Browse Topic: Quality, Reliability, and Durability

Items (10,032)
The effective reduction of particulate emissions from modern vehicles has shifted the focus toward emissions from tire wear, brake wear, road surface wear, and re-suspended particulate emissions. To meet future EU air quality standards and even stricter WHO targets for PM2.5, a reduction in non-exhaust particulate (NEP) emissions seems to be essential. For this reason, the EURO 7 emissions regulation contains limits for PM and PN emissions from brakes and tire abrasion. Graz University of Technology develops test methods, simulation tools and evaluates technologies for the reduction of brake wear particles and is involved in and leads several international research projects on this topic. The results are applied in emission models such as HBEFA (Handbook on Emission Factors). In this paper, we present our brake emission simulation approach, which calculates the power at the wheels and mechanical brakes, as well as corresponding rotational speeds for vehicles using longitudinal dynamics
Landl, LukasKetan, EnisHausberger, StefanDippold, Martin
In order to predict the durability characteristics of the brake judder, it is determined by analyzing the brake DTV (Disc Thickness Variation) and BTV(Brake Torque Variation) through the durability evaluation of the brake system or the vehicle. However, this method requires the real products and takes a long time to derive the result. When judder problems occur due to durability, there are many difficulties in deriving improvement plans through test methods. Therefore, in this study, CAE was used to derive the initial wear amount of the disc, and a method of predicting DTV after durability was developed using the results.
Hwang, JaekeunKim, SunghoKim, JeongkyuKang, Donghoon
Tire and road wear particles (TRWP) have emerged as air quality hazardous matters and significant sources of airborne microplastic pollution, contributing to environmental and human health concerns. Regulatory initiatives, such as the Euro 7 standards, emphasize the urgent need for standardized methodologies to quantify TRWP emissions accurately. Despite advancements in measuring tire abrasion rates, critical gaps persist in the characterization of airborne TRWP, particularly regarding the influence of collection system design and influencing parameters on measurement accuracy and repeatability. This study addresses these challenges by designing a controlled methodological framework that aims to minimize the influencing effects and ensure comparability in TRWP emission quantification results. At the German Aerospace Center (DLR) dynamometer testbench in Stuttgart, Germany, a methodical framework was established to ensure the repeatability and comparability of TRWP measurements
Celenlioglu, Melis SerenEpple, FabiusReijrink, NinaLöber, ManuelReiland, SvenVecchi, RobertaPhilipps, Franz
This article presents a novel mechanical model for simulating the behavior of pavement deflection measuring systems (PDMS). The accuracy of the model was validated by comparing the acceleration of the new model with the data achieved through experimental tests fusing a deflection measurement system mounted on a Ford F-150 truck. The experimental test for the PDMS is carried out on a random road profile, generated by an inertial profiler, over a 7.4-mile (12 km) loop around a lake near Austin, Texas. Integrating a reliability-based optimization (RBO) algorithm in a PDMS aims to optimize system parameters and reduce vibrations effectively. The PDMS noises and uncertainties make it crucial to use a robust system to ensure the stability of the system. This article presents a robust algorithm for considering the uncertainties of PDMS parameters, including the damping coefficients and spring stiffness of the supporting brackets. Moreover, it considers the variation of system parameters, such
Yarmohammadisatri, SadeghSandu, CorinaClaudel, Christian
A fiber sensor inspired by the shape of DNA, developed by researchers at Shinshu University, introduces a new design for more durable, flexible fiber sensors in wearables. Traditional fiber sensors have electrodes at both ends, which often fail under repeated movement when placed on body joints. The proposed double-helical design, however, places both electrodes on one end, allowing the sensor to endure repeated stretching and movement, effectively addressing a key limitation of conventional wearable sensors.
Researchers in the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and Vienna University of Technology (TU Wien) have invented a new type of tunable semiconductor laser that combines the best attributes of today’s most advanced laser products, demonstrating smooth, reliable, wide-range wavelength tuning in a simple, chip-sized design.
Engineers at the University of California San Diego have achieved a long-sought milestone in photonics: creating tiny optical devices that are both highly sensitive and durable — two qualities that have long been considered fundamentally incompatible.
