Browse Topic: Durability

Items (3,542)
ABSTRACT High life cycle costs coupled with durability and environmental challenges of tracked vehicles in South West Asia (SWA) have focused R&D activities on understanding failure modes of track components as well as understanding the system impacts on track durability. The durability limiters for M1 Abrams (M1, M1A1, and M1A2) T-158LL track systems are the elastomeric components. The focus of this study is to review test methodology utilized to collect preliminary data on the loading distribution of a static vehicle. Proposed design changes and path forward for prediction of durability of elastomers at the systems level from component testing will be presented
Ostberg, DavidBradford, Bill
ABSTRACT BAE Systems has departed from traditional design rules of thumb and implemented a full-vehicle durability fatigue life analysis process at the design concept level to support lighter weight component designs. The durability process includes derivation of test duty cycles, generation of virtual loads from vehicle dynamic simulations, cascading of hundreds of channels of suspension attachment loads, and prediction of accumulated damage/fatigue life for both quasi-static and transient responses using a finite element vehicle structural model. The fatigue analysis process is typically deterministic, however the stochastic nature of the loads, material properties, and build variations should also be considered to ensure a robust durability process. The process is demonstrated on a heavy wheeled-vehicle platform using a generic duty cycle with examples shown at each stage of the process. This study additionally demonstrates the effects of variability of loads, materials, and
Purushothaman, NammalwarJayakumar, ParamsothyCritchley, JamesDatta, SandipPisipati, Venkat
ABSTRACT State-of-the-art Diesel engines used for on-highway operation are integrated systems containing multiple subsystems for performance and emissions enhancements. The drive to lower tailpipe emissions on on-highway engines drives system complexity which is both undesired and unnecessary for military ground vehicles. There are, however, on-highway technologies such as high pressure fuel injection systems and advanced turbocharger systems that allow improving the engines’ efficiency and therefore lowering its fuel consumption. The aforementioned technologies are currently available and present possible near term opportunities for military ground vehicles. The adaptation to allow reliable operation in military vehicles will be discussed as part of this near term view. The authors will also discuss the electronic controls architecture requirements that come along with these sophisticated technologies and discuss the advantages and opportunities that present themselves using advanced
Tatur, MarekTomazic, DeanKoehler, Erik
ABSTRACT Vehicle prognostics are used to estimate the remaining useful life of components or subsystems, based on a limited number of measured vehicle parameters. Ideally, sensors would be available for every component and failure mode of interest, such that accurate data could be measured and used in prognostic estimates. However, this is impractical in terms of the number of sensors required and the costs to install such a system and maintain its integrity. A better solution is to relate the loading on a specific component to more generic vehicle behavior. This paper reviews a methodology referred to as the “Durability Transfer Concept”, which suggests that damage, or severity of usage, at various points of interest on a vehicle can be predicted simply from measured accelerations at some nominal location – a wheel axle, for example. Measured accelerations are double integrated to get displacements. Those displacements are then filtered using the Rupp or Lalanne method. A transfer
Halfpenny, AndrewHussain, ShabbirMcDougall, ScottPompetzki, Mark
ABSTRACT Modern heavy duty Commercial Off The Shelf (COTS) diesel engines represent the state of the art in engine performance and design features, control architecture, and the use of light weight high strength materials. These engines, with appropriate adaptation for operation on military fuels, make excellent choices for defense applications. This paper reviews the selection and modification of a COTS engine suitable for potential defense applications. Considerations for robust operation of the engine on JP8, engine system modifications appropriate for military vehicle emission requirements, reduction of engine system heat rejection, and optimization of engine efficiency will be discussed using example data from converting a 2011 model year COTS engine for defense applications as funded by Broad Agency Announcement (BAA) Topic 15
Hunter, Gary L.
