urban buses brings with it the hope of addressing concerns associated with safety and aging drivers. However, issues related autonomous vehicle (AV) positioning and interactions with road users pose challenges to realizing these benefits. This report covers unsettled issues and potential solutions related to the operation of autonomous urban buses, including the crucial need for all-weather localization capabilities to ensure reliable navigation in diverse environmental conditions. Additionally, minimizing the gap between AVs and platforms during designated parking requires precise localization. Next-gen Urban Buses: Autonomy and Connectivity addresses the challenge of predicting the intentions of pedestrians, vehicles, and obstacles for appropriate responses, the detection of traffic police gestures to ensure compliance with traffic signals, and the optimization of traffic performance through urban platooning—including the need for advanced communication
Hsu, Tsung-Ming
Efficient fire rescue operations in urban environments are critical for saving lives and reducing property damage. By utilizing connected vehicle systems (CVS) for firefighting vehicles planning, we can reduce the response time to fires while lowering the operational costs of fire stations. This research presents an innovative nonlinear mixed-integer programming model to enhance fire rescue operations in urban settings. The model focuses on expediting the movement of firefighting vehicles within intricate traffic networks, effectively tackling the complexities associated with collaborative dispatch decisions and optimal path planning for multiple response units. This method is validated using a small-scale traffic network, providing foundational insights into parameter impacts. A case study in Sioux Falls shows its superiority over traditional “nearest dispatch” methods, optimizing both cost and response time significantly. Sensitivity analyses involving clearance speed, clearance time
Wei, ShiboGu, YuLiu, Han
The emergence of connected vehicles is driven by increasing customer and regulatory demands. To meet these, more complex software applications, some of which require service-based cloud and edge backends, are developed. Due to the short lifespan of software, it becomes necessary to keep these cloud environments and their applications up to date with security updates and new features. However, as new behavior is introduced to the system, the high complexity and interdependencies between components can lead to unforeseen side effects in other system parts. As such, it becomes more challenging to recognize whether deviations to the intended system behavior are occurring, ultimately resulting in higher monitoring efforts and slower responses to errors. To overcome this problem, a simulation of the cloud environment running in parallel to the system is proposed. This approach enables the live comparison between simulated and real cloud behavior. Therefore, a concept is developed mirroring
Weiß, MatthiasStümpfle, JohannesDettinger, FalkJazdi, NasserWeyrich, Michael
Modern cars and autonomous vehicles (AVs) use millimeter wave (mmWave) radio frequencies to enable self-driving or assisted driving features that ensure the safety of passengers and pedestrians. This connectivity, however, can also expose them to potential cyberattacks
The pace of innovation in automotive and heavy-duty transportation is rapidly accelerating. Manufacturers are harnessing advancements in electrification and electronification, ushering in new levels of safety, comfort, infotainment, connectivity, performance, and sustainability
Following its annual report detailing the growing cybersecurity threats to vehicles, fleets, and the networks they rely on, Upstream Security announced the launch of a generative AI tool to enhance its ability to reduce the risk posted by global threats. Israel-based Upstream, which has a vehicle security operations center (VSOC) in Ann Arbor, Mich., monitors millions of connected vehicles and Internet of Things (IoT) devices and billions of API transactions monthly. Ocean AI is built into the company's detection and response platform, called M-XDR, enabling its analysts, as well as those from OEMs and IoT vendors, to efficiently detect threat patterns and automate investigations before prioritizing a response
Clonts, Chris
With the rapid growth of automobile ownership, traffic congestion has become a major concern at intersections. In order to alleviate the blockage of intersection traffic flow caused by signals, reduce the length of vehicle congestion and waiting time, and for improving the intersection access efficiency, therefore, this article proposes a vehicle speed guidance strategy based on the intersection signal change by combining the vehicle–road cooperative technology. The randomness of vehicle traveling speed in the road is being considered. According to the vehicle traveling speed, a speed guidance model is established under different conditions. Finally, the effectiveness of the speed guidance strategy in this article is verified through experimental simulation, and the benefits of the intersection with intelligent control and traditional control are compared, and the experimental results show that the intelligent control method in this article can effectively reduce vehicle congestion and
Li, WenliLi, AnRen, YongpengWang, Kan
A new revolution has taken place in the automobile industry in recent years, intelligent and connected vehicle (ICV) [1] has achieved a higher market share in recent years and relevant technologies have been quickly developed and widely accepted, so the auto industry needs to make regulations for automated driving system (ADS) on ICVs, mainly to assure the safety of ICV. To meet the requirements above, the definition of operational design domain (ODD) [2, 3] was put forward by the Society of Automotive Engineers (SAE) and International Organization for Standardization (ISO) a few years ago. ODD defines necessary external environment conditions for the ADS to operate, but the internal status of the vehicle is also a key part of judging whether ADS can operate safely. Based on that, we propose a novel definition named operational design condition (ODC), which can supersede ODD to play a bigger role in improving regulations and standards, and promoting vehicle safety and technological
Sun, HangWu, JiajieZhang, MiaoZhang, Hang
