Browse Topic: Failure analysis

Items (2,621)
This SAE Aerospace Recommended Practice (ARP) establishes design, manufacturing performance and test requirements for linear mechanical actuators intended to be used for linear motion applications in response to manual or automatic power control system inputs. It is applicable, but not confined to, ball screws, sliding contact screws, roller screws, helical splines, rack and pinion assemblies, and skewed roller actuators. It is a reference for preparing detail specifications for mechanical actuators compatible and applicable to military or commercial aircraft systems
A-6B3 Electro-Mechanical Actuation Committee
This document presents minimum criteria for the design and installation of LED assemblies in aircraft. The use of "shall" in this specification expresses provisions that are binding. Nonmandatory provisions use the term "should
A-20C Interior Lighting
Thoracic injuries, most frequently rib fractures, commonly occur in motor vehicle crashes. With an increased reliance on human body models (HBMs) for injury prediction in various crash scenarios, all thoracic tissues and structures require more comprehensive evaluation for improvement of HBMs. The objective of this study was to quantify the contribution of costal cartilage to whole rib bending properties in physical experiments. Fifteen bilateral pairs of 5th human ribs were included in this study. One rib within each pair was tested without costal cartilage while the other rib was tested with costal cartilage. All ribs were subjected to simplified A-P loading at 2 m/s until failure to simulate a frontal thoracic impact. Results indicated a statistically significant difference in force, structural stiffness, and yield strain between ribs with and without costal cartilage. On average, ribs with costal cartilage experienced a lower force but greater displacement with a longer time to
Schaffer, RoseKang, Yun-SeokMarcallini, AngeloPipkorn, BengtBolte, John HAgnew, Amanda M
Autonomous vehicles for mining operations offer increased productivity, reduced total cost of ownership, decreased maintenance costs, improved reliability, and reduced operator exposure to harsh mining environments. A large flow of data exists between the remote operation and the ore haul vehicle, and part of the data becomes information for the maintenance sector which it monitors the operating conditions of various systems. One of the systems deserving attention is the suspension system, responsible for keeping the vehicle running and within a certain vibration condition to keep the asset operational and productive. Thus, this work aims to develop a digital twin-assisted system to evaluate the harmonic response of the vehicle’s body. Two representations were created based on equations of motion that modeled the oscillatory behavior of a mass-damper system. One of the representations indicates a quarter of the ore transport truck’s hydraulic system in a healthy state, called a virtual
Rosa, Leonardo OlimpioBranco, César Tadeu Nasser Medeiros
Mechanical component failure often heralds superficial damage indicators such as color alteration due to overheating, texture degradation like rusting or false brinelling, spalling, and crack propagation. Conventional damage assessment relies heavily on visual inspections performed by technicians, a practice bogged down by time constraints and the subjective nature of human error. This research paper delves into the integration of deep learning methodologies to revolutionize surface damage evaluation, addressing significant bottlenecks in diagnostic precision and processing efficiency. We detail the end-to-end process of developing an intelligent inspection system: selecting appropriate deep learning architectures, annotating datasets, implementing data augmentation, optimizing hyperparameters, and deploying the model for widespread user accessibility. Specifically, the paper highlights the customization and assessment of state-of-the-art models, including EfficientNet B7 for
Cury, RudonielGioria, GustavoChandrasekaran, Balaji
SBW(Steer-by-wire) is a steering system that transmits the driver’s request and gives feedback to the driver through electrical signals. This system eliminates the mechanical connection of the traditional steering system, and can realize the decoupling of the steering wheel and the road wheel. In addition, this system has a perfect torque feedback system, which can accurately and delicately feedback the road surface information to the driver. However, vehicle driving deviation is one of the most common failure modes affecting vehicle performance in the automotive aftermarket, this failure mode can exacerbates tire wear, reducing their life cycle, at the same time, the driver must apply a counter torque to the steering wheel for a long time to maintain straight-line travel during driving. This increases the driver’s operational burden and poses safety hazards to the vehicle’s operation. Based on the steer-by-wire system and vehicle driving deviation characteristics, this paper proposes
