Browse Topic: Quality, Reliability, and Durability

Items (10,073)
The proliferation of wireless charging technology in electric vehicles (EVs) introduces novel cybersecurity challenges that require comprehensive threat analysis and resilient design strategies. This paper presents a proactive framework for assessing and mitigating cybersecurity risks in wireless charger Electronic Control Units (ECUs), addressing the unique vulnerabilities inherent in electromagnetic power transfer systems. Through systematic threat modeling, vulnerability assessment, and the development of defense-in-depth strategies, this research establishes design principles for creating robust wireless charging ecosystems resistant to cyber threats. The proposed framework integrates hardware security modules, encrypted communication protocols, and adaptive threat detection mechanisms to ensure operational integrity while maintaining charging efficiency. Experimental validation demonstrates the effectiveness of the proposed security measures in preventing unauthorized access, data
Uthaman, SreekumarMulay, Abhijit BGadekar, Pundlik
This paper elucidates the implementation of software-controlled synchronous rectification and dead time configuration for bi-directional controlled DC motors. These motors are extensively utilized in applications such as robotics and automotive systems to prolong their operational lifespan. Synchronous rectification mitigates large current spikes in the H-bridge, reducing conduction losses and improving efficiency [1]. Dead time configuration prevents shoot-through conditions, enhancing motor efficiency and longevity. Experimental results demonstrate significant improvements in motor performance, including reduced thermal stress, decreased power consumption, and increased reliability [2]. The reduction in power consumption helps to minimize thermal stress, thereby enhancing the overall efficiency and longevity of the motor.
Patil, VinodKulkarni, MalharSoni, Asheesh Kumar
Integrating advanced technologies into modern vehicles has led to an increasing focus on Functional Safety (FuSa), especially for the Automotive Integrated Cluster Module (ICM) to ensure the safety of the driver and passengers. This paper highlights the need to bring certain ICM components under an Automotive Safety Integrity Level B (ASIL-B) context using Classic AUTOSAR. This paper discusses the challenges faced and the solutions implemented for achieving compliance with ISO 26262 standards along with the Classic AUTOSAR framework. We are proposing a standardized and structured methodology for the design of the components in compliance with the key safety principles, including Freedom from Interference (FFI), execution under privileged levels, and integrity verification, particularly by adopting Classic AUTOSAR frameworks. This paper also presents the Functional Safety (FuSa) goals for these components and also extend to their configuration management and updating strategies within
Singh, IqbalKumar, Praveen
In densely populated urban environments, fuel retail outlets represent sources of Volatile Organic Compounds (VOCs), particularly benzene, toluene, and xylene. These emissions occur during various operations including storage tank filling, underground storage, and vehicle refuelling at retail outlets. The contribution of VOC by fuel distribution infrastructure to urban VOC pollution has been adequately addressed by oil marketing companies (OMCs) by the installation of vapor recovery system which is deployed for the comprehensive capture of fugitive emissions. This study employed a novel approach at an OMC Retail Outlet in Delhi, to evaluate benzene concentrations with different operational case studies. The methodology integrated continuous ambient air monitoring system equipped with VOC analyser of Gas Chromatography – Photo Ionization Detector (GC-PID) technology alongside targeted forecourt measurements with handheld PID instrument. Benzene emissions during peak and off-peak hours
Mayeen, HafizAhuja, MuskanKalita, MrinmoyKumar, PrashantSithananthan, MArora, Ajay
As light electric vehicles (LEVs) gain popularity, the development of efficient and compact on-board chargers (OBCs) has become a critical area of focus in power electronics. Conventional AC-DC topologies often face challenges, including high inrush currents during startup, which can stress components and affect system reliability. Furthermore, DC-DC converters often have a limited soft-switching range under light load conditions, leading to increased switching losses and reduced efficiency. This paper proposes a novel 6.6 kW on-board charger architecture comprising a bridgeless totem-pole power factor correction (PFC) stage and an isolated LLC resonant DC-DC converter. The main contribution lies in the specific focus on enhancing startup behavior and switching performance. In PFC converters, limiting inrush current during startup is crucial, especially with fast-switching wide-bandgap devices like SiC or GaN. Conventional soft-start techniques fall short in of ensuring smooth voltage