U.S. Army researchers, in collaboration with academic partners, invented a stronger copper that could help advance defense, energy and aerospace industries thanks to its ability to endure unprecedented temperature and pressure extremes. Extreme materials experts at the U.S. Army Combat Capabilities Development Command (DEVCOM) Army Research Laboratory built on a decade of scientific success to develop a new way to create alloys that enable Army-relevant properties that were previously unachievable. An alloy is a combination of a metal with other metals or nonmetals.
Researchers at the U.S. Department of Energy (DOE)’s Oak Ridge National Laboratory (ORNL) have developed an innovative new technique using carbon nanofibers to enhance binding in carbon fiber and other fiber-reinforced polymer composites — an advance likely to improve structural materials for automobiles, airplanes and other applications that require lightweight and strong materials.
Solar panels are composed of dozens of solar cells, which are usually made of silicon. While silicon is the standard, producing and processing it is energy-intensive, making it costly to build new solar panel manufacturing facilities. Most of the world’s solar cells are made in China, which has an abundance of silicon. To increase solar cell production in the U.S., a new, easily produced domestic material is needed. “We’re developing technologies that we can easily produce without spending a ton of money on expensive equipment,” said Juan-Pablo Correa-Baena, an Associate Professor in the School of Materials Science and Engineering.
ACT Expo 2025 had a fleet of new commercial vehicle launches as well as displays for models already on the market. One such existing chassis was the Workhorse W56, an electric step van designed for Class 5/6 last-mile delivery. Unlike many of its competitors, Workhorse did not set out to be a technological leader with the W56. Rather, the company took the approach of leveraging the best of the currently available and applicable technologies to produce a durable, reliable and producible product that just happened to be powered by electrons.
Wolfe, Matt
The continuous improvement of validation methodologies for mobility industry components is essential to ensure vehicle quality, safety, and performance. In the context of mechanical suspensions, leaf springs play a crucial role in vehicle dynamics, comfort, and durability. Material validation is based on steel production data, complemented by laboratory analyses such as tensile testing, hardness measurements, metallography, and residual stress analysis, ensuring that mechanical properties meet fatigue resistance requirements and expected durability. For performance evaluation, fatigue tests are conducted under vertical loads, with the possibility of including "windup" simulations when necessary. To enhance correlation accuracy, original suspension components are used during testing, allowing for a more precise validation of the entire system. Additionally, dynamic stiffness measurements provide valuable input for vehicle dynamics and suspension geometry analysis software, aiding in
Zahn, André N.Graebin, MatheusMalacarne, RodrigoToniolo, Juliano C.
This SAE Recommended Practice is intended to give information to engineers and designers in order that access to a passenger handgrip, when used, is easily obtained, and that such handgrips offer maximum safety for a person at least as large as a 95th percentile adult male during snowmobile operation.
Snowmobile Technical Committee
This specification controls surface condition, manufacturing defects and inspection requirements, and defines methods of measurement for elastomeric toroidal sealing rings (O-rings) for static (including gasket) applications.
A-6C2 Seals Committee
Non-exhaust particle emissions, particularly those generated by brake wear, are a significant source of fine particulate matter in urban environments. These emissions contribute to air pollution and pose serious health risks, particularly in densely populated areas. While vehicle exhaust emissions have been extensively studied and regulated, the contribution of non-exhaust sources, including brake wear, remains a critical factor in air quality management. This paper presents a novel methodology for fast-running, time-resolved simulation of non-exhaust particle emissions, specifically those from brake wear abrasion. A 3D CFD model computes the turbulent flow field around the disc brake. The resulting information on the convective air cooling is applied as boundary conditions on a 3D thermal model. This thermal simulation setup is compared and verified with experimental data from literature. The 3D numerical models produce data and boundary conditions for an efficient 1D numerical
Herkenrath, FerrisLückerath, MoritzGünther, MarcoPischinger, Stefan
Boston Scientific entered 2025 with significant momentum. Fresh off a standout first quarter, the company’s leadership has outlined a compelling vision for sustainable long-term growth rooted in high-performing cardiology franchises, operational precision, and disruptive technologies in electrophysiology (EP). Leaders spoke at a recent Bank of America Healthcare Conference. The discussion marked outgoing CFO Dan Brennan’s final investor presentation and underscored Boston Scientific’s transformation into one of medtech’s most durable growth stories.
