Browse Topic: Failure analysis

Items (2,585)
ABSTRACT This research paper addresses the ground vehicle reliability prediction process based on a new integrated reliability prediction framework. The paper is an extension of the paper presented last year at the GVSETS symposium. The integrated stochastic framework combines the computational physics-based predictions with experimental testing information for assessing vehicle reliability. The integrated reliability prediction approach incorporates the following computational steps: i) simulation of stochastic operational environment, ii) vehicle multi-body dynamics analysis, iii) stress prediction in subsystems and components, iv) stochastic progressive damage analysis, and v) component life prediction, including the effects of maintenance and, finally, iv) reliability prediction at component and system level. To solve efficiently and accurately the challenges coming from large-size computational mechanics models and high-dimensional stochastic spaces, a HPC simulation-based
Ghiocel, Dan M.Negrut, DanLamb, DavidGorsich, David
ABSTRACT Problem: The traditional four (4) methods for improving reliability; 1) High design safety margin, 2) Reduction in component count or system architectural complexity, 3) Redundancy, and 4) Back-up capability, are often ignored or perceived as being excessively costly in weight, space claim as well as money. Solution 1: Discussed here are the practical and very cost effective methods for achieving improved reliability by Functional Interface Stress Hardening (FISHtm or FISHingtm). The Author has been able to apply FISH to eliminate 70-92% of unscheduled equipment downtime, within 30-60 days, for more than 30 of the Fortune 500 and many other large companies which utilize automation controls, computers, power electronics and hydraulic control systems. Solution 2: From Structured Innovation the 33 DFR Methods & R-TRIZ Tool can be used to grow or improve reliability, via rapid innovation. The R-TRIZ tool) is provided so that users can instantly select the best 2, 3 or 4 of these
Cooper, Howard C
ABSTRACT The age of large autonomous ground vehicles has arrived. Wherever vehicles are used, autonomy is desired and, in most cases, being studied and developed. The last barrier is to prove to decision makers (and the general public) that these autonomous systems are safe. This paper describes a rigorous safety testing environment for large autonomous vehicles. Our approach to this borrows elements from game theory, where multiple competing players each attempt to maximize their payout. With this construct, we can model an environment that as an agent that seeks poor performance in an effort to find the rare corner cases that can lead to automation failure
Penning, RyanEnglish, JamesMelanz, DanielLimone, BrettMuench, PaulBednarz, David
ABSTRACT Tracks and wheels are some of the top constituents of ground vehicle mobility and sustainment cost. Even small improvements in performance parameters and support strategies can go a long way. Analyzing equipment sustainment models can help identify these opportunities in conjunction with maintaining a situational awareness of R&D activities. Specifically, understanding component failure analysis, characterizing production road wheel material properties, conducting component testing, and benchmarking diverse manufacturing capabilities provides a roadmap to establishing and identifying “Best in Class” road wheel materials. Establishing and executing an R&D compounding plan to deliver 5X-10X durability improvement is hypothesized. Leveraging the Defense Mobility Enterprise (DME) and its authority under the 10 USC 2370 Section 845 Ground Vehicle Systems Other Transaction Agreement will allow the government to rapidly determine the technical feasibility of realizing such colossal
Patria, Garett S.Rescoe, StuBradford, WilliamMynderse, James A.
ABSTRACT Solid oxide fuel cell (SOFC)-based auxiliary power units (APUs) offer a quiet and efficient platform for remote power generation. SOFC systems often utilize a reformer subsystem which converts hydrocarbon fuels into a hydrogen-rich effluent stream utilized by the fuel cell stack for electrical power generation. Rochester Institute of Technology’s Center for Sustainable Mobility (RIT / CSM) has conducted research to analyze potential system failures and develop accelerated durability protocols for SOFC systems. Based on this experimental and analytical study, it has been shown that solid carbon formed during fuel reformation is quantifiable, predictable, and affects SOFC system durability. RIT / CSM further developed accelerated durability protocols for SOFC carbon related failure modes, utilizing carbon concentration measurements from SOFC systems combined with post-processing of system operational parameters. Fully integrated SOFC systems were employed to generate a
Walluk, Mark R.Smith, Daniel F.Trabold, Thomas A.Dewey, Scott B.
