Browse Topic: Failure analysis
This SAE Standard applies to equipment to be used with R-1234yf refrigerant only. It establishes requirements for equipment used to recharge R-1234yf to an accuracy level that meets Section 9 of this document and purity levels defined in SAE J2099. Refrigerant service equipment is required to ensure adequate refrigerant recovery to reduce emissions and provide for accurate recharging of mobile air-conditioning systems. Equipment shall be certified to meet all performance requirements outlined in this document and international/regional construction and safety requirements as outlined in this document.
Engineers can now capture and predict the strength of metallic materials subjected to cycling loading, or fatigue strength, in a matter of hours, not the months or years it takes using current methods. In a new study, researchers from the University of Illinois Urbana-Champaign reported that automated high-resolution electron imaging can capture the nanoscale deformation events that lead to metal failure and breakage at the origin of metal failure.
In the era of Industry 4.0, the maintenance of factory equipment is evolving with new systems using predictive or prescriptive methods. These methods leverage condition monitoring through digital twins, Artificial Intelligence, and machine learning techniques to detect early signs of faults, types of faults, locations of faults, etc. Bearings and gears are among the most common components, and cracking, misalignment, rubbing, and bowing are the most common failure modes in high-speed rotating machinery. In the present work, an end-to-end automated machine learning-based condition monitoring algorithm is developed for predicting and classifying internal gear and bearing faults using external vibration sensors. A digital twin model of the entire rotating system, consisting of the gears, bearings, shafts, and housing, was developed as a co-simulation between MSC ADAMS (dynamic simulation tool) and MATLAB (Mathematical tool). The gear and bearing models were developed mathematically, while
This Handbook is intended to accompany or incorporate AS5643, AS5643/1, AS5657, AS5706, and ARD5708. In addition, full understanding of this Handbook also requires knowledge of IEEE-1394-1995, IEEE-1394a, and IEEE-1394b standards. This Handbook contains detailed explanations and architecture analysis on AS5643, bus timing and scheduling considerations, system redundancy design considerations, suggestions on AS5643-based system configurations, cable selection guidance, and lessons learned on failure modes.
Opening a tailgate can cause rain that has settled on its surfaces to run off onto the customer or into the rear loadspace, causing annoyance. Relatively small adjustments to tailgate seals and encapsulation can effectively mitigate these effects. However, these failure modes tend to be discovered relatively late in the design process as they, to date, need a representative physical system to test – including ensuring that any materials used on the surface flow paths elicit the same liquid flow behaviours (i.e. contact angles and velocity) as would be seen on the production vehicle surfaces. In this work we describe the development and validation of an early-stage simulation approach using a Smoothed Particle Hydrodynamics code (PreonLab). This includes its calibration against fundamental experiments to provide models for the flow of water over automotive surfaces and their subsequent application to a tailgate system simulation which includes fully detailed surrounding vehicle geometry
Image-based machine learning (ML) methods are increasingly transforming the field of materials science, offering powerful tools for automatic analysis of microstructures and failure mechanisms. This paper provides an overview of the latest advancements in ML techniques applied to materials microstructure and failure analysis, with a particular focus on the automatic detection of porosity and oxide defects and microstructure features such as dendritic arms and eutectic phase in aluminum casting. By leveraging image-based data, such as metallographic and fractographic images, ML models can identify patterns that are difficult to detect through conventional methods. The integration of convolutional neural networks (CNNs) and advanced image processing algorithms not only accelerates the analysis process but also improves accuracy by reducing subjectivity in interpretation. Key studies and applications are further reviewed to highlight the benefits, challenges, and future directions of
Items per page:
50
1 – 50 of 2559