Browse Topic: Quality, Reliability, and Durability
Traditional vehicle diagnostics often rely on manual inspections and diagnostic tools, which can be time-consuming, inconsistent, and prone to human error. As vehicle technology evolves, there is a growing need for more efficient and reliable diagnostic methods. This paper introduces an innovative AI-based diagnostic system utilizing Artificial Intelligence (AI) to provide expert-level analysis and solutions for automotive issues. By inputting various details such as the vehicle’s make, model, year, mileage, problem description, and symptoms, the AI system generates comprehensive diagnostics, identifies potential causes, suggests step-by-step repair solutions, and offers maintenance tips. The proposed system aims to enhance diagnostic accuracy and efficiency, ultimately benefiting mechanics and vehicle owners. The system’s effectiveness is evaluated through various experiments and case studies, showcasing its potential to revolutionize vehicle diagnostics
Wire Electrical Discharge Machining (WEDM) is an important method engaged to make intricate shapes in conductive materials like Cupronickel, which is well-known for its ability to resist corrosion and conduct heat. The intention of this exploration is to enhance the effectiveness and accuracy of Wire Electrical Discharge Machining (WEDM) for Cupronickel material by utilizing a Taguchi-based Grey Relational Analysis (GRA). The study examines the impact of WEDM parameters, specifically pulse-on time, pulse-off time, and discharge current, on key machining outcomes such as surface roughness (Ra), material removal rate (MRR). A comprehensive dataset is generated for analysis through a systematic series of experiments designed using the Taguchi method. Grey relational grades are assessed to measure the connections between the input parameters and machining responses, making it easier to determine the best parameter settings. The Taguchi-based GRA approach provides a systematic approach for
Additive Manufacturing (AM), specifically Fused Deposition Modeling (FDM), has become a highly promising method for creating intricate shapes using different materials. Polyethylene Terephthalate Glycol (PETG) is a highly utilized thermoplastic that is recognized for its exceptional strength, resistance to chemicals, and effortless processing. This study aims to optimize the process parameters of the FDM technique for PETG material using Taguchi Grey Relational Analysis (GRA). An empirical study was carried out to examine the impact of various FDM process parameters, such as layer thickness, infill density, printing speed, and nozzle temperature, on important outcome variables like dimensional accuracy, surface quality, and mechanical properties. The Taguchi method was used to systematically design a series of experiments, while GRA was used to optimize the process parameters and performance characteristics. The results unveiled the most effective parameter combinations for attaining
Spot welds are integral to automotive body construction, influencing vehicle performance and durability. Spot welding ensures structural integrity by creating strong bonds between metal sheets, crucial for maintaining vehicle safety and performance. It is highly compatible with automation, allowing for streamlined production processes and increased efficiency in automotive assembly lines. The number and distribution of spot welds directly impact the vehicle's ability to withstand various loads and stresses, including impacts, vibrations, and torsion. Manufacturers adhere to strict quality control standards to ensure the integrity of spot welds in automotive production. Monitoring spot weld count and weld quality during manufacturing processes through advanced inspection techniques such as Image processing by YOLOv8 helps identify the number of spots and quality that could compromise safety. Automating quality control processes is paramount, and machine vision offers a promising
The future of wireless technology - from charging devices to boosting communication signals - relies on the antennas that transmit electromagnetic waves becoming increasingly versatile, durable and easy to manufacture. Researchers at Drexel University and the University of British Columbia believe kirigami, the ancient Japanese art of cutting and folding paper to create intricate three-dimensional designs, could provide a model for manufacturing the next generation of antennas. Recently published in the journal Nature Communications, research from the Drexel-UBC team showed how kirigami - a variation of origami - can transform a single sheet of acetate coated with conductive MXene ink into a flexible 3D microwave antenna whose transmission frequency can be adjusted simply by pulling or squeezing to slightly shift its shape