Patil, AmrutaBagade, Aniket
In the rapidly evolving and highly competitive automotive industry, manufacturers are under immense pressure to bring products to market quickly while meeting customer expectations. As a result, optimizing the product development timeline has become essential. Structural integrity analysis for chassis and suspension systems lies in the accurate acquisition of operational load spectra, conventionally executed through Road Load Data Acquisition (RLDA) on instrumented vehicles subjected to proving ground excitation. At this point, RLDA is mainly used for final validation and fine-tuning. If any performance shortfalls, such as premature component failure or durability issues, are discovered, they often trigger design revisions, prototype rework, and additional testing. This study proposes a Virtual Road Load Data Acquisition (vRLDA) methodology employing a high-fidelity full-vehicle multibody dynamic (MBD) representation developed in Adams Car. The system is parameterized and uses high
Goli, Naga Aswani KumarPrasad, Tej Pratap
Reliability and performance are critical for product success in engineering. With this aim, the Focus Matrix is a strategic tool designed to enhance the development process by effectively managing technical requirements and prioritizing resources. This paper outlines the application of the Focus Matrix in product development to organize technical packages based on complexity and the technical expertise of the project team. The methodology will be illustrated through a case study on the second-generation Flex Fuel (EVO) fuel pump developed by Bosch. The Fuel pump is responsible for delivering fuel to the engine while maintaining optimal pressure and flow rate. Transitioning to a second generation of a fuel pump focuses on optimizing performance to keep the product relevant in the market, necessitating a thorough analysis of lessons learned and current technological trends. Throughout the development phase, the Focus Matrix provided a structured approach for identifying and mitigating
de Souza, Ana Laura Limade Oliveira Melo, Lazaro BeneditoAguiar, Rayssa Moreno SilvaAzevedo Fernandes, Luiz Eduardo deBoa, Nathan Barroso Fonte
Potholes pose significant challenges to road infrastructure and the automotive industry, leading to safety risks, vehicle damage, and increased maintenance costs. These road defects form due to water infiltration, freeze-thaw cycles, heavy traffic, and inadequate maintenance, creating localized depressions with well-defined edges that compromise pavement integrity. Their impact extends to vehicle durability, affecting tires, suspension systems, and chassis components. This study presents a standardized manual methodology for pothole characterization, focusing on geometry, depth, and distribution assessment. Unlike advanced techniques such as LiDAR and GPR, this cost-effective approach requires no specialized equipment, making it accessible and practical for real-world applications. The methodology involves profile measurements, lateral positioning analysis within the lane, and density calculation based on pothole concentration by square kilometers. To validate the methodology was
Arias, Caio BorgesDedini, Franco GiuseppeEckert, Jony Javorski
2
Mello Filho, Luiz Vicente Figueira deCanteras, Felippe BenaventeMeyer, Yuri AlexandreEmiliano, William MachadoJúnior, Vitor Eduardo MolinaGabriel, João CarlosIano, Yuzo
4
Mendonça, Arthur S.Michelotti, Alvaro CantoBerto, Lucas F.Salvaro, Diego B.Binder, Cristiano
Additive manufacturing is one of the pillars of technologies of the industry 4.0 and enables rapid prototyping, testing of new materials, and customized manufacturing of parts with personalized design. Poly(lactic acid) (PLA) is a bio-based and biodegradable polymer that is used in packaging, medical applications, and consumer goods. However, it presents low mechanical strength and thermal stability, which limits its use in automotive parts. The use of reinforcement materials such as cellulose nanofibers (CNF) aim to increase the mechanical strength and thermal stability of PLA without reducing its ecological appeal. However, the addition of nanofibers in the 3D printing process can lead to reproducibility problems and constant clogging of the extruder nozzle due to the material’s lower printability. These difficulties may restrict its application to industrial processes due to reduced productivity. To address the challenges in the production of automotive parts with PLA/CNF composites
