Browse Topic: Connectivity
Modern vehicles require sophisticated, secure communication systems to handle the growing complexity of automotive technology. As in-vehicle networks become more integrated with external wireless services, they face increasing cybersecurity vulnerabilities. This paper introduces a specialized Proxy based security architecture designed specifically for Internet Protocol (IP) based communication within vehicles. The framework utilizes proxy servers as security gatekeepers that mediate data exchanges between Electronic Control Units (ECUs) and outside networks. At its foundation, this architecture implements comprehensive traffic management capabilities including filtering, validation, and encryption to ensure only legitimate data traverses the vehicle's internal systems. By embedding proxies within the automotive middleware layer, the framework enables advanced protective measures such as intrusion detection systems, granular access controls, and protected over-the-air (OTA) update
With the rise of AI and other new digital technologies on the horizon, ACT Expo 2026 will be a crucial intersection for industry leaders to map out the route ahead. Since 2011, ACT Expo has served as a meeting point of technology and business discussions for the commercial vehicle industry. The 2026 show in Las Vegas (www.actexpo.com) is shaping up to be another important waypoint for the industry as it continues to grapple with new technologies, regulations and other significant challenges. This year's agenda program builds on ACT Expo's long-established emphasis on clean transportation and places an increased focus on the digital frontier, including AI, autonomy, connectivity and software-defined vehicles. Truck & Off-Highway Enginering interviewed Erik Neandross, president of the Clean Transportation Solutions group at TRC, about what topics are emerging as the main trends heading into 2026 and what he thinks will be some of the most important themes of the upcoming convention.
Automotive Over-the-Air (OTA) software updating has become a cornerstone of the modern connected vehicle, enabling manufacturers to remotely deploy bug fixes, security patches, and new features. However, this convenience comes with significant cybersecurity challenges. This paper provides a detailed examination of automotive OTA update security and the software store (software Applications & services store) mechanisms. I discuss the current industry standards and regulations, notably ISO/SAE 21434 and the United Nations Economic Commission for Europe (UNECE) regulations UN R155 (cybersecurity) and UN R156 (software updates) and explain their relevance to secure OTA and software update management. I then explored the Uptane framework, an open and widely adopted architecture specifically designed to secure automotive OTA updates. Next, OTA-specific threat models are analyzed, detailing potential attack vectors and corresponding mitigation strategies. Real-world case studies are presented
With the rapid advancement of connected vehicle technologies, infotainment Electronic Control Units (ECUs) have become central to user interaction and connectivity within modern vehicles. However, this enhanced functionality has introduced new vulnerabilities to cyberattacks. This paper explores the application of Artificial Intelligence (AI) in enhancing the cybersecurity framework of infotainment ECUs. The study introduces AI-powered modules for threat detection and response, presents an integrated architecture, and validates performance through simulation using MATLAB, CANoe, and NS-3. This approach addresses real-time intrusion detection, anomaly analysis, and voice command security. Key benefits include zero-day exploit resistance, scalability, and continuous protection via OTA updates. The paper references real-world automotive cyberattack cases such as OTA vulnerability patches, Connected Drive exploits, and Uconnect hack, emphasizing the critical need for AI-enabled proactive
With the increasing connectivity of modern vehicles, cybersecurity threats have become a critical concern. Intrusion Detection Systems (IDS) play a vital role in securing in-vehicle networks and embedded vehicle computers from malicious attacks. This presentation shares about an IDS framework designed specifically for POSIX-based operating systems used in vehicle computers, leveraging system-level monitoring, anomaly detection, and signature-based methods to identify potential security breaches. The proposed IDS integrates lightweight behavioral analysis to ensure minimal computational overhead while effectively detecting unauthorized access, privilege escalation, communication interface monitoring etc. By employing a combination of rule-based and OS datapoints, the system enhances threat detection accuracy without compromising real-time performance. Practical series deployments demonstrate the effectiveness of this approach in mitigating cyber threats in automotive environments
Over-the-Air (OTA) update technology has come forth as a transformative aider in the domain of automotive technology, allowing Original Equipment Manufacturers (OEMs) and Tier-1 suppliers of Electric vehicles (EVs) to frequently make software modifications, enhancements, and bug fixes that are essential to optimize the performance of powertrain components such as the motor controller unit (MCU), Battery Management System (BMS), and Vehicle Control Unit (VCU). This facilitates them to remotely supply updates to the vehicle firmware and software by giving inputs of calibration data without requiring physical access to the vehicle. However, as OTA updates have a direct impact on vehicle’s performance, safety and cybersecurity, a stringent validation methodology is of prime importance prior to deployment process. This paper explores the integration of Hardware-in-Loop (HIL) simulation into the OTA validation pipeline as a means to ensure reliability, safety, and functional correctness of
The rapid evolution of modern automotive systems—powered by advancements in autonomous driving and connected vehicle technologies— pose fundamental challenges to design and integration. A specific challenge of these highly interconnected, software-driven systems is in ensuring their safety while avoiding spiralling costs and development times. This challenge calls for a more structured and rigorous approach to safety assurance than traditional methods. Traditional safety cases tend to take a linear, justification-focused approach that mainly focuses on positive assertions —compliance to safety —while giving limited attention to potential weaknesses, or gaps in supporting evidence. This practice may lead to criticism that such arguments are “too positive,” portraying an overly biased or optimistic view of system safety without sufficiently acknowledging areas of unresolved risk. As a result, conventional approaches for developing a safety case may overlook complex interactions
The traditional hydraulic braking system with vacuum booster technology is very mature, but it is not suitable for use in electric vehicles due to the lack of a vacuum source. The brake system by wire is an innovative electronic controlled braking technology, and the Electro-Hydraulic Brake is currently the most widely used brake system by wire in electric vehicles. The classification, structure, working principle, and advantages of Electro-Hydraulic Brake as a braking system for electric automobiles and intelligent connected vehicles are studied. The structure, working principle, advantages and disadvantages of Pump-Electro - Hydraulic Brake and Integrated Electro-Hydraulic Brake are compared and analyzed.
For a company focused on selling components to make physical connections in vehicles, TE Connectivity is more than ready for future growth in software-defined vehicles (SDVs) and the corresponding rise in vehicles with zonal architectures. Ruediger Ostermann, vice president and chief technology officer for Global Automotive at TE Connectivity, said TE agrees with industry estimates that the number of cars with a zonal architecture will rise from around 2% in 2023 to between 35-40% in the mid-2030s.
When identifying the content of this report, one of the goals was that it supports a nationally interoperable method for connected vehicles (CVs) to make traffic signal priority and/or preemption (TSPP) requests of connected intersections (CIs) that support priority and/or preemption services. Given that, this report specifies the over-the-air (OTA) interface between CVs and CIs to support TSPP applications using updated revisions of the SAE J2735 Signal Request Message (SRM) and Signal Status Message (SSM) and the use of a Wireless Access in Vehicular Environments (WAVE) Service Advertisement (WSA) to advertise support for TSPP at a CI. Included are a concept of operations, requirements, design, and message structure definitions developed using a detailed systems engineering process.
Devin Brock TE Connectivity
Items per page:
50
1 – 50 of 808