Many of the “ilities” (Reliability, Maintainability, etc) are afterthoughts in the creation of a specification, and are often relegated to a set of templated boilerplate requirements, that are largely ignored. The Reliability / Robust Design professionals often use a P-Diagram (Parameter Diagram) as a key part of understanding the system under design. A way of integrating the Reliability effort more into the mainstream of the design activity, and give them a stronger voice, is to put their P-Diagram right into the specification, before it gets released to industry. This paper describes the rationale and the manner in which to do this
ABSTRACT The concept of Autonomous Vehicles ultimately generating an “order of magnitude” potential increase in the duty or usage cycle of a vehicle needs to be addressed in terms of impact on the reliability domain. Voice of the customer data indicates current passenger vehicle usage cycles are typically very low, 5% or less. Meaning, out of a 24 hour day, perhaps the average vehicle is actually driven only 70 minutes or less. Therefore, approximately 95% of the day, the vehicles lay dormant in an unused state. Within the context of future fully mature Autonomous Vehicle environment involving structured car sharing, the daily vehicle usage rate could grow to 95% or more
ABSTRACT Value Engineering (VE) is an organized effort directed at analyzing the function of a product, service, or process to achieve the lowest total cost of effective ownership while meeting the customer’s needs. A comparison as to how VE is applied and to what extent is made between the automotive industry and the Government using the Program Executive Office Ground Combat Systems (PEO GCS) as a standard. Both the automotive industry and the Government use common VE techniques to conduct VE studies. Both use VE to manage functionality to yield value to the customer. Neither the Government nor the automotive industry sacrifices the quality of the product or its reliability in the name of cost. Both the auto industry and the PEO employ a systematic team approach to analyze and improve the value of a product, facility design, system, or service. Applying systems engineering principles helps ensure successful execution of the PEO GCS VE program. The auto industry uses VE more widely
ABSTRACT The key to a better correlation between the interface of systems engineering and project management is in fact a strong sigma relationship. In the recent past this would be termed Value Engineering and was that activity that took place prior to cutting the tools, but it is considerably more common today with the computer systems and software suites in use for modeling and the emphasis on Design for Six Sigma and time to market. All of these tools and methodologies are placing the focus on the final product performance, quality and cost and in so doing helping to again strengthen the manufacturing posture and job outlook of America and re-shore much of the work that was outsourced to save money. Whether of Military or U.S. vehicle manufacturing requirements, for the safety of our programs this work can and should stay in the United States when appropriate. This paper will develop better tools solutions, to provide better risk decisions which improve safety, budget, predictions
ABSTRACT Systems Engineering (SE) would always benefit from the inclusion of the Six-Sigma perspective in both the planning and execution of project systems. This applies to not only System Engineers but also to Systems Extended Team Members, all who must provide cumulated knowledge along with competency to the project. It is difficult to obtain a high level of competency among single members of the team to be highly successful. Strength in one area is very often an underlying factor of weakness in another area. Determining and integrating sigma characteristics from the development cycle into all remaining phases of the product project, especially at critical component interfaces, with a resultant sigma value given to those connections that develop a sigma-risk factor for each function and process pathway within the operational configuration. This sigma-risk factor concept is the key in uniting knowledge with experience
ABSTRACT High life cycle costs coupled with durability and environmental challenges of tracked vehicles in South West Asia (SWA) have focused R&D activities on understanding failure modes of track components as well as understanding the system impacts on track durability. The durability limiters for M1 Abrams (M1, M1A1, and M1A2) T-158LL track systems are the elastomeric components. The focus of this study is to review test methodology utilized to collect preliminary data on the loading distribution of a static vehicle. Proposed design changes and path forward for prediction of durability of elastomers at the systems level from component testing will be presented
ABSTRACT A toolchain must be functionally cohesive with a business process, especially in technical domains such as complex systems engineering. Despite the industry-wide shift towards model-based digitization within engineering organizations, there is a lack of development in implementing model-based RAMS (Reliability, Availability, Maintenance, Safety) processes. This results in a missed opportunity to create value throughout the entire system lifecycle, from conceptual design to operations. This paper proposes some reasons for this and outlines a framework for evaluating model-based toolchains in the context of the entire Engineering cycle. A model-based architecture for RAMS is proposed and contrastively evaluated with respect to SysML. Key use cases are identified, and benefits are demonstrated using Maintenance Aware Design Environment Software. Citation: J. Langton, S. Hilton, “Iterative Co-Design Of Organizational Processes and Toolchains For Model-Based Reliability