Xiangfei, XuQu, Yuan
The traditional braking system has been unable to meet the redundant safety requirements of the intelligent vehicle for the braking system. At the same time, under the change of electrification and intelligence, the braking system needs to have the functions of braking boost, braking energy recovery, braking redundancy and so on. Therefore, it is necessary to study the redundant braking boost control of the integrated electro-hydraulic braking system. Based on the brake boost failure problem of the integrated electro-hydraulic brake system, this paper proposes a redundant brake boost control strategy based on the Integrated Brake Control system plus the Redundant Brake Unit configuration, which mainly includes fault diagnosis of Integrated Brake Control brake boost failure, recognition of driver braking intention based on pedal force, pressure control strategy of Integrated Brake Control brake boost and pressure control strategy of Redundant Brake Unit brake boost. The designed control
Dexing, LaoLuping, YanQinghai, SuiLong, CaoShang, GaoZhigang, ChenMingxing, RenZhicheng, Chen
LIDAR-based autonomous mobile robots (AMRs) are gradually being used for gas detection in industries. They detect tiny changes in the composition of the environment in indoor areas that is too risky for humans, making it ideal for the detection of gases. This current work focusses on the basic aspect of gas detection and avoiding unwanted accidents in industrial sectors by using an AMR with LIDAR sensor capable of autonomous navigation and MQ2 a gas detection sensor for identifying the leakages including toxic and explosive gases, and can alert the necessary personnel in real-time by using simultaneous localization and mapping (SLAM) algorithm and gas distribution mapping (GDM). GDM in accordance with SLAM algorithm directs the robot towards the leakage point immediately thereby avoiding accidents. Raspberry Pi 4 is used for efficient data processing and hardware part accomplished with PGM45775 DC motor for movements with 2D LIDAR allowing 360° mapping. The adoption of LIDAR-based AMRs
Feroz Ali, L.Madhankumar, S.Hariush, V.C.Jahath Pranav, R.Jayadeep, J.Jeffrey, S.
As vehicles adopt software-centric architectures, assessing vehicle software behavior becomes more complex, which can lead to the exploitation of overlooked or untreated vulnerabilities. Using these backdoors, attacks frequently targeted automotive products for malicious reasons. Automotive security incident management involves continuous monitoring of incidents and vulnerabilities. However, it faces challenges in reproducing attacks and revalidating security goals. The lack of visualization of attack scenarios, and vectors, and the knowledge required to replicate attacks hinders vulnerability assessment. The proposed approach aims to improve vulnerability assessment and document residual risks. It promotes replicating attack scenarios using cyber digital twins to support threat modeling, risk assessment, and threat analysis. The research paper focuses on utilizing digital twins for cybersecurity incident response, threat monitoring, and vulnerability exploitation by examining elastic
Venkatachalapathy, Sreenikethana
This study meticulously examines the ignition coil (IG), a pivotal component in engine operation, which transforms the low voltage from the battery into the high voltage necessary for spark plug electrode flashover, initiating the combustion cycle. Considering the importance of IG coils in engine operation which has a direct impact on the engine performance. Any failure in the IG coils is judged as a critical failure and encompasses severe repercussions. The paper details an investigation into the issue of ‘White Deposition’ on IG coils. White deposit was observed in IG Coils during new model development in bench level durability test. A comprehensive failure analysis was conducted, employing vibration analysis, thermal analysis, and chemical analysis of the white deposits to ascertain the root cause. Subsequent to identifying the root cause, the study elaborated on hardware design enhancements as a solution. These design changes were rigorously tested on engine benches, confirmed for
Patel, Hardik ManubhaiGupta, VineetChand, SubhashKumar, Nitish
