Browse Topic: Durability
Engineers at the University of California San Diego have achieved a long-sought milestone in photonics: creating tiny optical devices that are both highly sensitive and durable — two qualities that have long been considered fundamentally incompatible.
A fiber sensor inspired by the shape of DNA, developed by researchers at Shinshu University, introduces a new design for more durable, flexible fiber sensors in wearables. Traditional fiber sensors have electrodes at both ends, which often fail under repeated movement when placed on body joints. The proposed double-helical design, however, places both electrodes on one end, allowing the sensor to endure repeated stretching and movement, effectively addressing a key limitation of conventional wearable sensors.
U.S. Army researchers, in collaboration with academic partners, invented a stronger copper that could help advance defense, energy and aerospace industries thanks to its ability to endure unprecedented temperature and pressure extremes. Extreme materials experts at the U.S. Army Combat Capabilities Development Command (DEVCOM) Army Research Laboratory built on a decade of scientific success to develop a new way to create alloys that enable Army-relevant properties that were previously unachievable. An alloy is a combination of a metal with other metals or nonmetals.
The continuous improvement of validation methodologies for mobility industry components is essential to ensure vehicle quality, safety, and performance. In the context of mechanical suspensions, leaf springs play a crucial role in vehicle dynamics, comfort, and durability. Material validation is based on steel production data, complemented by laboratory analyses such as tensile testing, hardness measurements, metallography, and residual stress analysis, ensuring that mechanical properties meet fatigue resistance requirements and expected durability. For performance evaluation, fatigue tests are conducted under vertical loads, with the possibility of including "windup" simulations when necessary. To enhance correlation accuracy, original suspension components are used during testing, allowing for a more precise validation of the entire system. Additionally, dynamic stiffness measurements provide valuable input for vehicle dynamics and suspension geometry analysis software, aiding in
Researchers at the U.S. Department of Energy (DOE)’s Oak Ridge National Laboratory (ORNL) have developed an innovative new technique using carbon nanofibers to enhance binding in carbon fiber and other fiber-reinforced polymer composites — an advance likely to improve structural materials for automobiles, airplanes and other applications that require lightweight and strong materials.
Solar panels are composed of dozens of solar cells, which are usually made of silicon. While silicon is the standard, producing and processing it is energy-intensive, making it costly to build new solar panel manufacturing facilities. Most of the world’s solar cells are made in China, which has an abundance of silicon. To increase solar cell production in the U.S., a new, easily produced domestic material is needed. “We’re developing technologies that we can easily produce without spending a ton of money on expensive equipment,” said Juan-Pablo Correa-Baena, an Associate Professor in the School of Materials Science and Engineering.
ACT Expo 2025 had a fleet of new commercial vehicle launches as well as displays for models already on the market. One such existing chassis was the Workhorse W56, an electric step van designed for Class 5/6 last-mile delivery. Unlike many of its competitors, Workhorse did not set out to be a technological leader with the W56. Rather, the company took the approach of leveraging the best of the currently available and applicable technologies to produce a durable, reliable and producible product that just happened to be powered by electrons.
This SAE Recommended Practice is intended to give information to engineers and designers in order that access to a passenger handgrip, when used, is easily obtained, and that such handgrips offer maximum safety for a person at least as large as a 95th percentile adult male during snowmobile operation.
Boston Scientific entered 2025 with significant momentum. Fresh off a standout first quarter, the company’s leadership has outlined a compelling vision for sustainable long-term growth rooted in high-performing cardiology franchises, operational precision, and disruptive technologies in electrophysiology (EP). Leaders spoke at a recent Bank of America Healthcare Conference. The discussion marked outgoing CFO Dan Brennan’s final investor presentation and underscored Boston Scientific’s transformation into one of medtech’s most durable growth stories.
For the team at SmartCap, building top-notch gear for outdoor adventurers isn’t just a business — it’s a passion driven by their own love for the wild. But as demand for their rugged, modular truck caps soared after their move to North America in 2022, they hit a snag: How do you ramp up production without sacrificing the meticulous quality you are known for, all while navigating a tough labor market? Their answer? A bold step into the world of intelligent automation, teaming up with GrayMatter Robotics, and employing the company’s innovative Scan&Sand™ system.
This paper reviews the current situation in the terms and definitions that influence the development of testing and prediction in automotive, aerospace and other areas of engineering. The accuracy of these terms and definitions is very important for correct simulation, testing and prediction. This paper aims to define accurate terms and definitions. It also includes the author’s recommendations for improving this situation and preparing new standards.
The half vehicle spindle-coupled multi-axial input durability test has been broadly used in the laboratory to evaluate the fatigue performance of the vehicle chassis systems by automotive suppliers and OEMs. In the lab, the front or rear axle assembly is usually held by fixtures at the interfaces where it originally connects to the vehicle body. The fixture stiffness is vital for the laboratory test to best replicate the durability test in the field at a full vehicle level especially when the subframe of the front or rear axle is hard mounted to the vehicle body. In this work, a multi-flexible body dynamics (MFBD) model in Adams/Car was utilized to simulate a full vehicle field test over various road events (rough road, braking, steering). The wheel center loads were then used as inputs for the spindle coupled simulations of the front axle with a non-isolated subframe. Three types of fixtures including trimmed vehicle body, a rigid fixture with softer connections and a rigid fixture
Aerospace and defense system designers are demanding scalable and high-performance I/O solutions. While traditional mezzanine standards have proven reliable, they often fall short of meeting modern bandwidth, size, and flexibility requirements. This challenge is particularly evident in aerospace and defense applications where high-speed data processing must align with stringent size, weight, and power (SWaP) constraints. Current mezzanine solutions also face significant limitations in scalability, thermal management, and I/O density. These constraints can lead to compromised system performance and limited upgrade paths in applications where adaptability is crucial. This article explores how the new VITA 93 (QMC) standard addresses these challenges through its innovative QMC architecture, enabling unprecedented flexibility, scalability, and rugged reliability while maintaining compatibility with existing and future systems. It also covers how VITA 93 (QMC) builds on lessons learned from
To save on fuel and reduce aircraft emissions, engineers are looking to build lighter, stronger airplanes out of advanced composites. These engineered materials are made from high-performance fibers that are embedded in polymer sheets. The sheets can be stacked and pressed into one multilayered material and made into extremely lightweight and durable structures.