Oliveira, ViníciusHoriuchi, Lucas NaoGonçalves, Ana PaulaSouza, MarianaPolkowski, Rodrigo
The continuous pursuit of operational excellence in the tire manufacturing industry necessitates structured approaches to minimize production defects, improve resource utilization, and enhance product reliability. This study presents a comprehensive case study focused on the implementation of Lean Manufacturing tools within a high-volume production facility specialized in truck and bus radial (TBR) tires. The production line under investigation exhibited recurring defects on the sidewall region of the cured tires, referred to as defect F1, stemming primarily from condensation phenomena and steam management inefficiencies during the curing process. A detailed root cause analysis was conducted through structured brainstorming sessions, Ishikawa diagrams, and the 5 Whys method, revealing multiple converging causes including excessive internal pressure, improper drainage angles, degraded sealing interfaces, and inadequate vapor shielding. In response, a corrective action plan was deployed
Filho, William Manjud MalufYoshimura, Sofia LucasMarques, Ana SungSousa, Julia ZanardoSiqueira, GonçaloAlves, Marcelo Augusto LealFerreira, Wallace Gusmão
This study presents the results of applying a Lean Six Sigma-based analytical approach to optimize the manufacturing of automotive coatings, specifically in a PU primer filling process. Through production flow mapping and the Define, Measure, Analyze, Improve, and Control (DMAIC) methodology, unplanned stoppages in the filling line were significantly reduced, addressing critical inefficiencies in automotive coating production. The research was driven by the need to enhance manufacturing productivity and ensure process reliability in the production of coatings used in the automotive sector. To achieve this, Quality Management tools, such as Pareto Analysis and the Cause-and-Effect Diagram, along with Lean Manufacturing techniques, including Kaizen Blitz, were applied. These methods facilitated the identification and mitigation of key causes of unplanned downtime, improving process efficiency and reliability. The results demonstrated a significant reduction in downtime, enhanced
Filho, William Manjud MalufRodrigues, Mateus FerreiraCarriero, Emily AmaralYoshimura, Sofia LucasMarini, Vinicius KasterSiqueira, GonçaloAlves, Marcelo Augusto Leal
In recent years, the market size of cold chain transportation in China has been expanding, but the industry has problems such as low cold chain circulation rate, low efficiency, high damage rate, and high cost. Under the background of reducing costs and improving quality and efficiency in transportation and logistics, an index set for operational analysis covering average freight rates, daily average number of over-temperature alarm incidents, daily average driving distance, and daily average driving time was established from the perspectives of economic efficiency, quality, and efficiency. Based on data from a third-party platform, including vehicle trajectories, temperatures, speeds, and freight rates, the running situation of road cold chain transportation industry was analyzed. The analysis results show that in 2023, the average freight rate of China’s highway cold chain will rebound, the fluctuation range will significantly narrow, the standardization level of temperature control
Li, SicongYe, JingCao, Mengfei
In order to ensure the construction safety of tunnels in water-rich sections near reservoir areas, it is very important to adopt comprehensive and reliable advanced geological prediction technology combined with on-site monitoring and measurement. Taking the Chenlingding tunnel as an example, through the comprehensive geological prediction of the broken rock section near the reservoir, the numerical model of the broken rock section was established, and compared with the field measurement data. The results show that the comprehensive advanced geological prediction system combining short, medium and long distances, such as geological radar, seismic wave reflection method and advanced horizontal drilling, has high accuracy in adverse geology, rock fragmentation and water rich conditions in the tunnel; The rich water condition, fault information and rock engineering geology provided by the advanced geological prediction can provide reliable guarantee for the tunnel excavation scheme, the
Dai, YunfeiFeng, MeijieLiu, DachengTang, Xianyuan
