Browse Topic: Durability

Items (3,553)
ABSTRACT Tracks and wheels are some of the top constituents of ground vehicle mobility and sustainment cost. Even small improvements in performance parameters and support strategies can go a long way. Analyzing equipment sustainment models can help identify these opportunities in conjunction with maintaining a situational awareness of R&D activities. Specifically, understanding component failure analysis, characterizing production road wheel material properties, conducting component testing, and benchmarking diverse manufacturing capabilities provides a roadmap to establishing and identifying “Best in Class” road wheel materials. Establishing and executing an R&D compounding plan to deliver 5X-10X durability improvement is hypothesized. Leveraging the Defense Mobility Enterprise (DME) and its authority under the 10 USC 2370 Section 845 Ground Vehicle Systems Other Transaction Agreement will allow the government to rapidly determine the technical feasibility of realizing such colossal
Patria, Garett S.Rescoe, StuBradford, WilliamMynderse, James A.
ABSTRACT Modern heavy duty Commercial Off The Shelf (COTS) diesel engines represent the state of the art in engine performance and design features, control architecture, and the use of light weight high strength materials. These engines, with appropriate adaptation for operation on military fuels, make excellent choices for defense applications. This paper reviews the selection and modification of a COTS engine suitable for potential defense applications. Considerations for robust operation of the engine on JP8, engine system modifications appropriate for military vehicle emission requirements, reduction of engine system heat rejection, and optimization of engine efficiency will be discussed using example data from converting a 2011 model year COTS engine for defense applications as funded by Broad Agency Announcement (BAA) Topic 15
Hunter, Gary L.
ABSTRACT Durability analysis as applied to high mobility off-road ground vehicles involves simulating the vehicle on rough terrains and cascading the loads throughout the structure to support the verification of various components. For components within the hull structure, the rigid body accelerations of the hull are transformed to the component location producing a prescribed g-load time history. This modeling method works extremely well for items which are bolted in place but is inappropriate for stowage systems such as boxes and shelves where cargo can experience intermittent contact and impacts. One solution is to create a dynamic contact nonlinear finite element model of the stowage solution with supported cargo and subject them to the same acceleration profile. This approach effectively resolves the stresses needed to perform fatigue evaluations but is a computationally and labor intensive process. The resources required for single design point verification cannot be justified
Purushothaman, NammalwarCritchley, JamesHulings, JessicaJoshi, Amarendra
ABSTRACT Solid oxide fuel cell (SOFC)-based auxiliary power units (APUs) offer a quiet and efficient platform for remote power generation. SOFC systems often utilize a reformer subsystem which converts hydrocarbon fuels into a hydrogen-rich effluent stream utilized by the fuel cell stack for electrical power generation. Rochester Institute of Technology’s Center for Sustainable Mobility (RIT / CSM) has conducted research to analyze potential system failures and develop accelerated durability protocols for SOFC systems. Based on this experimental and analytical study, it has been shown that solid carbon formed during fuel reformation is quantifiable, predictable, and affects SOFC system durability. RIT / CSM further developed accelerated durability protocols for SOFC carbon related failure modes, utilizing carbon concentration measurements from SOFC systems combined with post-processing of system operational parameters. Fully integrated SOFC systems were employed to generate a
Walluk, Mark R.Smith, Daniel F.Trabold, Thomas A.Dewey, Scott B.