The software installed in Electronic Control Units (ECUs) has witnessed a significant scale expansion as the functionality of Intelligent Connected Vehicles (ICVs) has become more sophisticated. To seek convenient long-term functional maintenance, stakeholders want to access ECUs data or update software from anywhere via diagnostic. Accordingly, as one of the external interfaces, Diagnostics over Internet Protocol (DoIP) is inevitably prone to malicious attacks. It is essential to note that cybersecurity threats not only arise from inherent protocol defects but also consider software implementation vulnerabilities. When implementing a specification, developers have considerable freedom to decide how to proceed. Differences between protocol specifications and implementations are often unavoidable, which can result in security vulnerabilities and potential attacks exploiting them. Considering the security risks and technology trends of vehicles, this paper uses model learning for the
Luo, FengWang, JiajiaLi, ZhihaoZhang, Xiaoxian
Vehicle-to-everything (V2X) communication, primarily designed for communication between vehicles and other entities for safety applications, is now being studied for its potential to improve vehicle energy efficiency. In previous work, a 20% reduction in energy consumption was demonstrated on a 2017 Prius Prime using V2X-enabled algorithms. A subsequent phase of the work is targeting an ambitious 30% reduction in energy consumption compared to a baseline. In this paper, we present the Eco-routing algorithm, which is key to achieving these savings. The algorithm identifies the most energy-efficient route between an Origin-Destination (O-D) pair by leveraging information accessible through commercially available Application Programming Interfaces (APIs). This algorithm is evaluated both virtually and experimentally through simulations and dynamometer tests, respectively, and is shown to reduce vehicle energy consumption by 10-15% compared to the baseline over real-world routes. This
Rajakumar Deshpande, ShreshtaBhagdikar, PiyushGankov, StanislavRengarajan, SankarSarlashkar, JayantHotz, ScottBhattacharjya, Shuvodeep
In the ever-evolving landscape of automotive technology, the need for robust security measures and dependable vehicle performance has become paramount with connected vehicles and autonomous driving. The Unified Diagnostic Services (UDS) protocol is the diagnostic communication layer between various vehicle components which serves as a critical interface for vehicle servicing and for software updates. Fuzz testing is a dynamic software testing technique that involves the barrage of unexpected and invalid inputs to uncover vulnerabilities and erratic behavior. This paper presents the implementation of fuzz testing methodologies on the UDS layer, revealing the potential vulnerabilities that could be exploited by malicious entities. By employing both open-source and commercial fuzzing tools and techniques, this paper simulates real-world scenarios to assess the UDS layer’s resilience against anomalous data inputs. Specifically, we deploy several open-source UDS implementations on a
Çelik, LeventMcShane, JohnScott, ChristianAideyan, IwinosaBrooks, RichardPese, Mert D.
The suspension system plays a crucial role in mitigating vehicle vibration, enhancing passenger comfort, and improving driving handling stability. While many mechanical experimental platforms exist for testing suspension system performance, they often need high costs and precision requirements. In the field of modern industrial product design, hardware-in-the-loop (HIL) simulation has become an invaluable tool. Electrically interconnected suspension (EIS) is a novel type of interconnected suspension by connecting various suspensions in an electrical way. The novel EIS avoids many drawbacks of traditional interconnected suspensions. The EIS is usually composed of electromagnetic motors and electrical networks (EN). By designing the structure of the EN reasonably, the EIS system can achieve decoupling control in multiple vibration modes. This paper introduces an HIL experimental platform established for a half-car EIS system based on an NI Compact RIO 9049. The half-car electrically
Xia, XiangjunLiu, PengfeiLi, WeihuaDu, HaipingNing, Donghong
To help ensure that engine components are as reliable as customers need them to be, we have thus far evaluated them by establishing development target values based on market requirements, having engineers design parts to meet these requirements, then performing durability tests. These durability requirements are calculated to provide a margin of safety for use in the marketplace. However, depending on the part, these evaluation criteria can be overly aggressive against how it is used in the market, having led to a decrease in development efficiency as engine systems become more advanced. Therefore, in this study, we focused on the subject of high-cycle fatigue, which affects numerous components and is highly scalable, and built up a process for estimating the life span of components that would enable us to conduct appropriate evaluations that reflect how parts are truly used in the market. Recently, more and more vehicles are equipped with Telematics Control Units, (TCUs) which are
Tanaka, KoheiYoshii, KentaTakahashi, Katsuyuki
The functions of modern intelligent connected vehicles are becoming increasingly complex and diverse, and software plays an important role in these advanced features. In order to decouple the software and the hardware and improve the portability and reusability of code, Service-Oriented Architecture (SOA) has been introduced into the automotive industry. Data Distribution Service (DDS) is a widely used communication middleware which provides APIs for service-oriented Remote Procedure Call (RPC) and Service-Oriented Communications (SOC). By using DDS, application developers can flexibly define the data format according to their needs and transfer them more conveniently by publishing and subscribing to the corresponding topic. However, current open source DDS protocols all use unicast communication during the transmission of user data. When there are multiple data readers subscribing to the same topic, the data writer needs to send a unicast message to each data reader individually
Li, BinqiZhu, YuanLu, KeZhong, XuSun, Zhipeng
Items per page:
1 – 50 of 726