The increase in vehicular traffic on Indian roads has led to a significant rise in the frequency of horn usage, particularly in city driving conditions and during peak traffic hours. Existing electro-mechanical horns are designed to have a mission life of 100,000 cycles according to Indian standards IS 1884 [1]. However, the intensified usage patterns have prompted a re-evaluation of the efficacy of these requirements. Studies reveal that the average horn blow frequency for normal usage vehicles is approximately three times per kilometer. When extrapolated to various usage categories, such as public transport and privately owned vehicles, observed increase in average horn blowing frequency per kilometer. When extrapolated, this corresponds to more than 4 lakhs cycles for a vehicle mission life of 2.5 lakhs kilometers. This insight drives the need to review and update validation test specifications to better align with customer usage patterns, thereby enhancing component reliability. By
Joshi, Vivek S.Jape, Akshay
With the trend of increasing technological complexity, software content and mechatronic implementation, there are increasing risks from systematic failures and random hardware failures, which is to be considered within the scope of functional safety. ISO 26262 series of standards provides guidance to mitigate these risks by providing appropriate requirements and processes. To develop a safe product with respect to above mentioned complexities, it is very critical to develop a safe system and hence a thorough and robust “Technical Safety Concept” is very important to ensure absence of unreasonable risk due to hazards caused by malfunctions of E/E systems. ISO26262-Part 4 provides guidelines for “Product development at the system level”, to design safety-related systems that include one or more electrical and/or electronic (E/E) systems and that are installed in series production road vehicles. Defining requirements at system level for each individual technology and systematically
Cheni, Dileep KumarDesai, Priyanka Pradeep
In demanding automotive coolant applications characterized by extreme pressure and temperature conditions, a variety of Mechanically Attached Fittings (MAFs) are offered by multinational corporations (MNCs). These engineered fittings have been designed to meet the rigorous requirements of various industries, providing a cost-effective and reliable means to seal engine/motor coolant hose joints. Mechanical fitting assemblies are critical in various engineering systems and are used for connecting various fluid-carrying locations. Understanding leakage phenomena from MAFs is essential for ensuring their reliability and efficiency. This study explores the deployment of Fluid Pressure Penetration Technique (FPPT) available in Abaqus FEA software to comprehensively analyze leakage paths in mechanically joined fittings. The FPPT offers a systematic approach to model fluid penetration behavior within fitting joints under many loading conditions. By utilizing Abaqus software, a powerful finite
Aher, Ravi KautikJivani, ChinmayOlesnavich, MichaelLima, JosePillai, Pramod
This paper presents a work undertaken to simulate the logistics processes in the digital environment using a discrete event simulation software which involves the movements of the Material Handling Equipment [MHE]. MHE movements to the line side involves traffic, where the parts are transported from the supermarket area to the line side based on the part requirement list ordered from the line side. The intersections are the bottleneck in the system due to the traffic and if the vehicle scheduling is not streamlined, then during any failure/stoppage of the vehicle, would result in the blocking of the preceding vehicles causing line stoppage. This work outlines to develop a junction block in the digital environment using a discrete event driven approach where an optimal flow of the vehicles is maintained at the intersections. The Junction block is created based on the succeeding track occupancy level, thus the preceding MHE’s can overtake in case of any blockages based on the priority
Surendranath, SujithAmasa, SanjayKotegar, Shravan RajVenkataramana, SurendharSathiyamoorthi, Gokul
ABSTRACT When the components of a military vehicle are designed, consideration is given to long term durability under repeated mission applications. In reality, surface and subsurface defects have always existed in weldments, forgings, and castings. These defects came from the manufacturing process or nucleated during the life of the vehicle. These defects may grow under repeated operations, resulting in ultimate failure of parts well before the design life is achieved. In such situations, a design based on crack initiation alone will not suffice, and a fracture mechanics based fatigue should also be included to predict the design life of a part accurately. In this paper a methodology is given on how to predict the available design life given the presence of defects in different parts of a military vehicle. An example will be provided with the process to demonstrate each step of the process
Porter, William De