ABSTRACT BAE Systems has departed from traditional design rules of thumb and implemented a full-vehicle durability fatigue life analysis process at the design concept level to support lighter weight component designs. The durability process includes derivation of test duty cycles, generation of virtual loads from vehicle dynamic simulations, cascading of hundreds of channels of suspension attachment loads, and prediction of accumulated damage/fatigue life for both quasi-static and transient responses using a finite element vehicle structural model. The fatigue analysis process is typically deterministic, however the stochastic nature of the loads, material properties, and build variations should also be considered to ensure a robust durability process. The process is demonstrated on a heavy wheeled-vehicle platform using a generic duty cycle with examples shown at each stage of the process. This study additionally demonstrates the effects of variability of loads, materials, and
Purushothaman, NammalwarJayakumar, ParamsothyCritchley, JamesDatta, SandipPisipati, Venkat
ABSTRACT The AirLift is a novel device that enables rapid stabilized extraction of injured personnel from a ground vehicle. When deployed from its pre-installed position as a seat cover, the AirLift rigidizes for stabilizing the occupant’s spine by pressurizing an inflatable panel. After extraction from the vehicle with the occupant stabilized in the seated position, the AirLift can convert to a backboard so that the occupant can be safely transported in the supine position. The inflatable panel was designed and tested to provide stiffness while also being durable and manufacturable at volume. Pressure mapping tests were also performed to demonstrate that the AirLift did not change seat comfort compared to the standard seat. Citation: A. Purekar, G. Hiemenz, P. Gillis, “AirLift: Enabling Blast Protection and Rapid, Stabilized Vehicle Extraction”, In Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 11-13, 2020
Purekar, AshishHiemenz, GregoryGillis, Paula
ABSTRACT Today’s battlefield requires access to information in a multitude of environments with varying terrains (both urban and rural) in either passive or active engagements. Ground vehicles need sensors that can be rapidly deployed to different locations and networked into the family of vehicles in order to effectively share information. Masted sensor systems, in particular, are a potential valuable resource with their ability to perform long-range surveillance over obstructions while minimizing vehicle exposure. To maximize effectiveness these systems must withstand harsh battlefield conditions without undue maintenance. The need for variable mast heights, on-the-move (OTM) sensor performance, the ability to support a wide variety of long-range sensors, internal cabling to better resist battlefield damage, resistance to armored vehicle vibration and shock environments, and rapid mast deployment and stowage have driven Lockheed Martin to a robust mast solution that meets this
Neely, DavidFosen, KeithPoteat, DanielCarmichael, D. Brian
ABSTRACT High life cycle costs coupled with durability and environmental challenges of tracked vehicles in South West Asia (SWA) have focused R&D activities on understanding failure modes of track components as well as understanding the system impacts on track durability. The durability limiters for M1 Abrams (M1, M1A1, and M1A2) T-158LL track systems are the elastomeric components. The focus of this study is to review test methodology utilized to collect preliminary data on the loading distribution of a static vehicle. Proposed design changes and path forward for prediction of durability of elastomers at the systems level from component testing will be presented
Ostberg, DavidBradford, Bill
ABSTRACT When the components of a military vehicle are designed, consideration is given to long term durability under repeated mission applications. In reality, surface and subsurface defects have always existed in weldments, forgings, and castings. These defects came from the manufacturing process or nucleated during the life of the vehicle. These defects may grow under repeated operations, resulting in ultimate failure of parts well before the design life is achieved. In such situations, a design based on crack initiation alone will not suffice, and a fracture mechanics based fatigue should also be included to predict the design life of a part accurately. In this paper a methodology is given on how to predict the available design life given the presence of defects in different parts of a military vehicle. An example will be provided with the process to demonstrate each step of the process
Porter, William De
