Browse Topic: Finite element analysis

Items (3,543)
This study provides an extensive analysis through finite element analysis (FEA) on the effects of fatigue crack growth in three different materials: Structural steel, Titanium alloy (Ti Grade 2), and printed circuit board (PCB) laminates based on epoxy/aramid. A simulation of the materials was created using ANSYS Workbench with static and cyclic loading to examine how the materials were expected to fail. The method was based on LEFM and made use of the Maximum Circumferential Stress Criterion to predict where cracks would happen and how they would progress. Normalizing SIFs while a crack was under mixed loading conditions was achieved using the EDI method [84]. We used Paris Law to model fatigue crack growth using constants (C and m) for the materials from previous studies and/or tests. For example, in the case of titanium Grade 2, we found Paris Law constants with C values from 1.8 × 10-10 to 7.9 × 10-12 m/cycle and m values from 2.4 to 4.3, which illustrate differing effects of their
T, LokeshBhaskara Rao, Lokavarapu
The Electrohydraulic Brake Valve (EBV) is a vital component in full-power brake systems for heavy-duty and off-highway vehicles, providing precise hydraulic pressure modulation through electrical control. Traditionally, EBV housings are manufactured using bar-machined components, which offer durability but contribute significantly to the overall weight and cost of the assembly. In response to increasing demands for lightweight and cost-effective solutions, this study presents a targeted design optimization of the EBV housing. The redesigned housing adopts a casting-based geometry, integrates sensor ports for pressure monitoring, and includes a nameplate mounting provision for customer identification. Material substitution and structural simplification were employed to enhance manufacturability and performance. Finite Element Analysis (FEA) was used to validate the mechanical integrity of the new design under operational conditions. The optimized EBV assembly achieved a weight reduction
R, Thangarajan
This study presents a comparative investigation of the vibration characteristics of rectangular and circular plates with fixed edges using analytical, numerical, and computational approaches. Analytical models based on classical plate theory were employed to calculate natural frequencies and mode shapes, while finite element analysis (FEA) was performed in a CAE tool to provide high-fidelity simulation results. A detailed mesh convergence study confirmed numerical stability, with frequency variations below 1% between successive refinements. Analytical predictions showed excellent agreement with simulation results for lower modes, with errors as low as 0.25% for the rectangular plate and 2.65% for the circular plate. However, higher modes exhibited significant deviations, with errors reaching up to 29.01% for rectangular and 181.52% for circular geometries, highlighting the limitations of closed-form solutions in capturing complex vibrational behavior. Python-based computational tools
N, SuhasR, SanjayBhaskara Rao, Lokavarapu
In the context of electro-mobility for commercial vehicles, the failure analysis of a connector panel in a DCDC converter is crucial, particularly regarding crack initiation at the interface of busbar and plastic component. This analysis requires a thorough understanding of thermo-mechanical behavior under thermal cyclic loads, necessitating kinematic hardening material modeling to account for the Bauschinger effect. As low cycle fatigue (LCF) test data is not available for glass fiber reinforced polyamide based thermoplastic composite (PA66GF), we have adopted a novel approach of determining non-linear Chaboche Non-Linear Kinematic Hardening (NLK) model parameters from monotonic uniaxial temperature dependent tensile test data of PA66GF. In this proposed work a detailed discussion has been presented on manual calibration and Genetic Algorithm (GA) based optimization of Chaboche parameters. Due to lack of fiber orientation dependent test data for PA66GF, here von Mises yield criteria
Basu, ParichaySrinivasappa, Naveen