ABSTRACT Acceptance testing is considered a final stage of validation, and performing acceptance tests of an actual UGV system can be expensive and time-consuming. Therefore, this paper discusses simulation based acceptance testing for UGVs, which can significantly reduce the time and cost of the acceptance test. In this paper, both dynamic and static simulation models are developed, and the results from these simulations show that the static simulation can be used, rather than the more complex dynamic simulation, because of the slow operating speed of UGVs. This finding improves the development efficiently at the simulation model development phase. In addition, the developed simulation models provide a better understanding of the UGV failure modes. The static simulations can determine the required joint motor torques for various UGV loadings and maneuvers and provide data for the full range of operating motion. Specifically, given threshold joint torque value, the safe operating range
Lee, Hyo JongJin, Jionghua (Judy)Ulsoy, A. Galip
ABSTRACT To improve robustness of autonomous vehicles, deployments have evolved from a single intelligent system to a combination of several within a platoon. Platooning vehicles move together as a unit, communicating with each other to navigate the changing environment safely. While the technology is robust, there is a large dependence on data collection and communication. Issues with sensors or communication systems can cause significant problems for the system. There are several uncertainties that impact a system’s fidelity. Small errors in data accuracy can lead to system failure under certain circumstances. We define stale data as a perturbation within a system that causes it to repetitively rely on old data from external data sources (e.g. other cars in the platoon). This paper conducts a fault injection campaign to analyze the impact of stale data in a platooning model, where stale data occurs in the car’s communication and/or perception system. The fault injection campaign
Louis, August St.Calhoun, Jon C.
ABSTRACT Significant Design for Reliability (DfR) methodology challenges are created with the integration of autonomous vehicle technologies via applique systems in a ground military vehicle domain. Voice of the customer data indicates current passenger vehicle usage cycles are typically 5% or less (approximately 72 minutes of use in a twenty-four hour period) [2]. The time during which vehicles currently lay dormant due to drivers being otherwise occupied could change with autonomous vehicles. Within the context of the fully mature autonomous military vehicle environment, the daily vehicle usage rate could grow to 95% or more. Due to this potential increase in the duty or usage cycle of an autonomous military vehicle by an order of magnitude, several issues which impact reliability are worth exploring. Citation: M. Majcher, J. Wasiloff, “New Design for Reliability (DfR) Needs and Strategies for Emerging Autonomous Ground Vehicles”, In Proceedings of the Ground Vehicle Systems
Majcher, MonicaWasiloff, James
ABSTRACT Implementing Prognostic and Predictive Maintenance (PPMx) for the U.S. Army’s ground vehicle fleet requires the design and integration of on-platform predictive analytics. To support the design process, U.S. Army DEVCOM Ground Vehicle Systems Center (GVSC) and Applied Research Laboratory (ARL) Penn State researchers are developing a systematic approach that uses reliability modeling in a guiding role. The key steps of the process are building the initial reliability model from available data (e.g., system diagrams and physical layouts), augmenting with information on observed states and failure modes via subject matter experts, and then conducting trades on additional sensors and algorithms to determine a suitable predictive analytics capability. In this paper we provide an example of this process as applied to an Army ground vehicle, first focusing on a simplified sub-problem to demonstrate the technique, then providing statistics on the large scale process. Citation: M
Majcher, MonicaBennett, Lorri A.Banks, JeffreyLukens, MatthewNulton, EricYukish, Michael A.Merenich, John J.
ABSTRACT This report documents the investigation of a vibration-based diagnostic approach developed for automotive transmissions. Data was recorded throughout three durability tests that were conducted by the transmission OEM. Rebuilt transmissions were operated around the clock under the most demanding speed and load set-points until critical gear or bearing failures resulted in loss of operability. The analysis results indicate that an embedded diagnostic and predictive capability can be implemented for military ground vehicle transmissions using vibration-based techniques. The results also specifically show an early indication of a fault condition is possible three weeks before failure for the test transmission. A technique for detecting solenoid faults using only the existing control signals rather than response measurements comparison that does not require the installation of additional sensors was also developed through this effort and will be discussed. This paper highlights the
Lebold, MitchellPflumm, ScottHines, JasonBanks, JeffreyBednar, JonathanMarino, LarryBechtel, Jim
ABSTRACT Camber Corporation, under contract with the TACOM Life Cycle Management Command Integrated Logistics Support Center, has developed an innovative process of data mining and analysis to extract information from Army logistics databases, identify top cost and demand drivers, understand trends, and isolate environmental issues. These analysis techniques were initially used to assess TACOM-managed equipment in extended operations in Southwest Asia (SWA). In 2009, at the request of TACOM and the Tank Automotive Research, Development and Engineering Center (TARDEC), these data mining processes were applied to four tactical vehicle platforms in support of Condition Based Maintenance (CBM) initiatives. This paper describes an enhanced data mining and analysis methodology used to identify and rank components as candidates for CBM sensors, assess total cost of repair/replacement and determine potential return on investment in applying CBM technology. Also discussed in this paper is the
Ortland, Richard J.Bissonnette, Lee A.Miller, Douglas R.