ABSTRACT Today’s battlefield requires access to information in a multitude of environments with varying terrains (both urban and rural) in either passive or active engagements. Ground vehicles need sensors that can be rapidly deployed to different locations and networked into the family of vehicles in order to effectively share information. Masted sensor systems, in particular, are a potential valuable resource with their ability to perform long-range surveillance over obstructions while minimizing vehicle exposure. To maximize effectiveness these systems must withstand harsh battlefield conditions without undue maintenance. The need for variable mast heights, on-the-move (OTM) sensor performance, the ability to support a wide variety of long-range sensors, internal cabling to better resist battlefield damage, resistance to armored vehicle vibration and shock environments, and rapid mast deployment and stowage have driven Lockheed Martin to a robust mast solution that meets this
Neely, DavidFosen, KeithPoteat, DanielCarmichael, D. Brian
This document is intended for discrete and integrated digital, wavelength division multiplexing (WDM), and analog/radio frequency (RF) photonic components developed for eventual transition to aerospace platforms. The document provides the reasons for verification of photonic device life test and packaging durability. The document focuses on pre-qualification activity at the optical component level to achieve TRL 6. The recommended tests in this document are intended to excite typical failure mechanisms encountered with photonic devices in an aerospace operating environment, and to build confidence that a technology is qualifiable during a program’s engineering and manufacturing development phase. This recommended practice is targeting components to support electrical-to-optical, optical-to-electrical, or optical-to-optical functionality. Passive optical waveguide, fiber optic cable, and connector components that are integral to a photonic package are included. Component and photonic
AS-3 Fiber Optics and Applied Photonics Committee
This study looks at the effects of low-viscosity fuel on high-pressure fuel pump durability. Several high-pressure fuel pumps were allowed to operate with low-viscosity fuel on a custom test stand until failure. Fuel-pumps lasted 0.3-294 hours before failure. The fuel pumps failed by experiencing a sharp rise in the low-pressure outlet fuel temperature due to scuffing of the camring-bucket interface. We describe a technique for analyzing acoustic emission sensor data to monitor the status of the fuel pump. Acoustic emission signals were able to detect a two-stage failure process of scuffing initiation on a single camring-bucket interface to propagation of damage to the other interfaces
Murthy, NikhilCoburn, VincentMatzke, CalebBerkebile, Stephen
Innovators at NASA Johnson Space Center have developed a method using low-viscosity RTV silicone to form durable seals between polymer bladder and metal bulkhead interfaces to be used for inflatable space habitats
For the vibration durability bench test of commercial vehicle batteries, it is essential to have accurate test specifications that exhibit high robustness and reasonable acceleration characteristics. This study evaluates the impact of different battery frame systems on the vibration response of the battery body, as determined by road load spectrum test results of a commercial vehicle battery system. It also confirms the variations in the external environmental load. Utilizing the response spectrum theory, a comprehensive calculation method for the fatigue damage spectrum (FDS) of batteries is developed. The time domain direct accumulation method, frequency domain direct accumulation method, and frequency domain envelope accumulation method are all compared. Analysis of kurtosis and skewness reveals that when the load follows the super-Gaussian distribution characteristics, the time domain direct accumulation method should be used to calculate the fatigue damage spectrum to minimize
Yan, XinGuo, DongniWan, XiaofengSun, JiameiQuan, XinhuiWang, Ying
Implants that steadily release the right dose of a drug directly to the target part of the body have been a major advance in drug delivery. However, they still face some key challenges, such as ensuring that the drug is released at a constant rate from the moment it is implanted and ensuring that the implant is soft and flexible enough to avoid tissue damage but tough enough not to rupture. One particular challenge is to avoid triggering the foreign body response, which is when the patient’s body encloses the implant in a tight capsule of tough connective tissue which can slow the drug’s release or prevent it from diffusing out