ABSTRACT All CBM+ solutions must establish a business case considering cost of implementation and sustainment of value with a quantifiable return on investment. The business case must be traceable to specific failure modes, associated failure effects, criticality, and risk. Risk is not limited to safety and operational risks. Predictive systems by definition return both true and false predictions representing operational and financial risk from high false positive rates. There is also risk of losing operator confidence in predictive systems when there is a high false positive rate. All of these risks must be quantified and considered in the design and development of CBM+ systems. Model based approaches are effective in accelerating development, defining advanced functional characteristics, and efficiently testing dynamic effects of complex systems. CBM+ maintenance strategies rely on performance of complex systems
Nelson, DavidBanghart, Marc
ABSTRACT In this study, a styrene butadiene rubber, which is similar to the rubber used in road wheel backer pads of tracked vehicles, was investigated experimentally under monotonic and fatigue loading conditions. The monotonic loading response of the material was obtained under different stress states (compression and tension), strain rates (0.001/s to 3000/s), and temperatures (-5C to 50C). The experimental data showed that the material exhibited stress state, strain rate and temperature dependence. Fatigue loading behavior of the rubber was determined using a strain-life approach for R=0.5 loading conditions with varying strain amplitudes (25 to 43.75 percent) at a frequency of 2 Hz. Microstructural analysis of specimen fracture surfaces was performed using scanning electron microscopy and energy dispersive x-ray spectroscopy to determine the failure mechanisms of the material. The primary failure mechanisms for both loading conditions were found to be the debonding of particles on
Brown, H.R.Bouvard, J.L.Oglesby, D.Marin, E.Francis, D.Antonyraj, A.Toghiani, H.Wang, P.Horstemeyer, M.F.Castanier, M.P.
Summary Combat vehicle designers have made great progress in improving crew survivability against large blast mines and improvised explosive devices. Current vehicles are very resistant to hull failure from large blasts, protecting the crew from overpressure and behind armor debris. However, the crew is still vulnerable to shock injuries arising from the blast and its after-effects. One of these injury modes is spinal compression resulting from the shock loading of the crew seat. This can be ameliorated by installing energy-absorbing seats which reduce the intensity of the spinal loading, while spreading it out over a longer time. The key question associated with energy-absorbing seats has to do with the effect of various factors associated with the design on spinal compression and injury. These include the stiffness and stroking distance of the seat’s energy absorption mechanism, the size of the blast, the vehicle shape and mass, and the weight of the seat occupant. All of these
Eridon, James
ABSTRACT In today’s competitive market, OEMs are racing towards developing more efficient vehicles without sacrificing on its performance. In this process, they’re forced to evaluate new technologies and designs in various subsystems. Most of the sub-systems today have become “intelligent”, which means that the controllers have become quintessential for the system’s behavior. Equally important are the physical behavior of the plant that needs to be controlled. These two independent groups have their own design and development cycle and the challenge for the companies have been in bridging the gap so as to identify potential failure modes. This paper discusses an Architecture-driven Model Based Development process that can address the challenges posed during the development. Three key enabling technologies – Imagine.Lab System Synthesis, Imagine.Lab SysDM & Imagine.Lab AMESim are leveraged in this process
Radhakrishnan, KarthikeyanPadmanaban, RameshPaike, RavindraVijay, Hari
Abstract This paper presents a fault-tolerant powertrain topology for series hybrid electric vehicles (SHEVs). The introduction of a redundant phase leg that is shared by three converters in a standard SHEV drive system allows to maximize the reliability improvement with minimal part-count increase. The new topology features fast response in fault detection and isolation, and post-fault operation at rated power throughput. The operating principle, control strategy, and fault diagnostic methods are elaborated. The substantially improved reliability over the standard topology is verified by the Markov reliability model. Time-domain simulation based on a Saber model has been conducted and the results have verified the feasibility and performance of the proposed SHEV drive system with fault-tolerant capability. The experimental results from a prototype have further validated the robust fault detection scheme and excellent post-fault performance
Song, YantaoWang, Bingsen
Items per page:
1 – 50 of 2621