ABSTRACT The M1 Abrams will be the primary heavy combat vehicle for the US military for years to come. Improvements to the M1 that increase reliability and reduce maintenance will have a multi-year payback. The M1 engine intake plenum seal couples the air intake plenum to the turbine inlet, and has opportunities for improvement to reduce leakage and intake of FOD (foreign object debris) into the engine, which causes damage and premature wear of expensive components
Tarnowski, StevePennala, SteveGoryca, MaryKauth, Kevin
ABSTRACT In light of the cancellation of MIL-STD 1629A on 4 August 1998 with no superseding document, this paper outlines the tailoring of an effective industry tool for risk identification and prioritization that will lead to more reliable weapon systems for the warfighter, with reduced total ownership costs. The canceled MIL-STD 1629A used Failure Mode Effects and Criticality Analysis (FMECA) which is similar in method to FMEA but with an added factor called Criticality for prioritization. In FMEA approach, criticality is addressed by the Risk Priority Number (RPN) and other ways to prioritize risk beyond those single criteria. Tank Automotive Research Development and Engineering Center (TARDEC), Systems Engineering Group (SEG) has tailored the FMEA’s Severity, Occurrence, and Detection ranking tables to suit DOD Systems by developing an additional scale (1 – 5) for severity and occurrence parameters for the existing industry scale (1 – 10). This will facilitate transitioning risks
Rizk, Kadry
ABSTRACT Protection Engineering Consultants (PEC) has performed static and dynamic-pendulum tests on bolted and welded connection sub-assemblies to generate data for development and validation of modeling approaches capable of accurately predicting the behavior of connections exposed to shock loads. The connections consisted of Rolled Homogeneous Armor (RHA) steel plates, Grade 8 bolts, and fillet welds of ER80-S wire, as typically used in armored vehicles. A summary of the forty physical tests on nine connection configurations are provided along with strain gage and Digital Image Correlation (DIC) data. The specimens were designed to have typical failure modes, i.e. bolt shear, plate tear-out, and weld shear fracture. Using these data, high-fidelity numerical models were developed, with exceptionally good comparisons to the experimental data. During the development of the numerical models, crucial modeling parameters were identified and were shown to have significant influence to the
Hadjioannou, MichalisBarsotti, MattSammarco, EricStevens, David
ABSTRACT A newly developed structural adhesive demonstrates a unique combination of high strength (43 ± 2 MPa) and displacement (4.7 ± 1.2 mm) in aluminum lap joint testing. Bulk material characterization of the prototype adhesive reveals its extreme ductility, with nearly 80% shear strain before failure and a 2.5-fold increase in strain energy density as compared to commercial structural adhesives. The prototype adhesive is found to maintain 67 to 82% of its initial strength under extreme environmental conditions, including at high temperatures (71°C), after high humidity (63°C hot water soak, 2 weeks), and after corrosive conditions (B117 salt spray, 1000 hours). The prototype structural adhesive is shown to also generate high strength bonds with multiple substrates, including steel, carbon fiber, and mixed material joints, while also providing galvanic isolation
Pollum, MarvinKriley, JosephNakajima, MasaTan, Kar TeanStalker, JeffreyFleischauer, RichardRearick, Brian
ABSTRACT Program offices and the test community all desire to be more efficient with respect to testing but currently lack the analytical tools to help them fit early subsystem level testing into a framework which allows them to perform assessments at the system level. TARDEC initiated a Small Business Innovative Research (SBIR) effort to develop and deploy a system reliability testing and optimization tool that will quantify the value of subsystem level tests in an overall test program and incorporate the results into system level evaluations. The concept software, named the Army Lifecycle Test Optimization (ALTO) tool, provides not only the optimization capability desired, but also other key features to quickly see the current status, metrics, schedule, and reliability plots for the current test plan. As the user makes changes to the test plan, either by running the optimization or adjusting inputs or factors, the impacts on each of these areas is computed and displayed
Luna, JoelSnider, SharonBrudnak, MarkLaRose, BryanMorgan, MelissaKosinski, DanScott, Mike
ABSTRACT The functionality of the next-generation Department of Defense platforms, such as the Small Unmanned Ground Vehicles (SUGV) and Small Unmanned Arial Vehicles (SUAV), requires strongly electronics-rich architectures. The reliability of these systems will be dependent on the reliability of the electronics. These electronic systems and the critical components in them can experience extremely harsh thermal and vibrations environments. Therefore, it is imperative to identify the failure mechanisms of these components through experiments and simulation based on physics-of-failure methods. One of the key challenges in recreating life-cycle vibration conditions during design and qualification testing in the lab is the re-creation of simultaneous multi-axial excitation that closely mimics what the product experiences in the field. Currently, there are two common approaches in the industry when testing a prototype or qualifying a product for multi-axial vibration environments. One