Objective: Previous studies have reported disparity in injuries between male and female drivers in the risk of certain types of injuries in frontal crashes that may be due to a myriad of sex-related differences, including body size, shape, anatomy, or sitting posture. The objectives of this study are 1) to use mesh-morphing methods to generate a diverse set of human body models (HBMs) representing a wide range of body sizes and shapes for both sexes, 2) conduct population-based frontal crash simulations, and 3) explore adaptive restraint design strategies that may lead to enhanced safety for the whole population while mitigating potential differences in injury risks between male and female drivers Method: A total of 200 HBMs with a wide range of body sizes and shapes were generated by morphing the THUMS v4.1 midsize male model into geometries predicted by the statistical human geometry models. Ten male and ten female HBMs were selected for population-based simulations. An existing
Sun, WenboHu, JingwenLin, Yang-ShenBoyle, KyleReed, MatthewSun, ZhaonanHallman, Jason
The present work demonstrates a transient Fluid-Structure-Interaction (FSI) based numerical methodology for estimation of aerodynamic-induced flutter of the rear bumper of a Sports Utility Vehicle (SUV). Finite Volume Method (FVM) based High-fidelity transient full vehicle aerodynamic simulations were conducted for the estimation of the transient aerodynamic load. Subsequently, by mapping this transient aero load onto the surface of the rear bumper, Finite Element Method (FEM) based dynamic structural simulations were performed to predict its response. The results obtained through simulations were then compared against experimental wind tunnel test data of a prototype car with modified bumper for the specific test-case. The pressure and the time series data of rear bumper deflection were captured at multiple probe locations from wind tunnel experiments at 140 and 200 kmph. The distribution of pressure on the rear surfaces of the car was well captured by the aerodynamic simulation at
Choudhury, SatyajitYenugu, SrinivasaWalia, RajatZander, DanielGullapalli, AtchyutBalan, ArunAstik, Pritesh
This paper presents the virtual prototyping of traction motor in commercial EV to make an early prediction of the performance parameters of the machine without spending an enormous cost in building a physical structure. A 48/8 slot-pole configuration of IPMSM is used to demonstrate the electromagnetic and thermal co-simulation in ANSYS MotorCad. The core dimensions were determined using permanent-magnet field theory. From those, a two-dimensional finite-element (2D FEM) model of the interior permanent magnet (IPM) motor was simulated using Ansys Motor-CAD electromagnetic simulation tool. The influence of geometrical parameters on the performances of traction motor are evaluated based on FEM. The temperature distribution have been analyzed under steady and transient operating conditions. Alongside, the effects of saturation, demagnetization analysis, and the impact of PM flux linkage on inductances are also considered in this paper. At last, the simulation and analytical results of the
Murty, V. ShirishRathod, SagarkumarGandhi, NikitaTendulkar, SwatiKumar, KundanThakar, DhruvSethy, Amanraj
The present work demonstrates a Fluid-Structure Interaction (FSI) based methodology that couples a Finite Volume Method (FVM) and Finite Element Method (FEM) based tools to estimate air guide deformation, thereby predicting accurate aerothermal performance. The method starts with a digital assembly step where the assembly shape and the induced stress due to assembly is predicted. A full vehicle Aerodynamic simulation is performed to extract the surface pressure on the air guide which is then used to estimate the extent of deformation of the air guides. Based on the extent a subsequent Aerodynamic simulation may be carried out to predict thermal efficiency. Comparison against pressure data and deflection data extracted from the wind tunnel experiments of vehicles has shown reasonable match demonstrating the accuracy and usefulness of the method.