The last time you dropped a mug, you may have been too preoccupied to take much notice of the intricate pattern of cracks that appeared in the broken object. But capturing the formation of such patterns is the specialty of John Kolinski and his team at the Laboratory of Engineering Mechanics of Soft Interfaces (EMSI) in EPFL’s School of Engineering
A research team from Pohang University has successfully enhanced the performance and durability of all-solid-state batteries. This breakthrough was made possible through the implementation of a novel approach known as bottom electrodeposition
To save on fuel and reduce aircraft emissions, engineers are looking to build lighter, stronger airplanes out of advanced composites. These engineered materials are made from high-performance fibers that are embedded in polymer sheets. The sheets can be stacked and pressed into one multilayered material and made into extremely lightweight and durable structures
A durable, copper-based coating developed by a team at Dartmouth University can be integrated into fabric to create responsive, reusable materials such as protective equipment, environmental sensors, and smart filters
Motorcycles which are designed for both regular as well as rough terrains experience more severe vertical impact loads from ground in comparison with motorcycles which travel only on regular terrains. Therefore, drop test is considered an important method to evaluate durability for said vehicles. Fuel Tank mounted over front frame of a motorcycle is the most critical component from safety point of view and hence, need to be analysed for vertical drop load case. To do so, modelling of whole vehicle can be a hectic task and has to be avoided. In the present work, behaviour of fuel tank mounted over frame support and subjected to vertical drop from H(m) height is studied with the help of support excitation method incorporated with explicit non-linear time integration scheme using Finite Element Analysis (FEA) code in commercial FEA software. Through this scheme, effect on Fuel Tank of vehicle drop can be studied without actually modelling the whole vehicle. Results from FEA software were
Sharma, AshishKhare, Saharash
In alignment with the U.S. Army's Climate Strategy and the broader trend in automotive technology, there is a strategic shift towards electrification and hybridization of the vehicle fleet. While a major goal of this effort is to mitigate the carbon footprint of the U.S. Army's vehicle operations, this transition also presents an opportunity to harness advancements in automotive electrification. Among the key vehicles in focus are tactical wheeled vehicles, which provide military forces with versatile and rugged transportation solutions for various combat scenarios, ensuring mobility, protection, and adaptability on the battlefield. This study investigates the potential of electrified tactical wheeled vehicles by conducting a survey involving a diverse group of vehicle operators across various ranks within the U.S. Army. The aim is to identify novel applications achievable through electrification or hybridization, encompassing functions such as establishing command posts, prolonged
Konopa, BridgetMiller, MarkRevnew, LukeMuraco, JohnMayfield, LoganRutledge, MaxwellCrocker, MatthewMittal, Vikram
Due to the expense and time commitment associated with extensive product testing, vehicle manufacturers are developing new simulation techniques to verify vehicle component performance with less testing and more confidence in the final product. Battery lifetime is of particular difficulty to predict, since each battery is different and there are many different control scenarios that could be implemented based on the specific requirements of each battery type. In order to solve this problem for a 12V auxiliary lead-acid battery, a battery durability analysis model has been previously adapted from lithium-ion applications, which is capable of verifying the impact of lead-acid battery durability in a short period of time. In this study, calibration tools for this model were developed and are presented here, and durability analysis and verification are performed for the application of new electric vehicles. New control strategies, designed specifically for the auxiliary batteries in
