Browse Topic: Failure analysis
For any supplier in the medical device manufacturing industry, sustainable success requires an ability and a willingness to bring customers’ ideas to reality. There are often innovative, potentially life-saving projects that are delayed or even abandoned due to limitations on the manufacturing end. However, many specifications that seem impossible to meet can be achieved with persistence, collaboration, and dedication to customers’ ideas.
This manuscript presents a comprehensive study on the integration of Safety Analyses with Technical Safety Requirements (TSRs) to enhance functional safety in complex automotive systems and off-highway applications. It emphasizes the importance of systematically identifying potential hazards and translating them into precise, actionable TSRs that guide the design, implementation, and validation of safety-critical systems. By aligning safety analysis techniques—such as Fault Tree Analysis (FTA) and Failure Mode and Effects Analysis (FMEA)—with ISO 26262, the study demonstrates how safety goals can be effectively transformed into technical specifications that ensure robust system behavior under fault conditions. Part 1 outlines the use of Failure Modes and Effects Analysis (FMEA) to identify potential failure modes and single point faults across system, subsystems, and components. FMEA assesses the severity, likelihood, and detectability of these failures, guiding the development of
The operator station or “cab” in off Highway equipment plays a critical role to provide a comfortable workspace for the operator. The cab interfaces with several elements of the off-highway equipment which can create gaps and openings. These openings have the potential for acoustic energy leakage, ultimately increasing sound within the cab. During machine operation, noise generated around the cab conducts inside through these leakages resulting in increased sound levels. Acoustic leakages are among the key noise transfer paths responsible for noise inside the cab. Therefore, before considering noise control treatments it is best to first identify and minimize any leakages from joints, corners, and pass-throughs to achieve the required cab noise reduction. In this effort the sound intensity technique is used to detect the acoustic leakages in cab. The commercial test system is used for measuring the sound intensity field over objects. For the cab, an acoustic source is used inside the
Items per page:
50
1 – 50 of 2603