Habtour, EdMortin, DavidChoi, CholminDasgupta, Abhijit
ABSTRACT This paper identifies the failure modes of military track bushings during lab testing and looks at correlation of lab tests failure modes with those found in field testing failures. In an effort to understand and duplicate the failures seen in the field, a track shoe was modified to measure the displacement (magnitude and direction) of the bushing pin relative to the inside diameter of the track shoe bore. Utilizing Hall Effect Technology and a small data acquisition system, test course data was recorded and analyzed. A specially designed bushing test machine, capable of testing the entire track pitch, was also designed and built in order to duplicate the field failure in a laboratory environment
Gruenberg, ScottBradley, ScottGentner, StephenOstberg, David
ABSTRACT Structural optimization efforts for blast mitigation seek to counteract the damaging effects of an impulsive threat on critical components of vehicles and to protect the lives of the crew and occupants. The objective of this investigation is to develop a novel optimization tool that simultaneously accounts for both energy dissipating properties of a shaped hull and the assembly constraints of such a component to the vehicle system. The resulting hull design is shown to reduce the blast loading imparted on the vehicle structure. Component attachment locations are shown to influence the major deformation modes of the target and the final hull design
Tan, HuadeGoetz, JohnTovar, AndrésRenaud, John E.
ABSTRACT Use of Model-Based Design (MBD) processes for embedded controls software Development has been purported for nearly the last decade to result in cost, quality, and delivery improvements. Initially the business case for MBD was rather vague and qualitative in nature, but more data is now becoming available to support the premise for this development methodology. Many times the implementation of MBD in an organization is bundled with other software process improvements such as CMMI or industry safety standards compliance, so trying to unbundle the contributions from MBD has been problematic. This paper addresses the dominant factors for MBD cost savings and the business benefits that have been realized by companies in various industries engaged in MBD development. It also summarizes some key management best practices and success factors that have helped organizations achieve success in MBD deployment
Lannan, Ron
ABSTRACT In today’s competitive market, OEMs are racing towards developing more efficient vehicles without sacrificing on its performance. In this process, they’re forced to evaluate new technologies and designs in various subsystems. Most of the sub-systems today have become “intelligent”, which means that the controllers have become quintessential for the system’s behavior. Equally important are the physical behavior of the plant that needs to be controlled. These two independent groups have their own design and development cycle and the challenge for the companies have been in bridging the gap so as to identify potential failure modes. This paper discusses an Architecture-driven Model Based Development process that can address the challenges posed during the development. Three key enabling technologies – Imagine.Lab System Synthesis, Imagine.Lab SysDM & Imagine.Lab AMESim are leveraged in this process
Radhakrishnan, KarthikeyanPadmanaban, RameshPaike, RavindraVijay, Hari
ABSTRACT High life cycle costs coupled with durability and environmental challenges of tracked vehicles in South West Asia (SWA) have focused R&D activities on understanding failure modes of track components as well as understanding the system impacts on track durability. The durability limiters for M1 Abrams (M1, M1A1, and M1A2) T-158LL track systems are the elastomeric components. The focus of this study is to review test methodology utilized to collect preliminary data on the loading distribution of a static vehicle. Proposed design changes and path forward for prediction of durability of elastomers at the systems level from component testing will be presented
Ostberg, DavidBradford, Bill
ABSTRACT In this work, Abrams tank track system T-158LL backer pad elastomer self-heating and fatigue behavior was characterized experimentally, and the backer pad design was digitally twinned to show how complex in-service conditions can be evaluated virtually. The material characterization included measurement of the thermal properties and dissipative characteristics of the rubber compound, as well as its fatigue crack growth rate curve and crack precursor size. The analysis included 1) a structural finite element analysis of the backer pad in operation to obtain the load history, 2) a thermal finite element analysis to obtain steady-state operating temperature distribution within the backer pad, and 3) a thermo-mechanical fatigue analysis using the Endurica CL fatigue solver to estimate the expected service life and failure mode of the backer pad. As validation, experiments were conducted on the backer pad to measure operating temperature, fatigue life, and failure mode over a