To delay the formation and development of local periodic fluctuations on the surface of rail structures and improve the durability of rail facilities, the dynamic response and wheel-rail interaction of rail structures were studied in depth based on frequency-modulated rail dampers (TRDs). A fully-coupled 3-D FE framework of the wheel–rail assembly, integrating frequency-modulated rail dampers (TRDs), was developed to quantify vibration energy dissipation. Simulated decay curves revealed a marked rise (> 50 %) in lateral damping efficiency within 600–1 000 Hz, confirming TRD’s targeted suppression of rail transverse motion. Then, the suppression effect of rail corrugation after TRD installation was tested, and the data collection was carried out in the test section to calculate the frequency of rail corrugation. It was found that the possibility of corrugation deterioration of the rail structure was greatly reduced after the installation of the rail damper, and the suppression effect of
Li, ChengshunLei, Zhenyu
Building a green and ecological railway transportation system that incorporates the “Dual-Carbon” Strategy is a central focus and challenge in current industry research. In the western mountainous regions with complex engineering geological conditions and fragile ecosystems, it is particularly important to explore the optimal railway route under the framework of the “Dual-Carbon” strategy. By analyzing the characteristics of the geographic environment of the western mountainous areas and the trend of low-carbon railroad construction, and referring to the relevant principles of railroad line selection, the method of quantifying the carbon emissions during the construction phase of the railroad and the carbon sequestration capacity of the land lost as a result of the railroad project’s land occupation is proposed by selecting 23 indicators from the five aspects of engineering adaptability, low-carbon adaptability, economic adaptability, environmental adaptability, and social adaptability
Wang, Yibo
Heavy-haul railways are a critical component of China’s dedicated freight rail network, serving as the primary land transport channel for energy and resource intermodal transportation. Their safe operation and transportation is essential for ensuring the reliable delivery of energy and raw materials. Taking the Shuohuang Heavy-haul Railway as a case study, based on the hazards identified across its entire operational chain, an ontology model structured as "professional module–task–process–hazard–risk attribute–management object" is constructed in this paper. Based on this model, a knowledge graph for heavy-haul railway operational emergencies is established. The study analyzes the connectivity between different nodes (e.g., work processes and hazards) in the knowledge graph and their potential relationships with risk values. Using directed graph-based degree centrality analysis, a risk assessment method incorporating node centrality is proposed. Risk values are computed at both the
Fu, LiqiangRen, XiaolinRong, Lifan
Traffic flow prediction is the core challenge of transportation, and its key lies in effectively capturing the spatio-temporal dynamic dependencies. Aiming at the deficiencies of existing methods in modeling global temporal relations and dynamic spatial heterogeneity, this paper proposes a dynamic graph convolutional recurrent network (DGCRN) based on interactive progressive learning. First, the interactive progressive learning module (IPL) is designed to segment the input sequences through a tree structure, synchronize the extraction of spatiotemporal features using the interactive learning of parity subsequences, and adaptively capture the dynamic associations among nodes by combining with the dynamic graph convolutional recursive module (DGCRM). Secondly, a spatio-temporal embedding generator (STEG) is constructed to fuse temporal and spatial embedding to generate dynamic graph structures. Experiments validate the effectiveness of DGCRN on the PEMS04 and PEMS08 datasets with MAE
Su, JiangfengXie, ZilongLiu, ChunyaHe, LanKou, YujiaoXue, Xue
With the continuous improvement of information technology in aerospace manufacturing enterprises, the need for the integration and connection of various links in the product development process is becoming increasingly urgent. This article mainly introduces the research on BOM product structure, BOM effectiveness management, and product dataset management solutions for electromechanical products, and elaborates on the key technical content involved in detail, providing a basic capability framework for the comprehensive implementation of XBOM construction in the future.
Zhang, DongZhou, WenzaoZhou, Huachuang
Items per page:
1 – 50 of 10073