This specification covers an aluminum alloy in the form of plate 0.750 to 1.500 inches, incl (19.05 to 38.10 mm, incl) in thickness (see 8.6).
AMS D Nonferrous Alloys Committee
Friction stir surfacing is an advance surface modification technique, which is functionally evolved from the friction stir welding process. However, the fundamental reason behind the joining of Al/steel is difficult due to the formation of hard and brittle intermetallic compounds (IMC). To address the problem of IMC formation, the current study suggested an alternate production technique with solid-state friction surfacing deposition. In this work, the adhesion mechanism and metallurgical properties of solution-treated AA6061-T6 aluminum alloy cladding over a low-carbon steel IS2062 substrate were investigated. Impact procedural factors (axial frictional force, spindle speed, table traverse speed, consumable rod diameter, and substrate roughness) were examined. Push-off and hardness tests were used to inspect the mechanical properties of cladded samples. 67–77± HV hardness is observed at the interface of the cladded cross-section. A push-off strength of 9 kN was achieved, indicating
Badheka, Kedar HiteshkumarSharma, Daulat KumarBadheka, Vishvesh
This specification covers grease for use on aircraft wheel bearings. It also defines the quality control requirements to assure batch conformance and materials traceability and the procedures to manage and communicate changes in the grease formulation and brand. This specification invokes the Performance Review Institute (PRI) product qualification process. Requests for submittal information may be made to the PRI at the address in 2.2, referencing this specification. Products qualified to this specification are listed on a qualified products list (QPL) managed by the PRI. Additional tests and evaluations may be required by individual equipment builders before a grease is approved for use in their equipment. Approval and/or certification for use of a specific grease in aero and aero-derived marine and industrial applications is the responsibility of the individual equipment builder and/or governmental authorities and is not implied by compliance with or qualification to this
AMS M Aerospace Greases Committee
This AIR provides means of developing a composite training program, as stipulated by FAA AC 20-107B, FAA AC 65-33A, EASA AMC 20-29, and other similar regulatory guidance. Its approach is a comprehensive, sequential training curriculum build-up, customized to the specific needs of the organization (see Figure 2). It contains recommendations for the skill-building, training, and qualification of persons involved in the design, fabrication, maintenance, and repair of aircraft composite structures or other aviation composite components. It further addresses the qualification of administrative personnel and instructors. Flight operations are usually not in the scope of an SAE CACRC Standard; however, the recommendations of this report may be used also for this target audience. This report addresses persons responsible for the definition of training, qualification and authorization, or the supervision of aviation personnel. Its content intends to facilitate the development of a formal
AMS CACRC Commercial Aircraft Composite Repair Committee
This specification covers a leaded bronze in the form of sand and centrifugal castings (see 8.6).
AMS D Nonferrous Alloys Committee
This specification covers an aluminum bronze alloy in the form of centrifugal and chill castings (see 8.5).