Mars, William V.Castanier, MatthewOstberg, DavidBradford, William
ABSTRACT The use of lead-free components in electronic modules destined for defense applications requires a deep understanding of the reliability risks involved. In particular, pad cratering, tin whiskers, shock and vibration, thermal cycling and combined environments are among the top risks. Testing and failure analysis of representative assemblies across a number of scenarios, including with and without risk mitigations, were performed to understand reliability of lead-free assembly approaches, in comparison with leaded and mixed solder approaches. The results lead to an understanding of lead-free reliability and how to improve it, when required. This outcome is resulting in user acceptance of lead-free electronics, which is timely given the increasing scope of lead-free legislation
Straznicky, Ivan
ABSTRACT Systems integration is crucial in highly technical products, not only for the current operational need, but also for future operations in a dynamic environment. A good case example is the various product development endeavors to support military operations. In a 2012 revelation by the U.S. Government Accountability Office (GAO), it was reported that the U.S. Air Force would spend $9.7 billion over 20 years to upgrade the capabilities of its F-22A Raptor as a result of the service’s failure to anticipate the plane’s long-term need for technology modernization. This is a product integration debacle. Applying a systems engineering technique could improve the systems efficiency and process effectiveness for new product development. This paper presents the DEJI (Design, Evaluate, Justify, and Integrate) model as an enhancement technique that can facilitate the integration needs on the future continuum of new technological developments
Badiru, Adedeji B.Maloney, Anna E.
ABSTRACT Traditionally, the life cycle management of military vehicle fleets is a lengthy and costly process involving maintenance crews completing numerous and oftentimes unnecessary inspections and diagnostics tests. Recent technological advances have allowed for the automation of life cycle management processes of complex systems. In this paper, we present our process for applying artificial intelligence (AI) and machine learning (ML) in the life cycle management of military vehicle fleets, using a Ground Vehicle fleet. We outline the data processing and data mapping methodologies needed for generating AI/ML model training data. We then use AI and ML methods to refine our training sets and labels. Finally, we outline a Random Forest classification model for identifying system failures and associated root causes. Our evaluation of the Random Forest model results show that our approach can predict system failures and associated root causes with 96% accuracy
Kern, Maxwell C.Cengic, Arif
ABSTRACT Army vehicles are complex due to various on-board mission critical communication devices. The Army cannot afford unreliable software to interact between the devices. The Army vehicle software’s reliability is influenced by multiple factors during or prior to its development. Using complex statistical and mathematical models, software’s reliability can be predicted, but it is dependent on the accuracy and context of the historical software failure data. The cost of developing such complex models does not yield a good return on investment. The data collection process to use these models is very difficult and time consuming. In this paper, we propose reliability metrics based on the current software development and design process factors. We also propose a fuzzy logic based software reliability prediction algorithm using the proposed reliability metrics
Dattathreya, Macam S.Singh, Harpreet
Abstract This paper presents a fault-tolerant powertrain topology for series hybrid electric vehicles (SHEVs). The introduction of a redundant phase leg that is shared by three converters in a standard SHEV drive system allows to maximize the reliability improvement with minimal part-count increase. The new topology features fast response in fault detection and isolation, and post-fault operation at rated power throughput. The operating principle, control strategy, and fault diagnostic methods are elaborated. The substantially improved reliability over the standard topology is verified by the Markov reliability model. Time-domain simulation based on a Saber model has been conducted and the results have verified the feasibility and performance of the proposed SHEV drive system with fault-tolerant capability. The experimental results from a prototype have further validated the robust fault detection scheme and excellent post-fault performance
