Browse Topic: Failure analysis
Opening a tailgate can cause rain that has settled on its surfaces to run off onto the customer or into the rear loadspace, causing annoyance. Relatively small adjustments to tailgate seals and encapsulation can effectively mitigate these effects. However, these failure modes tend to be discovered relatively late in the design process as they, to date, need a representative physical system to test – including ensuring that any materials used on the surface flow paths elicit the same liquid flow behaviours (i.e. contact angles and velocity) as would be seen on the production vehicle surfaces. In this work we describe the development and validation of an early-stage simulation approach using a Smoothed Particle Hydrodynamics code (PreonLab). This includes its calibration against fundamental experiments to provide models for the flow of water over automotive surfaces and their subsequent application to a tailgate system simulation which includes fully detailed surrounding vehicle geometry
Image-based machine learning (ML) methods are increasingly transforming the field of materials science, offering powerful tools for automatic analysis of microstructures and failure mechanisms. This paper provides an overview of the latest advancements in ML techniques applied to materials microstructure and failure analysis, with a particular focus on the automatic detection of porosity and oxide defects and microstructure features such as dendritic arms and eutectic phase in aluminum casting. By leveraging image-based data, such as metallographic and fractographic images, ML models can identify patterns that are difficult to detect through conventional methods. The integration of convolutional neural networks (CNNs) and advanced image processing algorithms not only accelerates the analysis process but also improves accuracy by reducing subjectivity in interpretation. Key studies and applications are further reviewed to highlight the benefits, challenges, and future directions of
High-efficiency manufacturing involves the transmission of copious amounts of data, exemplified both by trends in the automotive industry and advances in technology. In the automotive industry, products have been growing increasingly complex, owing to multiple SKUs, global supply chains and the involvement of many tier 2 / Just-In Time (JIT) suppliers. On top of that, recalls and incidents in recent years have made it important for OEMs to be able to track down affected vehicles based on their components. All of this has increased the need for OEMs to be able to collect and analyze component data. The advent of Industry 4.0 and IoT has provided manufacturing with the ability to efficiently collect and store large amounts of data, lining up with the needs of manufacturing-based industries. However, while the needs to collect data have been met, corporations now find themselves facing the need to make sense of the data to provide the insights they need, and the data is often unstructured
The modern luxurious electric vehicle (EV) demands high torque and high-speed requirements with increased range. Fulfilling these requirements, arises the need for increased electric current supply to motors. Increased amperage through the stator causes higher losses resulting in elevated temperature across the motor components and its housing. In most of the cases, stator is mounted on the housing through interference fit to avoid any slippage during operation conditions. High temperature across the stator and housing causes significant thermal expansions of the components which is uneven in nature due to the differences in corresponding coefficient of thermal expansion (CTE) values. Housings are generally made of aluminium and tends to expand more having higher value of CTE than that of steel core of stator which may give rise to a failure mode related to stator slippage. To address this slippage if the amount of interference fit is increased, that’ll result in another failure mode
This paper introduces an innovative digital solution for the categorization and analysis of fractures in Auto components, leveraging Artificial Intelligence and Machine Learning (AI/ML) technologies. The proposed system automates the fracture analysis process, enhancing speed, reliability, and accessibility for users with varying levels of expertise. The platform enables users to upload images of fractured parts, which are then processed by an AI/ML engine. The engine employs an image classification model to identify the type of fracture and a segmentation model to detect and analyze the direction of the fracture. The segmentation model accurately predicts cracks in the images, providing detailed insights into the direction and progression of the fractures. Additionally, the solution offers an intuitive interface for stakeholders to review past analyses and upload new images for examination. The AI/ML engine further examines the origin of the fracture, its progression pattern, and the
Designing for the durability of motor vehicles requires accounting for various stress factors, including tractive loads, electrical loads, thermal loads, and structural loads. For electric vehicle propulsion systems, it is crucial to consider not just the magnitude and repeats of these loads but also their temporal sequence throughout the vehicle’s lifespan. The order and timing of these loads influence factors such as, charge and discharge cycles or active motor heating, which ultimately impact the damage to the propulsion system components like the cell and the motor. Traditionally, lifetime loads for durability assessments are derived from a single-user load profile consisting of a set of ‘representative’ drive cycles accounting for the cumulative damage equivalent to the real-world damage covered under warranty. This profile is typically based on historical usage data, user scenarios, and industry experience, but may not capture the diverse failure modes of the different propulsion