ABSTRACT State-of-the-art Diesel engines used for on-highway operation are integrated systems containing multiple subsystems for performance and emissions enhancements. The drive to lower tailpipe emissions on on-highway engines drives system complexity which is both undesired and unnecessary for military ground vehicles. There are, however, on-highway technologies such as high pressure fuel injection systems and advanced turbocharger systems that allow improving the engines’ efficiency and therefore lowering its fuel consumption. The aforementioned technologies are currently available and present possible near term opportunities for military ground vehicles. The adaptation to allow reliable operation in military vehicles will be discussed as part of this near term view. The authors will also discuss the electronic controls architecture requirements that come along with these sophisticated technologies and discuss the advantages and opportunities that present themselves using advanced
Tatur, MarekTomazic, DeanKoehler, Erik
ABSTRACT The durability and reliability of military vehicle systems are traditionally tested at Aberdeen Proving Ground by driving vehicles on a set of paved roads, secondary roads, trails, and cross-country terrains. However, driving mile-for-mile over the proving ground test courses is very time-consuming and costly. The U.S. Army Aberdeen Test Center (ATC) has recently conducted accelerated durability tests of wheeled vehicles using two different methods: accelerated hardware-in-the-loop simulation and accelerated field testing. This paper discusses the methods used to date and associated technical details to highlight options for future accelerated testing
Ramsey, GregSchultz, GregClerkin, James
ABSTRACT Vehicle prognostics are used to estimate the remaining useful life of components or subsystems, based on a limited number of measured vehicle parameters. Ideally, sensors would be available for every component and failure mode of interest, such that accurate data could be measured and used in prognostic estimates. However, this is impractical in terms of the number of sensors required and the costs to install such a system and maintain its integrity. A better solution is to relate the loading on a specific component to more generic vehicle behavior. This paper reviews a methodology referred to as the “Durability Transfer Concept”, which suggests that damage, or severity of usage, at various points of interest on a vehicle can be predicted simply from measured accelerations at some nominal location – a wheel axle, for example. Measured accelerations are double integrated to get displacements. Those displacements are then filtered using the Rupp or Lalanne method. A transfer
Halfpenny, AndrewHussain, ShabbirMcDougall, ScottPompetzki, Mark
This specification establishes requirements for titanium forgings of any shape or form from which finished parts are to be made (see 2.4.4, 8.3, and 8.6
AMS G Titanium and Refractory Metals Committee
This document is intended for discrete and integrated digital, wavelength division multiplexing (WDM), and analog/radio frequency (RF) photonic components developed for eventual transition to aerospace platforms. The document provides the reasons for verification of photonic device life test and packaging durability. The document focuses on pre-qualification activity at the optical component level to achieve TRL 6. The recommended tests in this document are intended to excite typical failure mechanisms encountered with photonic devices in an aerospace operating environment, and to build confidence that a technology is qualifiable during a program’s engineering and manufacturing development phase. This recommended practice is targeting components to support electrical-to-optical, optical-to-electrical, or optical-to-optical functionality. Passive optical waveguide, fiber optic cable, and connector components that are integral to a photonic package are included. Component and photonic
AS-3 Fiber Optics and Applied Photonics Committee
Safe and efficient energy storage is important for American prosperity and security. With the adoption of both renewable energy sources and electric vehicles on the rise around the world, it is no surprise that research into a new generation of batteries is a major focus. Researchers have been developing batteries with higher energy storage density, and thus, longer driving range. Other goals include shorter charging times, greater tolerance to low temperatures, and safer operation
As the demand for EVs grows, it will be necessary to innovate batteries that achieve durability, power density, safety, lower cost, increased range, and faster recharge time using a fast, cost-effective, and energy-efficient process
This study looks at the effects of low-viscosity fuel on high-pressure fuel pump durability. Several high-pressure fuel pumps were allowed to operate with low-viscosity fuel on a custom test stand until failure. Fuel-pumps lasted 0.3-294 hours before failure. The fuel pumps failed by experiencing a sharp rise in the low-pressure outlet fuel temperature due to scuffing of the camring-bucket interface. We describe a technique for analyzing acoustic emission sensor data to monitor the status of the fuel pump. Acoustic emission signals were able to detect a two-stage failure process of scuffing initiation on a single camring-bucket interface to propagation of damage to the other interfaces
Murthy, NikhilCoburn, VincentMatzke, CalebBerkebile, Stephen
Innovators at NASA Johnson Space Center have developed a method using low-viscosity RTV silicone to form durable seals between polymer bladder and metal bulkhead interfaces to be used for inflatable space habitats