Song, YantaoWang, Bingsen
ABSTRACT In this study, a styrene butadiene rubber, which is similar to the rubber used in road wheel backer pads of tracked vehicles, was investigated experimentally under monotonic and fatigue loading conditions. The monotonic loading response of the material was obtained under different stress states (compression and tension), strain rates (0.001/s to 3000/s), and temperatures (-5C to 50C). The experimental data showed that the material exhibited stress state, strain rate and temperature dependence. Fatigue loading behavior of the rubber was determined using a strain-life approach for R=0.5 loading conditions with varying strain amplitudes (25 to 43.75 percent) at a frequency of 2 Hz. Microstructural analysis of specimen fracture surfaces was performed using scanning electron microscopy and energy dispersive x-ray spectroscopy to determine the failure mechanisms of the material. The primary failure mechanisms for both loading conditions were found to be the debonding of particles on
Brown, H.R.Bouvard, J.L.Oglesby, D.Marin, E.Francis, D.Antonyraj, A.Toghiani, H.Wang, P.Horstemeyer, M.F.Castanier, M.P.
Summary Combat vehicle designers have made great progress in improving crew survivability against large blast mines and improvised explosive devices. Current vehicles are very resistant to hull failure from large blasts, protecting the crew from overpressure and behind armor debris. However, the crew is still vulnerable to shock injuries arising from the blast and its after-effects. One of these injury modes is spinal compression resulting from the shock loading of the crew seat. This can be ameliorated by installing energy-absorbing seats which reduce the intensity of the spinal loading, while spreading it out over a longer time. The key question associated with energy-absorbing seats has to do with the effect of various factors associated with the design on spinal compression and injury. These include the stiffness and stroking distance of the seat’s energy absorption mechanism, the size of the blast, the vehicle shape and mass, and the weight of the seat occupant. All of these
Eridon, James
ABSTRACT All CBM+ solutions must establish a business case considering cost of implementation and sustainment of value with a quantifiable return on investment. The business case must be traceable to specific failure modes, associated failure effects, criticality, and risk. Risk is not limited to safety and operational risks. Predictive systems by definition return both true and false predictions representing operational and financial risk from high false positive rates. There is also risk of losing operator confidence in predictive systems when there is a high false positive rate. All of these risks must be quantified and considered in the design and development of CBM+ systems. Model based approaches are effective in accelerating development, defining advanced functional characteristics, and efficiently testing dynamic effects of complex systems. CBM+ maintenance strategies rely on performance of complex systems
Nelson, DavidBanghart, Marc
ABSTRACT Traditional engineering concerns such as lubrication and cooling are still present even as vehicle functions become more complex. The established solution to monitor fluid levels has been a sight glass or a dipstick. More complex machines demand continuous knowledge of fluid levels without adding to operator workload. Remote monitoring of vehicle health will become normal and expected by owners and operators of evolving vehicle designs. This dual function fluid level sensor provides both electronic and operator monitoring of vehicle fluids, as well as redundancy in the event of electronic failure. Grouping of sensor components that are considered more likely to fail into one group, aids replacement when necessary. By incorporating a traditional dipstick into a continuous electronic monitoring solution, either method of level monitoring is facilitated
Swenson, David
ABSTRACT The increasing application of sensors, actuators, and complex algorithms for delivering artificial intelligence and connectivity in products and product-systems will drive an unprecedented growth in design complexity and software content, making it increasingly more difficult to ensure dependability in an economical manner. Much learning about the dependability of such new and innovative products is likely to happen as they are conceived and designed. Consequently, accelerated verification and validation iterations supported by easy and rapid storage and retrieval of failure knowledge must be enabled. No single software solutions provider effectively covers all three critical areas required for developing and delivering dependable smart connected products, namely, reliability engineering, systems engineering, and failure knowledge management. This paper mainly presents a potential map of the commonly used reliability engineering tools overlaid on the systems engineering
Agaram, Venkatesh
