Browse Topic: Statistical analysis
Parts in automotive exhaust assembly are joined to each other using welding process. When the exhaust is subjected to dynamic loads, most of these weld joints experience high stresses. Hence it should be ensured that the exhaust assembly is designed to meet the requirements of exhaust durability for the estimated life of the vehicle. We also know that all parts used in manufacturing of exhaust system have inherent variations with respect to sheet metal thickness, dimensions and shape. Some parts like flex coupling and isolators have high variations in their stiffness based on their material and manufacturing processes. This all leads to a big challenge to ensure that the exhaust system meets the durability targets on a vehicle manufactured with all these variations. This works aims to evaluate the statistical spread in weld life of an exhaust with respect to inherent variations of its components. For the purpose of variational analysis, a Design of Experiments (DOE) is done where
To meet the requirements of high-precision and stable positioning for autonomous driving vehicles in complex urban environments, this paper designs and develops a multi-sensor fusion intelligent driving hardware and software system based on BDS, IMU, and LiDAR. This system aims to fill the current gap in hardware platform construction and practical verification within multi-sensor fusion technology. Although multi-sensor fusion positioning algorithms have made significant progress in recent years, their application and validation on real hardware platforms remain limited. To address this issue, the system integrates BDS dual antennas, IMU, and LiDAR sensors, enhancing signal reception stability through an optimized layout design and improving hardware structure to accommodate real-time data acquisition and processing in complex environments. The system’s software design is based on factor graph optimization algorithms, which use the global positioning data provided by BDS to constrain
Fused Deposition Modeling (FDM) is a widely recognized additive manufacturing method that is highly regarded for its ability to create complex structures using thermoplastic materials. Thermoplastic Polyurethane (TPU) is a highly versatile material known for its flexibility and durability. TPU has several applications, including automobile instrument panels, caster wheels, power tools, sports goods, medical equipment, drive belts, footwear, inflatable rafts, fire hoses, buffer weight tips, and a wide range of extruded film, sheet, and profile applications.. The primary objective of this study is to enhance the FDM parameters for TPU material and construct regression models that can accurately forecast printing performance. The study involved conducting experimental trials to examine the impact of key FDM parameters, such as layer thickness, infill density, printing speed, and nozzle temperature, on critical responses, including dimensional accuracy, surface quality, and mechanical
Electrochemical machining (ECM) is a highly efficient method for creating intricate structures in materials that conduct electricity, independent of their level of hardness. Due to the increasing demand for superior products and the necessity for quick design modifications, decision-making in the manufacturing sector has become progressively more difficult. This study primarily examines the use of Haste alloy in vehicle applications and suggests creating regression models to predict performance parameters in ECM. The experiments are formulated based on Taguchi's ideas, and mathematical equations are derived using multiple regression models. The Taguchi approach is employed for single-objective optimization to ascertain the ideal combination of process parameters for optimizing the material removal rate. ANOVA is employed to evaluate the statistical significance of process parameters that impact performance indicators. The proposed regression models for Haste alloy are more versatile
Additive Manufacturing (AM), particularly Fused Deposition Modeling (FDM), has emerged as a revolutionary method for fabricating complex geometries using a variety of materials. Polyethylene terephthalate glycol (PETG) is a thermoplastic material that is biodegradable and environmentally friendly, making it a preferred choice in additive manufacturing (AM) due to its affordability and ease of use. This study aims to optimize the FDM settings for PETG material and investigate the impact of key process parameters on printing performance. An experimental study was conducted to evaluate the influence of crucial factors in FDM, including layer thickness, infill density, printing speed, and nozzle temperature, on significant outcomes such as dimensional accuracy, surface quality, and mechanical properties. The use of the Grey Relational Analysis (GRA) approach enabled a systematic assessment of multi-performance characteristics, facilitating the optimization of the FDM process. The findings
Wire Electrical Discharge Machining (WEDM) is a sophisticated machining technique that offers significant advantages for processing materials with elevated hardness and complex geometries. Invar 36, a nickel-iron alloy characterized by a reduced coefficient of thermal expansion, is extensively used in the aerospace, automotive, and electronic sectors due to its superior dimensional stability across a wide temperature range. The primary goals are to improve machining settings and develop regression models that can precisely predict critical performance metrics. Experimental experiments were conducted using a WEDM system to mill Invar 36 under diverse machining parameters, including pulse-on time, pulse-off time, and current setting percentage (%). The machining performance was assessed by quantifying the material removal rate (MRR) and surface roughness (Ra). The design of experiments (DOE) methodology was used to systematically explore the parameter space and identify the optimal
Additive Manufacturing (AM), particularly Fused Deposition Modeling (FDM), has revolutionized the manufacturing sector by enabling the production of complex geometries using various materials. Polylactic Acid (PLA) is a biodegradable thermoplastic often used in additive manufacturing (AM) because to its eco-friendliness, cost-effectiveness, and processing simplicity. This research seeks to enhance the parameters of Fused Deposition Modeling (FDM) for PLA material with the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methodology. The researchers conducted experimental trials to investigate the influence of key FDM parameters, including layer thickness, infill density, printing speed, and nozzle temperature, on essential outcomes such as dimensional accuracy, surface quality, and mechanical qualities. The design of experiments (DOE) technique facilitated a systematic investigation of parameters. The TOPSIS method, a decision-making tool based on several
This article provides a comprehensive review of existing literature on AI-based functions and verification methods within vehicular systems. Initially, the introduction of these AI-based functions in these systems is outlined. Subsequently, the focus shifts to synthetic environments and their pivotal role in the verification process of AI-based vehicle functions. The algorithms used within the AI-based functions focus primarily on the paradigm of deep learning. We investigate the constituent components of these synthetic environments and the intricate relationships with vehicle systems in the verification and validation domain of the system. In the following, alternative approaches are discussed, serving as complementary methods for verification without direct involvement in synthetic environment development. These approaches include data-oriented methodologies employing statistical techniques and AI-centric strategies focusing solely on the core deep learning algorithm.