AMS D Nonferrous Alloys Committee
The exhaust front pipe is a critical structural component in commercial vehicles, ensuring the leak-proof flow of exhaust gases into the exhaust after-treatment system while withstanding engine and frame vibrations. To isolate these vibrations, the front pipe is equipped with a flex connector capable of enduring various displacements at frequencies between 8-25 Hz. The position of the flex connector relative to the engine crank axis significantly impacts its structural reliability over its service life. This paper compares the existing design, which features a horizontally positioned flex connector, with a modified design that positions the flex connector vertically and changes the material from SS-304 to SS-321. Finite element analysis was conducted using Nastran software. The fatigue life of the existing flex connector design is approximately 1015 cycles. In contrast, the improved design demonstrates a fatigue life of 1727 cycles, representing a 70% increase in durability compared to
Chandel, KushalParoche, SonuNamdev, AkhileshJain, ShailendraPatil, Keyur
The steering system is one of the most important assemblies for the vehicle. It allows the vehicle to steer according to the driver’s intention. For an ideal steering system, the steering angle for the wheel on the left and right side should obey the Ackman equation. To achieve this goal, the optimization method is usually initiated to determine the coordinates of the hard points for the steering system. However, the location of hard points varies due to the manufacturing error of the components and wear caused by friction during their working life. To decrease the influence of geometry parameter error, and system mass, and improve the robust performance of the steering system, the optimization based on Six Sigma and Monte Carlo approach is used to optimize the steering system for an off-road vehicle. At last, the effect is proved by the comparison of other methods. The maximum error of the steering angle is decreased from 7.78° to 2.14°, while the mass of the steering system is
Peng, DengzhiDeng, ChaoZhou, BingbingZhang, Zhenhua
The reliability and performance of steering systems in commercial vehicles are paramount, given their direct impact on reducing hazardous driving and improving operational efficiency. The torque overlay system is designed to enhance driver control, feedback, and reduce driver fatigue. However, vulnerabilities such as water ingress under certain environmental conditions have raised significant reliability requirements. This article discusses the systematic investigation into how radial bearing sideloading led to the input shaft seal failing to contact the input shaft. Water was allowed a path to enter the TOS module, affecting the electronic sensor, and faulting out the ADAS functionality. Improvement to the bearing support and sealing design culminated to an enhanced TOS module package able to withstand testing procedures that mimic the environmental and use case situation which caused the ingress.
Bari, Praful RajendraKintner, Jason
For the team at SmartCap, building top-notch gear for outdoor adventurers isn’t just a business — it’s a passion driven by their own love for the wild. But as demand for their rugged, modular truck caps soared after their move to North America in 2022, they hit a snag: How do you ramp up production without sacrificing the meticulous quality you are known for, all while navigating a tough labor market? Their answer? A bold step into the world of intelligent automation, teaming up with GrayMatter Robotics, and employing the company’s innovative Scan&Sand™ system.
Repartly, a startup based in Guetersloh, Germany, is using ABB’s collaborative robots to repair and refurbish electronic circuit boards in household appliances. Three GoFa cobots handle the sorting, visual inspection and precise soldering tasks enabling the company to enhance efficiency and maintain high quality standards.
The utilization of Inconel 718 is increasing daily in stringent operating conditions such as aircraft engine parts, space vehicles, chemical tanks, and the like due to its physical properties such as maintaining strength and corrosion resistance at higher temperature conditions. Besides, Inconel 718 is one of the difficult materials for machining because of maintaining its strength at elevated temperature, which generates higher cutting force leading to observed multiple tool wear mechanisms that affect the surface quality; lower thermal conductivity of materials produces high temperature generation that impacts the tool performance by reducing tool life. In addition, the presence of carbides and high hardness of IN 718 affects the machining performance. Therefore, in this view, this article describes the effect of cutting environments and machining parameters on the machining of Inconel 718 and optimizes the cutting conditions for sustainable machining. Three input parameters namely
Mane, Pravin AshokDhawale, Pravin A.Nipanikar, SureshKhadtare, Avinash N.