ABSTRACT Northrop Grumman has developed Tactical Ground Vehicle High-Availability (HA) middleware conforming to open standards specified by the Service Availability Forum (SAF), a consortium of industry-leading communications and computing companies. The software hot-spare and standby capabilities realized by this technology operate across tightly and loosely coupled farms of processors, ensuring critical processes remain operational with zero or minimal interruption, as chosen by system architects. High availability software delivers key benefits to the warfighter. Systems experience less downtime, helping to maintain continuity of tactical operations. Both hardware and software failures are managed, reducing the impact on system aborts and essential function failures and therefore reducing the number of computing elements required to meet system level availability SWAP-CC (Size, Weight, Power, and Cost, Cooling). The wrappers Northrop Grumman has created for open source and
Nguyen, Tri
ABSTRACT Situation: There are many advantages during development of a design that come from doing Design Failure Mode Effects Analysis (DFMEA). These advantages include more reliable, safer, self-diagnosing, designs with higher Availability. Strictly from a Design for Reliability (DFR) viewpoint, DFMEA is the key tool to; a. identify and prioritize most critical potential Failure Modes (FMs) of the design, before design development, b. Document critical FM effects and root causes, and c. facilitate corrective actions and DVP&R planning, and d. form a reliability model which can be used to track reliability over the life of the design. Problem: Since even small and simple designs often have a few hundred potential failure modes, preparing a good DFMEA is always a problem of Effectiveness vs., Efficiency. Traditionally it has been very hard to achieve Effectiveness when limited time, money and resources are available and the push for Efficiency, speed or deadlines, causes critical FMs to
Cooper, Howard CTananko, DmitryShutek, J. Gordon
ABSTRACT Vehicle prognostics are used to estimate the remaining useful life of components or subsystems, based on a limited number of measured vehicle parameters. Ideally, sensors would be available for every component and failure mode of interest, such that accurate data could be measured and used in prognostic estimates. However, this is impractical in terms of the number of sensors required and the costs to install such a system and maintain its integrity. A better solution is to relate the loading on a specific component to more generic vehicle behavior. This paper reviews a methodology referred to as the “Durability Transfer Concept”, which suggests that damage, or severity of usage, at various points of interest on a vehicle can be predicted simply from measured accelerations at some nominal location – a wheel axle, for example. Measured accelerations are double integrated to get displacements. Those displacements are then filtered using the Rupp or Lalanne method. A transfer
Halfpenny, AndrewHussain, ShabbirMcDougall, ScottPompetzki, Mark
ABSTRACT The U.S. Army - GVSC Materials Characterization and Failure Analysis team conducted a preliminary study in FY18 to address the issue of galvanic and pitting corrosion of U.S. Army ground vehicle system (GVS) structural surfaces. The objective of this study was to develop a permanent coating solution to supplement the existing corrosion protective coating of zinc rich primer and CARC paint, and extend the lifecycle of the armor. Twenty-five permanent, 0.1 inch layer, additively manufactured (AM) coated coupons of deposited Stellite 6 cobalt alloy on MIL-STD-46100 High Hard (HH) armor steel blocks were produced for cyclic testing using an un-optimized set of parameters. These coupons were subjected to a twenty-four week study in accelerated corrosive conditions of a fog spray chamber alongside primer-CARC coated and uncoated coupons. The resulting study showed no signs of pitting corrosion in the surface of the AM coated coupons, and minimal galvanic corrosion. Citation: I
Toppler, Ian JSchleh, Daniel CRomero, Claudio Gutierrez
ABSTRACT When the components of a military vehicle are designed, consideration is given to long term durability under repeated mission applications. In reality, surface and subsurface defects have always existed in weldments, forgings, and castings. These defects came from the manufacturing process or nucleated during the life of the vehicle. These defects may grow under repeated operations, resulting in ultimate failure of parts well before the design life is achieved. In such situations, a design based on crack initiation alone will not suffice, and a fracture mechanics based fatigue should also be included to predict the design life of a part accurately. In this paper a methodology is given on how to predict the available design life given the presence of defects in different parts of a military vehicle. An example will be provided with the process to demonstrate each step of the process
Porter, William De