Lim, YoungchulEdel, ZacharyMarker, EthanJoung, SanghyeokKwon, Oh Hyun
This paper reviews the current situation in the development of accelerated testing of automotive engineering, consisting of the four following areas: 1. Field testing of the natural product. 2. Additional technology of separate testing in the laboratory on the basis of physical simulation of separate field conditions using corresponding methods and equipment separately and conducting: safety testing, special programs of testing using digital simulation, special testing with changing certain parameters of environment, corrosion testing, etc. Both of the traditional testing developments above can be found in many magazines, journals, conferences, presentations, and proceedings. 3. Testing on the basis of digital (computer) simulation of product and/or field conditions. This area of testing has been developed in the last dozen years. Many articles and presentations were published during this time. 4. Accelerated reliability and durability testing for obtaining during service-life of the
Klyatis, Lev
Certain sports utility vehicles (SUVs) utilize dual latches and gas struts in their hood design. This is primarily driven by the larger size of the hood and specific architectural requirements. These hoods can be securely latched either by a dynamic single stroke closing method or by quasistatic two stroke closing method. In dynamic method, the hood is closed with a single, high-velocity motion for the final primary latching, whereas in quasistatic method, force is initially applied for the secondary latching and then for the final primary latching. In this study, both the dynamic and quasistatic closing methods are compared in terms of closing force and velocity and hood over travel distance. A load cell is used for measuring the closing force, velocity meter is used for velocity measurement and a rope sensor is used for measuring the hood over travel distance. It is evident from the study that the velocity required for hood closing is higher in the dynamic method, than the quasi
Selvan, VeeraSakthivel, GowthamR, BalajiAS, KevinA, SankaranarayananKamat, RohanUnadkat, SiddharthPandurangan, Venugopal
Off-roading is the scenario of driving a vehicle on unpaved surfaces such as sand, gravel, riverbeds, rocks, and other natural terrain. Vehicle designed for that purpose requires jumping from height due to uneven surfaces/patches. This also requires them to sustain a high amount of loads acting upon them on impact. Thus, off-roading vehicles should not only provide intended vehicle dynamics performance but at the same time should be durable as well. Drop test which is done in a controlled environment is a widely used method to validate the durability of vehicle in such scenarios wherein the vehicle is dropped from a certain predefined height. In Multibody dynamics simulation, drop test was replicated and acceleration data computed at different locations in the vehicle were correlated with actual physical test data. Correlation was done for different drop heights. This paper presents relevant details of the virtual vehicle modeling, loadcase, test data & subsequent correlation. This
Kaka, VaibhavJain, Arvind
Wire arc additive manufacturing technology has become a promising alternative technology to high-volume metal deposition in many manufacturing industries like aerospace and automotive due to arc stability, long process cycle time, and formability. In this work, the Fanuc arc mate robot forms a single-pass, single-layer structure with a 1.2 mm diameter wire of copper-coated steel. Pure Argon gas is used as a shielding gas to protect the weld from oxidation. Different welding speed is carried out to analyze the bead thickness and height. Current and voltage as a heat input with optimal welding speed, a 10 kg straight wall is built with an operative building rate of 3.94 kg/h. The Rockwell hardness test is used to determine the hardness of the material, and it is discovered that it is 80 HRB. The tensile test is performed to determine the tensile strength and yield strength of the component; the measured values are 483.88 N/mm2 and 342.156 N/mm2, respectively. Increasing the welding speed
Gideon Ganesh, M.Rajendran, I.Hariharan, K.Naveen Kumar, S.Rajeswaran, M.