Letter from the Guest Editors
Liang, CiTörngren, Martin
Software reliability prediction involves predicting future failure rates or expected number of failures that can happen in the operational timeline of the software. The time-domain approach of software reliability modeling has received great emphasis and there exists numerous software reliability models that aim to capture the underlying failure process by using the relationship between time and software failures. These models work well for one-step prediction of time between failures or failure count per unit time. But for forecasting the expected number of failures, no single model will be able to perform the best on all datasets. For making accurate predictions, two hybrid approaches have been developed—minimization and neural network—to give importance to only those models that are able to model the failure process with good accuracy and then combine the predictions of them to get good results in forecasting failures across all datasets. These models once trained on the dataset are
Mahdev, Akash RavishankarLal, VinayakMuralimohan, PramodReddy, HemanjaneyaMathur, Rachit
The active sound synthesis system of electric vehicles plays an important role in improving the sound perception and transmission of working condition information inside the vehicle. Nowadays, the active sound synthesis system inside the vehicle has become standard equipment in electric vehicles of major electric vehicle manufacturers to meet the user groups' demand for driving and riding experience. In order to enrich the driving experience of electric vehicles and automatic transmission vehicles, the sound performance should be close to the immersiveness and dynamic feedback brought by traditional manual transmission fuel vehicles. Based on the active sound synthesis algorithm in the car, this paper proposes an adaptive shift sound quality control strategy suitable for complex and changeable working conditions, with the aim of simulating the real shift sound of the engine. First, the motor speed offset is accurately calculated based on the transmission ratio of each gear of the
Zhou, XilongLiu, ZhienXie, LipingYu, ShangboLu, ChihuaGao, XiangYongsheng, Wang
Tires have a significant impact on vehicle road noise. The noise in 80~160Hz is easily felt when driving on rough roads and has a great relationship with the tire structural design. How to improve the problem through tire simulation has become an important issue. Therefore, this paper puts forward the concept of virtual tire tuning to optimize the noise. An appropriate tire model is crucial for road noise performance, and the CDtire (Comfort and Durability Tire) model was used in the article. After conducting experimental validation to get an accurate tire model, adjust the parameters and structure of the tire model to generate alternative model scenarios. The transfer function of the tire center was analyzed and set as the evaluation condition for tire NVH (Noise, vibration, and harshness) performance. This enabled a comparison among various model scenarios to identify the best-performing tire scenario in focused frequency whose transfer function needed to be lowest. Manufacture the
Zhang, BenYu Sr, JingChen, QimiaoLiu, XianchenGu, Perry
Design verification and quality control of automotive components require the analysis of the source location of ultra-short sound events, for instance the engaging event of an electromechanical clutch or the clicking noise of the aluminium frame of a passenger car seat under vibration. State-of-the-art acoustic cameras allow for a frame rate of about 100 acoustic images per second. Considering that most of the sound events introduced above can be far less than 10ms, an acoustic image generated at this rate resembles an hard-to-interpret overlay of multiple sources on the structure under test along with reflections from the surrounding test environment. This contribution introduces a novel method for visualizing impulse-like sound emissions from automotive components at 10x the frame rate of traditional acoustic cameras. A time resolution of less than 1ms eventually allows for the true localization of the initial and subsequent sound events as well as a clear separation of direct from
Rittenschober, Thomas
This SAE Aerospace Standard (AS) establishes minimum requirements for eddy current inspection of circular holes in nonferrous, metallic, low conductivity (less than 5% IACS) aircraft engine hardware with fasteners removed. The inspection is intended to be performed at maintenance and overhaul facilities on engine run hardware.
AMS K Non Destructive Methods and Processes Committee
At a time when medical technology is advancing rapidly, the demand for precision in manufacturing has never been greater. The medical device industry is pushing the boundaries of design, requiring components that are not only smaller and more intricate but also biocompatible, reliable, and capable of meeting stringent regulatory standards. To address these challenges, manufacturers are increasingly turning to photochemical etching (PCE) — a process that is proving indispensable in high-precision medical applications.
In the highly regulated world of medical device manufacturing, post-production cleaning is essential for ensuring safety, compliance, and best performance. Beyond removing surface contamination, it must address intricate geometries, sensitive materials, and strict industry standards. Effectively managing these challenges is key to meeting regulatory requirements and ensuring reliable device function.
A continuous effort to improve reliability and efficiency of processes is at the forefront of any successful business. One methodology that can have a crucial impact in this effort is Lean Six Sigma (LSS), which aims to reduce variability and wasteful activities within a company’s processes, in turn leading to improvements in areas such as customer satisfaction, employee morale, regulatory compliance, and profitability. In the medical device industry, where a seemingly minor error could be life-threatening, LSS can play a pivotal role in patient safety. This article presents a case study illustrating the benefits of LSS for a medical device manufacturing company, as well as one of its key customers.
Researchers at the Beijing Institute of Technology have unveiled an innovative electrothermal microgripper that promises to improve microelectronics, biomedical engineering, and MEMS applications. With its remarkable deformation capabilities, excellent size compatibility and reliable catch strength, the microgripper enables the manipulation and assembly of micro- and nano-scale objects with exceptional efficiency. This technological advancement is poised to enhance microscale engineering and pave the way for innovations across various high-tech industries.
Items per page:
1 – 50 of 10032