This paper presents additive Weibull reliability model using customer complaints data and finite element fatigue (FEA) analysis data. Warranty data provides insight into the underlying customer issues. Reliability engineers prepare a prediction model based on this data to forecast the failure rate of components. However, warranty data has certain limitations with respect to prediction modeling. The warranty period covers only the infant mortality and useful life zone of a bathtub curve. Thus, predicting with solely warranty data generally cannot provide results with desired accuracy. The failure rate of wear-out components is driven by random issues initially and wear-out or usage-related issues at the end of the lifetime. For accurate prediction of failure rate, data need to be explored at wear-out zone of a bathtub curve. Higher cost always limits the testing of components until failure, but FEA fatigue analysis can provide the failure rate behavior of a part much beyond the warranty
Koulage, Dasharath BaliramMondal, KanchanManerikar, Dattatray Shriniwas
Transit agencies around the world have been investing in more battery electric buses (BEB) in an effort to combat the growing negative externalities stemming from the use of petrochemicals in combustion transit vehicles. These buses use new propulsion systems based primarily on lithium-ion batteries to cut carbon pollution and promote cleaner, faster, and safer rides. As new electrification technologies continue to penetrate the bus transit market, there is a continuous need to evaluate the safety and performance of these battery electric systems. To meet the safety and performance needs of technologies in transit buses, regulations and standards have been established to define best testing and industry practices. This paper details the current state of battery standards and regulations in automotive and transit vehicles, with consideration of battery failure modes and effects. Various governments and standard organizations have established numerous different regulations and standards
Jankord, GregoryGravante, EmanueleD'Arpino, Matilde
A power steering system helps the heavy-duty operator move the vehicle easily with the hydraulic pump that provides the fluid pressure and facilitating adequate operation. Some failures in the power steering system are due to external and internal factors that can reduce its service life. The external factors could be identified by ocular inspection but normally, due to internal failures, it is necessary to use a hydraulic pressure flow meter. However, this device makes it impossible to detect failures caused by the selected lubricant. This work aims to investigate the causes of power steering system seizure by using the tribological wear examination process and the lubricant characterization under some actual operation conditions. The lubricant characterization was carried out in a four balls tester using fresh and used samples of a re-refined oil based ATF, SAE 15 W40 and synthetic SAE 5 W30 oils at two temperatures. In general, the results showed an unsteady friction profile with
García-Maldonado, MiguelGallardo, EzequielMozqueda-Flores, LuisVite-torres, Manuel
This document proposes a method to demonstrate compliance to engine certification rules requiring tolerance of the control system to single failures leading to Loss of Power Control (LOPC) or Loss of Thrust Control (LOTC) for electric or hybrid engines. At issue 1, the document was developed to address only fully electric engine configurations targeting single engine CS/part 23 level 1 and 2 aircraft applications. The methodology proposed herein is based on an alternative definition of Loss of Power Control (LOPC) proposed by EASA, the FAA, TCCA, and ANAC in a joint Decision Document. It is therefore only applicable to projects which elect to implement this authority-proposed alternative definition. Other approaches for the demonstration of compliance of electric engines to control system single fault tolerance requirements, including approaches based on legacy practices applicable to piston engines, remain possible. They are, however, outside of the scope of this document. Future
E-40 Electrified Propulsion Committee
Leak Before Break (LBB) is now widely applied in pressure vessels and other pressurized components to detect the failure by unstable crack initiation and propagation. This concept is also applied in pneumatic brake system components to validate the structural rigidity of the devices. Pneumatic brake system component plays a vital role in the commercial vehicle platform. It consists of four major systems such as charging systems, actuating systems, control systems and actuators. Charging System includes compressor, reservoir, air dryer, and system protection valves. Compressor acts as an energy source for pneumatic air brake systems, reservoir is used to store the compressed air generated by the compressor, and system protection valves are used to divide and distribute the air flow to the brake system. Air dryers are used to absorb moisture, oil particles and tiny foreign contaminants, regulate the system pressure, and blow off the excess pressure from the system. It contains a
Govindarasu, AnbarasuT, SukumarSubramanian, Vivek
Items per page:
1 – 50 of 2585