ABSTRACT Leader-follower autonomous vehicle systems have a vast range of applications which can increase efficiency, reliability, and safety by only requiring one manned-vehicle to lead a fleet of unmanned followers. The proper estimation and duplication of a manned-vehicle’s path is a critical component of the ongoing development of convoying systems. Auburn University’s GAVLAB has developed a UWB-ranging based leader-follower GNC system which does not require an external GPS reference or communication between the vehicles in the convoy. Experimental results have shown path-duplication accuracy between 1-5 meters for following distances of 10 to 50 meters. Citation: K. Thompson, B. Jones, S. Martin, and D. Bevly, “GPS-Independent Autonomous Vehicle Convoying with UWB Ranging and Vehicle Models,” In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 16-18, 2022
ABSTRACT Significant Design for Reliability (DfR) methodology challenges are created with the integration of autonomous vehicle technologies via applique systems in a ground military vehicle domain. Voice of the customer data indicates current passenger vehicle usage cycles are typically 5% or less (approximately 72 minutes of use in a twenty-four hour period) [2]. The time during which vehicles currently lay dormant due to drivers being otherwise occupied could change with autonomous vehicles. Within the context of the fully mature autonomous military vehicle environment, the daily vehicle usage rate could grow to 95% or more. Due to this potential increase in the duty or usage cycle of an autonomous military vehicle by an order of magnitude, several issues which impact reliability are worth exploring. Citation: M. Majcher, J. Wasiloff, “New Design for Reliability (DfR) Needs and Strategies for Emerging Autonomous Ground Vehicles”, In Proceedings of the Ground Vehicle Systems
ABSTRACT Problem: The traditional four (4) methods for improving reliability; 1) High design safety margin, 2) Reduction in component count or system architectural complexity, 3) Redundancy, and 4) Back-up capability, are often ignored or perceived as being excessively costly in weight, space claim as well as money. Solution 1: Discussed here are the practical and very cost effective methods for achieving improved reliability by Functional Interface Stress Hardening (FISHtm or FISHingtm). The Author has been able to apply FISH to eliminate 70-92% of unscheduled equipment downtime, within 30-60 days, for more than 30 of the Fortune 500 and many other large companies which utilize automation controls, computers, power electronics and hydraulic control systems. Solution 2: From Structured Innovation the 33 DFR Methods & R-TRIZ Tool can be used to grow or improve reliability, via rapid innovation. The R-TRIZ tool) is provided so that users can instantly select the best 2, 3 or 4 of these
ABSTRACT The demand for mobile, secure communications has been and will continue to be a fundamental requirement for dismounted, urban and distributed operations in the field. It is imperative that soldiers on the front lines receive actionable information in a timely, secured and uninterrupted manner to increase force protection and effectiveness. In this paper, we describe a novel, high technical maturity (TRL 8+) communications link that offers the mounted and dismounted soldier secure, beyond line of sight, encrypted capability for weapons control and command & control of multiple platforms. An innovative spread spectrum waveform was designed from the ground up to deliver necessary functionality for reliable communications amongst multiple nodes with a data rate and range commensurate with battlefield scenarios
ABSTRACT The Integrated Systems Engineering Framework (ISEF) is an Army Research, Development, and Engineering Command (RDECOM) solution to address stovepiped systems engineering(SE) information and processes, disparate tools united by custom, one-off integrations, and a lack of accepted, common standards that exists in today’s Department of Defense (DoD) operating environment. Ever increasing technical complexity of fielded solutions combined with budgetary constraints push DoD engineers to “do more with less,” requiring a technical management solution that allows them collaborate virtually yet effectively with distributed engineers and other stakeholders. Easy access to systems engineering tools and information through a single “cloud” based application allows connections between federated databases, and facilitates knowledge preservation over time to avoid “reinventing the wheel” when new programs replace retired ones. ISEF is an ever-expanding collection of systems engineering
Items per page:
50
1 – 50 of 10233