This paper focuses on the weak fault diagnosis of a dual - axes precision gear transmission system. Firstly, it elaborates on the structure and working principle of the system. Comprising components like azimuth and pitch channels, motors, and control units, the pitch channel's gear transmission chain is a key research area. Subsequently, fault modes and their harmfulness are analyzed. Different faults such as tooth surface wear and pitting are considered. These faults can lead to serious consequences like system failure and mission deviation. Based on this, a test system is constructed. It includes sensors and a data acquisition system to simulate faults and collect vibration signals. The signals are then analyzed to understand the system's behavior. Finally, a weak fault feature index based on time - domain entropy is developed. A threshold setting method based on severity index is also proposed. These methods together enable the accurate diagnosis of weak faults in the system, which
A 20-cell self-humidifying fuel cell stack containing two types of MEAs was assembled and aged by a 1000-hour durability test. To rapidly and effectively analyze the primary degradation, the polarization change curve is introduced. As the different failure modes have a unique spectrum in the polarization change curve, it can be regarded as the fingerprint of a special degradation mode for repaid analysis. By means of this method, the main failure mode of two-type MEAs was clearly distinguished: one was attributed to the pinhole formation at the hydrogen outlet, and another was caused by catalyst degradation only, as verified by infrared imaging. The two distinct degradation phases were also classified: (i)conditioning phase, featuring with high decay rate, caused by repaid ECSA change from particle size growth of catalyst. (ii) performance phase with minor voltage loss at long test duration, but with RH cycling behind, as in MEA1. Then, an effective H2-pumping recovery is conducted
This document presents minimum criteria for the design and installation of LED assemblies in aircraft. The use of "shall" in this specification expresses provisions that are binding. Nonmandatory provisions use the term "should."
The traditional braking system has been unable to meet the redundant safety requirements of the intelligent vehicle for the braking system. At the same time, under the change of electrification and intelligence, the braking system needs to have the functions of braking boost, braking energy recovery, braking redundancy and so on. Therefore, it is necessary to study the redundant braking boost control of the integrated electro-hydraulic braking system. Based on the brake boost failure problem of the integrated electro-hydraulic brake system, this paper proposes a redundant brake boost control strategy based on the Integrated Brake Control system plus the Redundant Brake Unit configuration, which mainly includes fault diagnosis of Integrated Brake Control brake boost failure, recognition of driver braking intention based on pedal force, pressure control strategy of Integrated Brake Control brake boost and pressure control strategy of Redundant Brake Unit brake boost. The designed control
SBW(Steer-by-wire) is a steering system that transmits the driver’s request and gives feedback to the driver through electrical signals. This system eliminates the mechanical connection of the traditional steering system, and can realize the decoupling of the steering wheel and the road wheel. In addition, this system has a perfect torque feedback system, which can accurately and delicately feedback the road surface information to the driver. However, vehicle driving deviation is one of the most common failure modes affecting vehicle performance in the automotive aftermarket, this failure mode can exacerbates tire wear, reducing their life cycle, at the same time, the driver must apply a counter torque to the steering wheel for a long time to maintain straight-line travel during driving. This increases the driver’s operational burden and poses safety hazards to the vehicle’s operation. Based on the steer-by-wire system and vehicle driving deviation characteristics, this paper proposes
LIDAR-based autonomous mobile robots (AMRs) are gradually being used for gas detection in industries. They detect tiny changes in the composition of the environment in indoor areas that is too risky for humans, making it ideal for the detection of gases. This current work focusses on the basic aspect of gas detection and avoiding unwanted accidents in industrial sectors by using an AMR with LIDAR sensor capable of autonomous navigation and MQ2 a gas detection sensor for identifying the leakages including toxic and explosive gases, and can alert the necessary personnel in real-time by using simultaneous localization and mapping (SLAM) algorithm and gas distribution mapping (GDM). GDM in accordance with SLAM algorithm directs the robot towards the leakage point immediately thereby avoiding accidents. Raspberry Pi 4 is used for efficient data processing and hardware part accomplished with PGM45775 DC motor for movements with 2D LIDAR allowing 360° mapping. The adoption of LIDAR-based AMRs
With the trend of increasing technological complexity, software content and mechatronic implementation, there are increasing risks from systematic failures and random hardware failures, which is to be considered within the scope of functional safety. ISO 26262 series of standards provides guidance to mitigate these risks by providing appropriate requirements and processes. To develop a safe product with respect to above mentioned complexities, it is very critical to develop a safe system and hence a thorough and robust “Technical Safety Concept” is very important to ensure absence of unreasonable risk due to hazards caused by malfunctions of E/E systems. ISO26262-Part 4 provides guidelines for “Product development at the system level”, to design safety-related systems that include one or more electrical and/or electronic (E/E) systems and that are installed in series production road vehicles. Defining requirements at system level for each individual technology and systematically
Items per page:
50
1 – 50 of 2605