Dramatic video of the first flight of the Space Launch System (SLS), from the initial blastoff to rocket-booster separation, gave NASA essential information about the performance of the Artemis I flight. It also proved the capabilities of a new rugged video camera mounted on the exterior of the core rocket stage. The camera, developed using patented NASA hardware and agency expertise, survived the heat of blastoff and the cold of space, and it’s now ready for extreme conditions on Earth
In pursuing enhanced bio-composite properties, filler materials play a pivotal role. This study delves into the impact of ceramic additives on the chemical resistance and moisture durability of flax fiber-reinforced polymers. Utilizing the hand lay-up technique, we developed polyester composites reinforced with flax fibers. Silicon carbide (SiC) and aluminum oxide (Al2O3) were chosen as filler components. One batch of flax fibers underwent an alkaline treatment to enhance their properties further using a 5% NaOH solution. The resistance of composite samples to acetic acid and sodium hydroxide was then assessed. Additionally, the moisture absorption patterns of all models were investigated. A thorough comparative analysis was conducted among multiple composite batches. The results highlighted that integrating additives significantly bolstered the chemical and moisture resistance of the composites. Notably, the alkali-treated samples exhibited superior moisture and chemical agent
Pandian, ArvindaKaliappan, SeeniappanNatrayan, L.Reddy, Vinay
This paper describes the after-treatment technology that could be used to meet a future BS-VII standard, considering close-coupled SCR (cc-SCR) to help start NOx conversion earlier. Both active (Cu/Fe-SCR based) and passive (V-SCR based) systems have the potential to meet emission limits. V-SCR may be considered in the rear position because V-SCR shows a fast response with very low N2O formation. Next-gen V-SCR technology shows significantly improved performance and durability closer to Cu-SCR. The steady-state NOx conversions over Next-Gen V-SCR were better than BS-VI V-SCR in both fresh and aged-580°C/100h conditions. High durability was also observed after engine aging of 1000h (WHTC + high load). Another big challenge in BS VII could be the PN10 requirement. With enhanced filtration coating (EFC) technology, PN emissions drop drastically in comparison to Euro VI reference without EFC to meet a future BS VII
Singhania, AmitWallin, MikaelaEdvardsson, JonasChatterjee, SougatoVediappan, SudhagarKomori, MitsuruPhillips, Paul
Nanotechnology is gaining popularity and used in the realm of transportation vehicles. Nanomaterials, with their distinct physical and chemical properties, have the potential to improve the safety and durability of transportation vehicles. This study analyzes the most current advances and uses of nanotechnology in the transportation vehicle business, such as nano-coatings, nano filters, carbon black for tires, and nanoparticles for engine performance enhancement and fuel consumption reduction. It also discusses the major hurdles for larger applications, such as environmental, health, and safety problems. Because some nanomaterials have demonstrated outstanding performance as well as theoretically investigated, they may be viable candidates for use in future environmentally friendly transportation vehicles. Improve the global transportation business
Khadake, NileshYadav, Prashant
In a vehicle, tire is a safety critical component and hence its structural durability performance is of paramount interest to the vehicle users. Therefore, ensuring durability performance is an essential criterion to prevent fatal accidents, unusual road delays, etc. Generally, tire structural durability or endurance performance is ascertained in the indoor laboratory by freely rotating the tire on a smooth steel road wheel. The tire runs straight ahead at a fixed speed and load is applied incrementally till failure or pre-defined level (fixed load step or fixed running kilometer). Although the test conditions used in these types of tests take care of certain parameters but it requires inclusion of additional parameters to simulate more realistic tire operational conditions. One such parameter is camber angle in a vehicle, which is kept non-zero values (positive or negative) to achieve desired vehicle handling performance. Further, the roadways are also having in-built camber to
Upadhyay, ArpitKumar, SatheeshGarg, RaghavRay, Kanai LalGhosh, PrasenjitMukhopadhyay, Rabindra