For the vibration durability bench test of commercial vehicle batteries, it is essential to have accurate test specifications that exhibit high robustness and reasonable acceleration characteristics. This study evaluates the impact of different battery frame systems on the vibration response of the battery body, as determined by road load spectrum test results of a commercial vehicle battery system. It also confirms the variations in the external environmental load. Utilizing the response spectrum theory, a comprehensive calculation method for the fatigue damage spectrum (FDS) of batteries is developed. The time domain direct accumulation method, frequency domain direct accumulation method, and frequency domain envelope accumulation method are all compared. Analysis of kurtosis and skewness reveals that when the load follows the super-Gaussian distribution characteristics, the time domain direct accumulation method should be used to calculate the fatigue damage spectrum to minimize
Yan, XinGuo, DongniWan, XiaofengSun, JiameiQuan, XinhuiWang, Ying
A research team from Pohang University has successfully enhanced the performance and durability of all-solid-state batteries. This breakthrough was made possible through the implementation of a novel approach known as bottom electrodeposition
The last time you dropped a mug, you may have been too preoccupied to take much notice of the intricate pattern of cracks that appeared in the broken object. But capturing the formation of such patterns is the specialty of John Kolinski and his team at the Laboratory of Engineering Mechanics of Soft Interfaces (EMSI) in EPFL’s School of Engineering
Implants that steadily release the right dose of a drug directly to the target part of the body have been a major advance in drug delivery. However, they still face some key challenges, such as ensuring that the drug is released at a constant rate from the moment it is implanted and ensuring that the implant is soft and flexible enough to avoid tissue damage but tough enough not to rupture. One particular challenge is to avoid triggering the foreign body response, which is when the patient’s body encloses the implant in a tight capsule of tough connective tissue which can slow the drug’s release or prevent it from diffusing out
To save on fuel and reduce aircraft emissions, engineers are looking to build lighter, stronger airplanes out of advanced composites. These engineered materials are made from high-performance fibers that are embedded in polymer sheets. The sheets can be stacked and pressed into one multilayered material and made into extremely lightweight and durable structures
A durable, copper-based coating developed by a team at Dartmouth University can be integrated into fabric to create responsive, reusable materials such as protective equipment, environmental sensors, and smart filters
Off-roading is the scenario of driving a vehicle on unpaved surfaces such as sand, gravel, riverbeds, rocks, and other natural terrain. Vehicle designed for that purpose requires jumping from height due to uneven surfaces/patches. This also requires them to sustain a high amount of loads acting upon them on impact. Thus, off-roading vehicles should not only provide intended vehicle dynamics performance but at the same time should be durable as well. Drop test which is done in a controlled environment is a widely used method to validate the durability of vehicle in such scenarios wherein the vehicle is dropped from a certain predefined height. In Multibody dynamics simulation, drop test was replicated and acceleration data computed at different locations in the vehicle were correlated with actual physical test data. Correlation was done for different drop heights. This paper presents relevant details of the virtual vehicle modeling, loadcase, test data & subsequent correlation. This
Kaka, VaibhavJain, Arvind
Motorcycles which are designed for both regular as well as rough terrains experience more severe vertical impact loads from ground in comparison with motorcycles which travel only on regular terrains. Therefore, drop test is considered an important method to evaluate durability for said vehicles. Fuel Tank mounted over front frame of a motorcycle is the most critical component from safety point of view and hence, need to be analysed for vertical drop load case. To do so, modelling of whole vehicle can be a hectic task and has to be avoided. In the present work, behaviour of fuel tank mounted over frame support and subjected to vertical drop from H(m) height is studied with the help of support excitation method incorporated with explicit non-linear time integration scheme using Finite Element Analysis (FEA) code in commercial FEA software. Through this scheme, effect on Fuel Tank of vehicle drop can be studied without actually modelling the whole vehicle. Results from FEA software were
Sharma, AshishKhare, Saharash