A team at MIT has moved beyond traditional trial-and-error methods to create materials with extraordinary performance through computational design. Their new system integrates physical experiments, physics-based simulations, and neural networks to navigate the discrepancies often found between theoretical models and practical results. One of the most striking outcomes: the discovery of microstructured composites — used in everything from cars to airplanes — that are much tougher and durable, with an optimal balance of stiffness and toughness.
A 20-cell self-humidifying fuel cell stack containing two types of MEAs was assembled and aged by a 1000-hour durability test. To rapidly and effectively analyze the primary degradation, the polarization change curve is introduced. As the different failure modes have a unique spectrum in the polarization change curve, it can be regarded as the fingerprint of a special degradation mode for repaid analysis. By means of this method, the main failure mode of two-type MEAs was clearly distinguished: one was attributed to the pinhole formation at the hydrogen outlet, and another was caused by catalyst degradation only, as verified by infrared imaging. The two distinct degradation phases were also classified: (i)conditioning phase, featuring with high decay rate, caused by repaid ECSA change from particle size growth of catalyst. (ii) performance phase with minor voltage loss at long test duration, but with RH cycling behind, as in MEA1. Then, an effective H2-pumping recovery is conducted
The present research explores the potential of high-performance thermoplastics, Polymethyl Methacrylate and Polyurethane, to enhance the passive safety of automotive instrument panels. The purpose is to evaluate and compare the passive safety of these two materials through the conduct of the Charpy Impact Test, Tensile Strength Test, and Crush Test —. For this, five samples were prepared in the case of each material via injection moulding, which enabled reliability, and consistency of the findings. As a result, it was found that in the case of the Charpy Impact Test, the average impact resistance varies with PMMA exhibiting a level of 15.08 kJ/m2 as opposed to the value of 12.16 kJ/m2 for PU. The Tensile Strength Test produced the average tensile strength of 50.16 for PMMA and 48.2 for PU, which implied superior structural integrity under tension for the first type of thermoplastic. Finally, the Crush Test showed that PMMA is more resistant to crushes on average than PU with the
The future of wireless technology - from charging devices to boosting communication signals - relies on the antennas that transmit electromagnetic waves becoming increasingly versatile, durable and easy to manufacture. Researchers at Drexel University and the University of British Columbia believe kirigami, the ancient Japanese art of cutting and folding paper to create intricate three-dimensional designs, could provide a model for manufacturing the next generation of antennas. Recently published in the journal Nature Communications, research from the Drexel-UBC team showed how kirigami - a variation of origami - can transform a single sheet of acetate coated with conductive MXene ink into a flexible 3D microwave antenna whose transmission frequency can be adjusted simply by pulling or squeezing to slightly shift its shape.
Whether for vascular catheters or implantable devices, medical tubing must meet tough standards for flexibility, strength, and biocompatibility. That’s why more manufacturers are turning to thermoplastic polyurethanes (TPUs) that strike the ideal balance between these key properties, making them an excellent choice for high-performance medical tubing. Unlocking the best that TPUs have to offer means optimizing the extrusion process. This article looks at why TPUs are a top pick, the common obstacles in extrusion, and the ways manufacturers can fine-tune their process to get the most out of different grades.
This specification establishes requirements for titanium forgings of any shape or form from which finished parts are to be made (see 2.4.4, 8.3, and 8.6).
Safe and efficient energy storage is important for American prosperity and security. With the adoption of both renewable energy sources and electric vehicles on the rise around the world, it is no surprise that research into a new generation of batteries is a major focus. Researchers have been developing batteries with higher energy storage density, and thus, longer driving range. Other goals include shorter charging times, greater tolerance to low temperatures, and safer operation.
As the demand for EVs grows, it will be necessary to innovate batteries that achieve durability, power density, safety, lower cost, increased range, and faster recharge time using a fast, cost-effective, and energy-efficient process.
Innovators at NASA Johnson Space Center have developed a method using low-viscosity RTV silicone to form durable seals between polymer bladder and metal bulkhead interfaces to be used for inflatable space habitats.
A research team from Pohang University has successfully enhanced the performance and durability of all-solid-state batteries. This breakthrough was made possible through the implementation of a novel approach known as bottom electrodeposition.
The last time you dropped a mug, you may have been too preoccupied to take much notice of the intricate pattern of cracks that appeared in the broken object. But capturing the formation of such patterns is the specialty of John Kolinski and his team at the Laboratory of Engineering Mechanics of Soft Interfaces (EMSI) in EPFL’s School of Engineering.
Implants that steadily release the right dose of a drug directly to the target part of the body have been a major advance in drug delivery. However, they still face some key challenges, such as ensuring that the drug is released at a constant rate from the moment it is implanted and ensuring that the implant is soft and flexible enough to avoid tissue damage but tough enough not to rupture. One particular challenge is to avoid triggering the foreign body response, which is when the patient’s body encloses the implant in a tight capsule of tough connective tissue which can slow the drug’s release or prevent it from diffusing out.
Items per page:
50
1 – 50 of 3247