An agricultural tractor is often modified for special farming applications such as horticulture where the standard design is not suitable or accessible. In such cases, farm equipment manufacturers are demanded frugal and cost effect Engineered farming solutions. One such design is the innovative High Ground Clearance Tractor (HGCT) kit offered to increase the Tractor height without damaging the crop during farming operations. In this paper, the author proposes a durability assessment method to evaluate the HGCT kit attachments to meet the durability criteria. Road load data acquisition is done to measure the acceleration and strain levels for various horticulture operations such as tillage, spraying and transportation. Actual operating conditions are simulated with the help of four poster durability setups inside the lab which helps to reduce the field testing for design iterations. Multi-body dynamics simulation (MBS) is used to front-load the four-poster lab testing in virtual and
Subbaiyan, Prasanna BalajiNizampatnam, BalaramakrishnaA, GokilaKumar, YuvarajJaiswal, SunnyPerumal, SolairajRedkar, DineshArun, GLondhe, AbhijitMani, SureshNatarajan, Saravanan
Cummins announced its seventh-generation series HE250 and HE300 waste-gate turbochargers for medium displacement on- and off-highway commercial engines. The turbos are sized for 5.5- to 8-liter medium-duty diesel engines and 8- to 11-liter natural-gas engines. Cummins states that the HE250 and 300 were designed to meet the global emissions regulations from 2024 onwards including the upcoming China Stage IV FE 2024, NSVII 2026 and Euro VII 2027. Cummins claims significant improvements in performance and durability compared to the outgoing models. Both turbos reportedly offer a 6-7% gain in overall efficiency as well as enhanced low-speed performance, which translates to additional low-end torque and better compatibility with engine start/stop systems
Wolfe, Matt
Commercial brake pads are being wind down because of asbestos fibre which causes carcinogenic effect. By observing it is obligatory to analyse about the alternate materials for brake pads additionally there are heaps of alternatives for asbestos furthermore to develop an organic composite material for brake pads using organic fibers including grind orange peel and banana peel as the reinforcement material. Disparate alternatives for filler materials and different binders such as epoxy resin, phenolic resin and distinctive organic materials used to alter the material for asbestos fiber and studied miscellaneous possible formulations and their effect on the performance of the brake pads by varying the reinforcement composition from 20% - 30%, binding material from 30% - 40%, filler materials as 17.5%, friction modifiers as 22.5%, and fabricated the material for brake pads using grinded orange peel and banana peel as reinforcement further performed hardness test and wear test to compare
Jamuna Rani, GKonda, Chaitanya Sai TejaGollamudi, SrivalliLakshmipuram, Naveen Babu
Medical and surgical instruments are utilized daily to save and improve lives. Because of this, they demand an exact level of accuracy and infallibility in their manufacture. Traditionally, aluminum and other metals have been the standard material of choice for medical and surgical instruments due to their weight, strength, durability, and cost benefits. However, new advances in technology are challenging the status quo and offering exciting new manufacturing possibilities that allow for greater material choices. One such advancement already making waves in the aerospace, leisure, and automotive industries — and poised to benefit medical and surgical manufacturing — is Additive Fusion Technology (AFT
Due to the relatively high cost to produce solar cells, solar power still accounts for a little less than 3 percent of electricity generated in the U.S. One way to lower the cost of production would be to develop solar cells that use less-expensive materials than today’s silicon-based models. To achieve that, some engineers have zeroed in on halide perovskite, a type of human-made material with repeating crystals shaped like cubes
Researchers in the Lyding Group at the University of Illinois Urbana-Champaign have discovered an efficient, sustainable method for 3D-printing single-walled carbon nanotube films, a versatile, durable material that can transform how we explore space, engineer aircraft, and wear electronic technology
In an embedded world gone SOSA sensational, one might believe that centralized ATR-style OpenVPX systems are the best way to architect your next rugged system. While these chassis are routinely and successfully deployed on airborne, shipboard, and vetronics platforms, they are big, heavy, costly, and a real challenge to cool and connect. An alternate but equivalent rugged, deployable approach uses one or more small form factor chassis modules, distributed into any available space in the vehicle, interconnected via Apple® and Intel’s® 40Gbps Thunderbolt™ 4, a commercial open standard that uses USB Type-C connectors with a single, thin bi-directional copper or fiber cable
Rice University engineers are turning sunlight into hydrogen with record-breaking efficiency thanks to a device that combines next-generation halide perovskite semiconductors with electrocatalysts in a single, durable, cost-effective, and scalable device