Gadasu, RavishastriChoudhury, SatyajitUmesh, Acharya VaibhavKumar, SaravananYenugu, SrinivasaZander, DanielBeesetti, SivaHattarke, Mallikarjun
A fatigue failure in the transmission input shaft was identified during a bench-level endurance test under 2nd gear loading conditions. The test transmission’s input shaft comprises fixed 1st, reverse, and 2nd gears, with the remaining gears mounted as floating. The shaft was subjected to cyclic torsional loads, and failure occurred after a defined number of cycles. Metallurgical analysis revealed a brittle fracture surface with crack initiation at the outer surface, propagating to core in a helical pattern, ultimately resulting in complete shaft fracture. To monitor and replicate the failure, the test setup was instrumented with a Reilhofer Delta Analyzer for early fault detection. TTL signals from accelerometers mounted on the transmission and a bench speed sensor were fed into the system, which generates FFT spectra and trend indices. A warning alarm triggered upon deviation in the trend index, indicating premature damage initiation. The test was subsequently halted for component
Kushwaha, RakeshPatel, HiralNavale, Pradeep
Automobile frames, particularly trellis frame structures, are engineered for superior dynamic performance, with stiffness being a paramount consideration1. These frames frequently utilize welded tubes, a manufacturing process made more complex by the necessity of bending tubes to precise angles to meet packaging and assembly requirements2. This bending, however, induces residual stresses that can substantially compromise the frame's durability3. This investigation employs a detailed finite element simulation to analyse the structural deformation and residual stresses that arise during the bending of Cold Electric Welded (CEW) annealed round pipes4. A comprehensive 3D mechanical model, incorporating realistic tooling and contact interactions, was developed to accurately simulate shape change, ovality, and wall thickness redistribution during the bending process5. CEW pipes, unlike their Electric Resistance Welded (ERW) counterparts, possess minimal initial forming stresses, and the
Rajwani, IshwarKhare, Saharash
This paper presents the development and implementation of a digital twin (DT) for the suspension assembly of automotive vehicles—an essential subsystem for assessing vehicle performance, durability, ride comfort, and safety. The digital twin, a high-fidelity virtual replica of the physical suspension system, is constructed using advanced simulation methodologies, including Finite Element Analysis (FEA), and enriched through continuous integration of empirical test data. Leveraging machine learning techniques, particularly Artificial Neural Networks (ANNs), the DT evolves into a dynamic and predictive model capable of accurately simulating the behaviour of the physical system under diverse operational conditions. The primary aim of this study is to enhance the precision and efficiency of suspension testing by enabling predictive maintenance, real-time system monitoring, and intelligent optimization of test parameters. The digital twin facilitates early detection of potential failures
Sonavane, PravinkumarPatil, Amol
In recent years, virtual validation using finite element analysis (FEA) has become a key step in designing an agricultural tractor roll over protective structure (ROPS). With the advancement of computation power and ability of finite element solver to handle bigger models; a higher fidelity model can be built to improve virtual validation accuracy. More & more advanced material model can be used to improve accuracy of the results. Along with ROPS, its mounting chassis and mounting bolts can also be validated. Virtual validation at the design phase not only saves time of new product development cycle; but also optimizes the weight & cost of the design. In this paper, majorly two material model has been used to analyze a real-life tractor ROPS, its mounting chassis and bolts. For the ROPS, conventional isotropic hardening model has been used using bilinear and piece-wise multilinear stress-strain curve. Additionally kinematic hardening model has been used using advanced multi-component
Pandey, Manoj KumarKumar, ArunRedkar, DineshThirugnanam, VivekanndanMagendran, GMANI, SURESH
Traditionally, occupant safety research has centered on passive safety systems such as seatbelts, airbags, and energy-absorbing vehicle structures, all designed under the assumption of a nominal occupant posture at the moment of impact. However, with increasing deployment of active safety technologies such as Forward Collision Warning (FCW) and Autonomous Emergency Braking (AEB), vehicle occupants are exposed to pre-crash decelerations that alter their seated position before the crash. Although AEB mitigates the crash severity, the induced occupant movement leads to out-of-position behavior (OOP), compromising the available survival space phase and effectiveness of passive restraint systems during the crash. Despite these evolving real-world conditions, global regulatory bodies and NCAP programs continue to evaluate pre-crash and crash phases independently, with limited integration. Moreover, traditional Anthropomorphic Test Devices (ATDs) such as Hybrid III dummies, although highly
Pendurthi, Chaitanya SagarTHANIGAIVEL RAJA, TKondala, HareeshSudarshan, B.SudarshanNehe, VaibhavRao, Guruprakash
Items per page:
1 – 50 of 3543