In alignment with the U.S. Army's Climate Strategy and the broader trend in automotive technology, there is a strategic shift towards electrification and hybridization of the vehicle fleet. While a major goal of this effort is to mitigate the carbon footprint of the U.S. Army's vehicle operations, this transition also presents an opportunity to harness advancements in automotive electrification. Among the key vehicles in focus are tactical wheeled vehicles, which provide military forces with versatile and rugged transportation solutions for various combat scenarios, ensuring mobility, protection, and adaptability on the battlefield. This study investigates the potential of electrified tactical wheeled vehicles by conducting a survey involving a diverse group of vehicle operators across various ranks within the U.S. Army. The aim is to identify novel applications achievable through electrification or hybridization, encompassing functions such as establishing command posts, prolonged
Konopa, BridgetMiller, MarkRevnew, LukeMuraco, JohnMayfield, LoganRutledge, MaxwellCrocker, MatthewMittal, Vikram
Due to the expense and time commitment associated with extensive product testing, vehicle manufacturers are developing new simulation techniques to verify vehicle component performance with less testing and more confidence in the final product. Battery lifetime is of particular difficulty to predict, since each battery is different and there are many different control scenarios that could be implemented based on the specific requirements of each battery type. In order to solve this problem for a 12V auxiliary lead-acid battery, a battery durability analysis model has been previously adapted from lithium-ion applications, which is capable of verifying the impact of lead-acid battery durability in a short period of time. In this study, calibration tools for this model were developed and are presented here, and durability analysis and verification are performed for the application of new electric vehicles. New control strategies, designed specifically for the auxiliary batteries in
Lim, YoungchulEdel, ZacharyMarker, EthanJoung, SanghyeokKwon, Oh Hyun
This paper reviews the current situation in the development of accelerated testing of automotive engineering, consisting of the four following areas: 1. Field testing of the natural product. 2. Additional technology of separate testing in the laboratory on the basis of physical simulation of separate field conditions using corresponding methods and equipment separately and conducting: safety testing, special programs of testing using digital simulation, special testing with changing certain parameters of environment, corrosion testing, etc. Both of the traditional testing developments above can be found in many magazines, journals, conferences, presentations, and proceedings. 3. Testing on the basis of digital (computer) simulation of product and/or field conditions. This area of testing has been developed in the last dozen years. Many articles and presentations were published during this time. 4. Accelerated reliability and durability testing for obtaining during service-life of the
Klyatis, Lev
Certain sports utility vehicles (SUVs) utilize dual latches and gas struts in their hood design. This is primarily driven by the larger size of the hood and specific architectural requirements. These hoods can be securely latched either by a dynamic single stroke closing method or by quasistatic two stroke closing method. In dynamic method, the hood is closed with a single, high-velocity motion for the final primary latching, whereas in quasistatic method, force is initially applied for the secondary latching and then for the final primary latching. In this study, both the dynamic and quasistatic closing methods are compared in terms of closing force and velocity and hood over travel distance. A load cell is used for measuring the closing force, velocity meter is used for velocity measurement and a rope sensor is used for measuring the hood over travel distance. It is evident from the study that the velocity required for hood closing is higher in the dynamic method, than the quasi
Selvan, VeeraSakthivel, GowthamR, BalajiAS, KevinA, SankaranarayananKamat, RohanUnadkat, SiddharthPandurangan, Venugopal
Wire arc additive manufacturing technology has become a promising alternative technology to high-volume metal deposition in many manufacturing industries like aerospace and automotive due to arc stability, long process cycle time, and formability. In this work, the Fanuc arc mate robot forms a single-pass, single-layer structure with a 1.2 mm diameter wire of copper-coated steel. Pure Argon gas is used as a shielding gas to protect the weld from oxidation. Different welding speed is carried out to analyze the bead thickness and height. Current and voltage as a heat input with optimal welding speed, a 10 kg straight wall is built with an operative building rate of 3.94 kg/h. The Rockwell hardness test is used to determine the hardness of the material, and it is discovered that it is 80 HRB. The tensile test is performed to determine the tensile strength and yield strength of the component; the measured values are 483.88 N/mm2 and 342.156 N/mm2, respectively. Increasing the welding speed
Gideon Ganesh, M.Rajendran, I.Hariharan, K.Naveen Kumar, S.Rajeswaran, M.