The flow structure and unsteadiness of shock wave–boundary layer interaction (SWBLI) has been studied using rainbow schlieren deflectometry (RSD), ensemble averaging, fast Fourier transform (FFT), and snapshot proper orthogonal decomposition (POD) techniques. Shockwaves were generated in a test section by subjecting a Mach = 3.1 free-stream flow to a 12° isosceles triangular prism. The RSD pictures captured with a high-speed camera at 5000 frames/s rate were used to determine the transverse ray deflections at each pixel of the pictures. The interaction region structure is described statistically with the ensemble average and root mean square deflections. The FFT technique was used to determine the frequency content of the flow field. Results indicate that dominant frequencies were in the range of 400 Hz–900 Hz. The Strouhal numbers calculated using the RSD data were in the range of 0.025–0.07. The snapshot POD technique was employed to analyze flow structures and their associated
During the early phase of vehicle development, one of the key design attributes to consider is the trunk. Trunk is the pillar that is responsible for user’s accommodate their baggage and make into customer needs in engineer metrics. Therefore, it is one of the key requirements to be considered during the vehicle design. Certain internal vehicle trunk characteristics such as the trunk height and length are engineer metrics that influence the occupants’ perception for trunk. One specific characteristic influencing satisfaction is the rear opening width lower for notch back segment, which is the subject of this paper. The objective of this project is to analyze the relationship between the rear opening width lower with the occupant’s satisfaction under real world driving conditions, based on research, statistical data analysis and dynamic clinics.
Wire Electrical Discharge Machining (WEDM) is a widely used manufacturing method that is employed to shape complex geometries in conductive materials such as cupronickel, which is highly regarded for its resistance to corrosion and ability to conduct heat. The aspiration of this investigation is to improve the effectiveness and accuracy of Wire Electrical Discharge Machining (WEDM) for cupronickel material by utilizing the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) optimization method. The study analyzes the impact of WEDM parameters, specifically pulse-on time, pulse-off time, and discharge current, on important machining outcomes such as surface roughness, material removal rate. Experimental trials are performed to collect data on these parameters and their corresponding machining characteristics. The TOPSIS optimization method is utilized to determine the most favourable parameter settings by evaluating each parameter combination against the ideal and
Wire Electrical Discharge Machining (WEDM) is an essential manufacturing process used to shape complex geometries in conductive materials such as cupronickel, which is valued for its corrosion resistance and electrical conductivity. The aim of this explorative study is to enhance the efficiency and precision of machining by creating a specialized predictive model using an Adaptive Neuro-Fuzzy Inference System (ANFIS) for cupronickel material. The study examines the intricate correlation between process variables of the WEDM (Wire Electrical Discharge Machining) technique, such as pulse-on time (Ton), pulse-off time (Toff), and discharge current, and crucial machining responses, including surface roughness, material removal rate. Data is collected through systematic experimentation in order to train and validate the ANFIS predictive model. The ANFIS model utilizes the collective learning capabilities of neural networks and fuzzy logic systems to precisely forecast machining responses by
Additive Manufacturing (AM), specifically Fusion Deposition Modeling (FDM), has transformed the manufacturing industry by allowing the creation of complex structures using a wide range of materials. The objective of this study is to enhance the FDM process for Thermoplastic Polyurethane (TPU) material by utilizing the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) optimization method. The study examines the influence of FDM parameters, such as layer height, nozzle temperature, and infill density, on important characteristics of the printing process, such as tensile strength, flexibility, and surface finish. The collection of experimental data is achieved by conducting systematic FDM printing trials that cover a variety of parameter combinations. The TOPSIS optimization method is utilized to determine the optimal parameter settings by evaluating each parameter combination against the ideal and anti-ideal solutions. This method determines the optimal parameter
The healthcare industry is evolving and facing two major challenges. First, the rise of chronic diseases. By 2050, chronic diseases such as cardiovascular diseases, cancer, diabetes, and respiratory illnesses could account for 86 percent of the 90 million deaths each year, according to the World Health Organization (WHO) in its 2023 World Health Statistics report. This increase is due to factors such as an aging population, lifestyle changes, and risk factors like high blood pressure, high blood sugar, and air pollution. Consequently, this creates a second challenge: added strain on healthcare resources. To address this, WHO recommends tackling the root causes of chronic diseases, promoting healthier behaviors, and ensuring universal access to healthcare resources.
A structural load estimation methodology was developed for RLV-TD HEX-01 hypersonic experimental mission, the maiden winged body technology demonstrator vehicle of ISRO. Primarily the method evaluates time history of station loads considering effects of vehicle dynamics and structural flexibility. Station loads of critical structures are determined by superposition of quasi-static aerodynamic loads, dynamic inertia loads, control surface loads and propulsion loads based on actual physics of the system, improving upon statistical load combination approaches. The technique characterizes atmospheric regime of flight from vehicle loads perspective and ensures adequate structural margin considering atmospheric variations and system level perturbations. Features to estimate change in loads due to wind variability and atmospheric turbulence are incorporated into the load estimation methodology. Augmentation in loads due to structural flexibility is assessed along the trajectory using vehicle
Items per page:
50
1 – 50 of 2267