Sutures are used to close wounds and speed up the natural healing process, but they can also complicate matters by causing damage to soft tissues with their stiff fibers. To remedy the problem, researchers from Montreal have developed innovative tough gel sheathed (TGS) sutures inspired by the human tendon
Toyota's luxury arm concurrently introduced the all-new, three-row 2024 Lexus TX and the long-awaited redesign of the rugged Lexus GX, also a '24 model. Both were met with enthusiasm at a reveal in Austin, Texas, over what Lexus is calling the new “unified spindle,” an evolution of the spindle grille that has been divisive since it appeared on the 2012 GS sedan. In a nifty trick, engineers have figured out how to include ADAS sensors in the grille without having asymmetrical blocks interrupt the bars. Dealers and more mainstream customers will be most interested in the TX, as Lexus Group Vice President Dejuan Ross said buyers have been clamoring for a new three-row SUV. And there's good reason: 70% of all full-size SUVs sold in America have a third row. For midsize SUVs, the number jumped from 6% to 10% from 2016 to 2022, according to J.D. Power
Clonts, Chris
Vehicle suspension systems that adopt Hotchkiss layout are commonly based on leaf springs. For better comfort for passengers, some features such as rubber pads are used on the springs to reduce noise from metallic contact between leaves, but those pads can compromise the durability of the spring if not well designed or located in the spring assembly, as we will demonstrate on this paper. To do so, it will be presented comparisons using CAE methodology and physical parts test results from vehicle and bench testing which were loaded in different conditions to demonstrate how the rubber pad position can influence the durability of the spring, especially near the eyelet region for some specific load conditions. The case studies presented here are focused on the impact of the rubber pads on durability life of springs, but not defined as root cause of failures
Belli, Milton Monteverdeda Cunha Fernandes, Ricardo Alexandreda Costa, Mateus CesárioManini, Ricardo Guedes
The purpose of this paper to is to review the methodology applied by Collins Aerospace to develop, test and qualify a more robust surface ply rubber compound that has demonstrable improvements in durability and performance at sub-freezing temperatures. Using in-service products as a reference, pneumatic deicers in use on regional turboprop applications were selected as a basis for operational characteristics and observed failure modes. Custom test campaigns were developed by Collins to comparatively evaluate key characteristics of the surface ply material including low temperature elasticity, erosion durability, and fluid susceptibility. Collins’ proprietary engineered rubber formulations were individually evaluated and built into fully functional test deicers for component level testing to DO-160G environmental exposure, comparative ice shed performance in Collins’ Icing Wind Tunnel and erosion in Collins’ Rain Erosion Silo
Taylor, AndrewSlane, CaseyHu, JinBotura, Galdemir
Researchers from MIT’s Improbable Artificial Intelligence Lab, part of the Computer Science and Artificial Intelligence Laboratory (CSAIL), have developed a legged robotic system that can dribble a soccer ball under the same conditions as humans. The bot used a mixture of onboard sensing and computing to traverse different natural terrains such as sand, gravel, mud, and snow, and adapt to their varied impact on the ball’s motion. Like every committed athlete, “DribbleBot” could get up and recover the ball after falling
An injectable biomaterial with significantly improved adhesive strength, stretchability, and toughness could enable improved surgical sealing. This chemically modified, gelatin-based hydrogel has attractive features, including rapid gelation at room temperature and tunable levels of adhesion. This custom-engineered biomaterial is ideal as a surgical wound sealant, with its controllable adhesion and injectability and its superior adherence to a variety of tissue and organ surfaces
The VITA 90 family of standards, also known as VNX+, is being crafted to support the government and commercial requirements for ruggedized, small form factor (SFF), Modular Open Systems Architecture (MOSA) compliant, electronic systems suitable for deployment on small aerial platforms, C5ISR pods, spacecraft, ground vehicles, as well as man-wearable applications. The VITA 90 VNX+ standards borrow heavily from VITA 65, also known as OpenVPX, the family of standards which are arguably the dominant MOSA standards used in today’s avionic, vetronic, and space systems. VNX+ has been selected by the Sensor Open Systems Architecture (SOSA) consortium as a SFF standard to be used for C5ISR sensor payloads in space constrained applications, typical in manned and unmanned air vehicles and spacecraft
Items per page:
1 – 50 of 3542