Dramatic video of the first flight of the Space Launch System (SLS), from the initial blastoff to rocket-booster separation, gave NASA essential information about the performance of the Artemis I flight. It also proved the capabilities of a new rugged video camera mounted on the exterior of the core rocket stage. The camera, developed using patented NASA hardware and agency expertise, survived the heat of blastoff and the cold of space, and it’s now ready for extreme conditions on Earth
In pursuing enhanced bio-composite properties, filler materials play a pivotal role. This study delves into the impact of ceramic additives on the chemical resistance and moisture durability of flax fiber-reinforced polymers. Utilizing the hand lay-up technique, we developed polyester composites reinforced with flax fibers. Silicon carbide (SiC) and aluminum oxide (Al2O3) were chosen as filler components. One batch of flax fibers underwent an alkaline treatment to enhance their properties further using a 5% NaOH solution. The resistance of composite samples to acetic acid and sodium hydroxide was then assessed. Additionally, the moisture absorption patterns of all models were investigated. A thorough comparative analysis was conducted among multiple composite batches. The results highlighted that integrating additives significantly bolstered the chemical and moisture resistance of the composites. Notably, the alkali-treated samples exhibited superior moisture and chemical agent
Pandian, ArvindaKaliappan, SeeniappanNatrayan, L.Reddy, Vinay
This paper describes the after-treatment technology that could be used to meet a future BS-VII standard, considering close-coupled SCR (cc-SCR) to help start NOx conversion earlier. Both active (Cu/Fe-SCR based) and passive (V-SCR based) systems have the potential to meet emission limits. V-SCR may be considered in the rear position because V-SCR shows a fast response with very low N2O formation. Next-gen V-SCR technology shows significantly improved performance and durability closer to Cu-SCR. The steady-state NOx conversions over Next-Gen V-SCR were better than BS-VI V-SCR in both fresh and aged-580°C/100h conditions. High durability was also observed after engine aging of 1000h (WHTC + high load). Another big challenge in BS VII could be the PN10 requirement. With enhanced filtration coating (EFC) technology, PN emissions drop drastically in comparison to Euro VI reference without EFC to meet a future BS VII
Singhania, AmitWallin, MikaelaEdvardsson, JonasChatterjee, SougatoVediappan, SudhagarKomori, MitsuruPhillips, Paul
Nanotechnology is gaining popularity and used in the realm of transportation vehicles. Nanomaterials, with their distinct physical and chemical properties, have the potential to improve the safety and durability of transportation vehicles. This study analyzes the most current advances and uses of nanotechnology in the transportation vehicle business, such as nano-coatings, nano filters, carbon black for tires, and nanoparticles for engine performance enhancement and fuel consumption reduction. It also discusses the major hurdles for larger applications, such as environmental, health, and safety problems. Because some nanomaterials have demonstrated outstanding performance as well as theoretically investigated, they may be viable candidates for use in future environmentally friendly transportation vehicles. Improve the global transportation business
Khadake, NileshYadav, Prashant
In a vehicle, tire is a safety critical component and hence its structural durability performance is of paramount interest to the vehicle users. Therefore, ensuring durability performance is an essential criterion to prevent fatal accidents, unusual road delays, etc. Generally, tire structural durability or endurance performance is ascertained in the indoor laboratory by freely rotating the tire on a smooth steel road wheel. The tire runs straight ahead at a fixed speed and load is applied incrementally till failure or pre-defined level (fixed load step or fixed running kilometer). Although the test conditions used in these types of tests take care of certain parameters but it requires inclusion of additional parameters to simulate more realistic tire operational conditions. One such parameter is camber angle in a vehicle, which is kept non-zero values (positive or negative) to achieve desired vehicle handling performance. Further, the roadways are also having in-built camber to
Upadhyay, ArpitKumar, SatheeshGarg, RaghavRay, Kanai LalGhosh, PrasenjitMukhopadhyay, Rabindra
An agricultural tractor is often modified for special farming applications such as horticulture where the standard design is not suitable or accessible. In such cases, farm equipment manufacturers are demanded frugal and cost effect Engineered farming solutions. One such design is the innovative High Ground Clearance Tractor (HGCT) kit offered to increase the Tractor height without damaging the crop during farming operations. In this paper, the author proposes a durability assessment method to evaluate the HGCT kit attachments to meet the durability criteria. Road load data acquisition is done to measure the acceleration and strain levels for various horticulture operations such as tillage, spraying and transportation. Actual operating conditions are simulated with the help of four poster durability setups inside the lab which helps to reduce the field testing for design iterations. Multi-body dynamics simulation (MBS) is used to front-load the four-poster lab testing in virtual and
Subbaiyan, Prasanna BalajiNizampatnam, BalaramakrishnaA, GokilaKumar, YuvarajJaiswal, SunnyPerumal, SolairajRedkar, DineshArun, GLondhe, AbhijitMani, SureshNatarajan, Saravanan
Cummins announced its seventh-generation series HE250 and HE300 waste-gate turbochargers for medium displacement on- and off-highway commercial engines. The turbos are sized for 5.5- to 8-liter medium-duty diesel engines and 8- to 11-liter natural-gas engines. Cummins states that the HE250 and 300 were designed to meet the global emissions regulations from 2024 onwards including the upcoming China Stage IV FE 2024, NSVII 2026 and Euro VII 2027. Cummins claims significant improvements in performance and durability compared to the outgoing models. Both turbos reportedly offer a 6-7% gain in overall efficiency as well as enhanced low-speed performance, which translates to additional low-end torque and better compatibility with engine start/stop systems
Wolfe, Matt
Commercial brake pads are being wind down because of asbestos fibre which causes carcinogenic effect. By observing it is obligatory to analyse about the alternate materials for brake pads additionally there are heaps of alternatives for asbestos furthermore to develop an organic composite material for brake pads using organic fibers including grind orange peel and banana peel as the reinforcement material. Disparate alternatives for filler materials and different binders such as epoxy resin, phenolic resin and distinctive organic materials used to alter the material for asbestos fiber and studied miscellaneous possible formulations and their effect on the performance of the brake pads by varying the reinforcement composition from 20% - 30%, binding material from 30% - 40%, filler materials as 17.5%, friction modifiers as 22.5%, and fabricated the material for brake pads using grinded orange peel and banana peel as reinforcement further performed hardness test and wear test to compare
Jamuna Rani, GKonda, Chaitanya Sai TejaGollamudi, SrivalliLakshmipuram, Naveen Babu
Medical and surgical instruments are utilized daily to save and improve lives. Because of this, they demand an exact level of accuracy and infallibility in their manufacture. Traditionally, aluminum and other metals have been the standard material of choice for medical and surgical instruments due to their weight, strength, durability, and cost benefits. However, new advances in technology are challenging the status quo and offering exciting new manufacturing possibilities that allow for greater material choices. One such advancement already making waves in the aerospace, leisure, and automotive industries — and poised to benefit medical and surgical manufacturing — is Additive Fusion Technology (AFT
Due to the relatively high cost to produce solar cells, solar power still accounts for a little less than 3 percent of electricity generated in the U.S. One way to lower the cost of production would be to develop solar cells that use less-expensive materials than today’s silicon-based models. To achieve that, some engineers have zeroed in on halide perovskite, a type of human-made material with repeating crystals shaped like cubes
Items per page:
1 – 50 of 3553