Browse Topic: Reliability

Items (3,376)
ABSTRACT Value Engineering (VE) is an organized effort directed at analyzing the function of a product, service, or process to achieve the lowest total cost of effective ownership while meeting the customer’s needs. A comparison as to how VE is applied and to what extent is made between the automotive industry and the Government using the Program Executive Office Ground Combat Systems (PEO GCS) as a standard. Both the automotive industry and the Government use common VE techniques to conduct VE studies. Both use VE to manage functionality to yield value to the customer. Neither the Government nor the automotive industry sacrifices the quality of the product or its reliability in the name of cost. Both the auto industry and the PEO employ a systematic team approach to analyze and improve the value of a product, facility design, system, or service. Applying systems engineering principles helps ensure successful execution of the PEO GCS VE program. The auto industry uses VE more widely
Dmoch, Barbara J.Wiklund, George
ABSTRACT The demand for mobile, secure communications has been and will continue to be a fundamental requirement for dismounted, urban and distributed operations in the field. It is imperative that soldiers on the front lines receive actionable information in a timely, secured and uninterrupted manner to increase force protection and effectiveness. In this paper, we describe a novel, high technical maturity (TRL 8+) communications link that offers the mounted and dismounted soldier secure, beyond line of sight, encrypted capability for weapons control and command & control of multiple platforms. An innovative spread spectrum waveform was designed from the ground up to deliver necessary functionality for reliable communications amongst multiple nodes with a data rate and range commensurate with battlefield scenarios
Mehta, Amish A.Cambridge, AndrewGardner, Brian
ABSTRACT The design of power distribution systems for modern tanks and fighting vehicles involves a number of challenges, including demands for increasing amounts of electrical power. In response to these needs, Solid State Power Controllers (SSPCs) provide a number of advantages over electromechanical circuit breakers and relays. These include increased reliability, higher volume and weight power densities, lower power dissipation, reduced EMI emissions, very rapid short circuit protection, and precise I2t overload protection. The latter protects wiring, loads and the SSPCs themselves against overheating, while reliably avoiding “nuisance trips” when switching into capacitive or incandescent lamp loads. Further, SSPCs provide capabilities in the area of real time feedback, enabling system-level diagnostics and prognostics, and predictive, condition-based maintenance, thereby providing increased availability and continued mission readiness
Glass, Mike
ABSTRACT Results are presented from tests on a formulated 15W-40 mil-spec engine/transmission fluid to examine the impact of additives on improving its reliability and durability under extreme tribological conditions. A block-on-ring (BOR) configuration was used to measure the effect of five additives (an emulsion-based boric acid, tricresyl phosphate, particulate-based boron nitride, particulate-based MoS2, and particulate-based graphite) on the critical scuffing load as a function of additive concentration and time to scuff during oil-off tests (starved lubrication). A four-ball configuration was used to evaluate the impact of simulated engine grit/sand on the abrasive wear of steel as a function of grit size and loading. The results demonstrated that the additives increased the load for scuffing by 50 to 100% for the formulated oil and by 50 to 150% for the unformulated base fluid used in the formulated oil. Two of the additives (emulsion-based boric acid and tricresyl phosphate
Fenske, G. R.Ajayi, O. O.Erck, R. A.Lorenzo-Martin, C.Masoner, AshleyComfort, A. S.
ABSTRACT The functionality of the next-generation Department of Defense platforms, such as the Small Unmanned Ground Vehicles (SUGV) and Small Unmanned Arial Vehicles (SUAV), requires strongly electronics-rich architectures. The reliability of these systems will be dependent on the reliability of the electronics. These electronic systems and the critical components in them can experience extremely harsh thermal and vibrations environments. Therefore, it is imperative to identify the failure mechanisms of these components through experiments and simulation based on physics-of-failure methods. One of the key challenges in recreating life-cycle vibration conditions during design and qualification testing in the lab is the re-creation of simultaneous multi-axial excitation that closely mimics what the product experiences in the field. Currently, there are two common approaches in the industry when testing a prototype or qualifying a product for multi-axial vibration environments. One
Habtour, EdMortin, DavidChoi, CholminDasgupta, Abhijit
In the rapidly evolving landscape of electronic engineering, the reliability of electronic components under varying thermal conditions has emerged as a paramount concern. This paper presents an integrated approach for the reliability analysis of electronic components, emphasizing thermal impacts. Our methodology synergizes computational thermal analysis, experimental stress testing, and Failure Modes, Effects, and Diagnostic Analysis (FMEDA) to offer a comprehensive framework for assessing and enhancing component reliability, specifically focusing on a case study of motorcycle hand control switches. The approach begins with a detailed thermal simulation to identify potential hot spots and thermal gradients across electronic components under different operational scenarios. For the case study, motorcycle hand control switches a critical interface between the rider and the motorcycle's electrical system were subjected to this analysis to predict thermal behavior under varied
Mote, ShwetaJadhav, ShantaramChaudhari, VijayMhaske, Aashay
For many patients waiting for a donor heart, the only way to live a decent life is with the help of a pump attached directly to their heart. This pump requires about as much power as a TV, which it draws from an external battery via a seven-millimeter-thick cable. The system is handy and reliable, but it has one big flaw: despite medical treatment, the point at which the cable exits the abdomen can be breached by bacteria
As aerospace engineers push the boundaries of new frontiers, the need for advanced materials that can withstand the rigorous demands of these advanced applications is relentless. These materials go beyond functionality; it is about ensuring reliability in the skies, where failure is not an option. Fluorosilicone can help do exactly that. In the 1960s, the U.S. Air Force noticed that conventional silicone-based sealants, coatings, and other components degraded rapidly when exposed to fuels, de-icing fluids, and other hydrocarbon-based solvents. Dimethyl-based silicones are non-polar and easily absorb hydrocarbon-based solvents, which may result in material swelling, mechanical weakening, and ultimately, failure
The aerospace industry heavily relies on NASGRO as a standard method for crack propagation analysis, despite encountering challenges due to variations in stress gradients across flight missions. In response to this issue, this paper introduces a pioneering methodology that integrates stress gradients at each time point throughout a mission, computed cycle by cycle using NASGRO. The study meticulously evaluates the feasibility and efficacy of this approach against established industry-standard procedures, focusing on the critical topic of low cycle fatigue (LCF) and underscoring the significance of damage-tolerant design principles. The methodology encompasses the design of an H-sector in Ansys Workbench, the execution of stress analysis for a typical flight mission profile, and the systematic extraction of stress gradients for each cycle at the pivotal crack nucleation point. Subsequently, NASGRO is employed to estimate life cycles using both industry-standard baseline methodologies
Karandikar, Rishi SuhasKumar, Niraj
Though modal analysis is a common tool to evaluate the dynamic properties of a structure, there are still many individual decisions to be made during the process which are often based on experience and make it difficult for occasional users to gain reliable and correct results. One of those experience-based choices is the correct number and placement of reference points. This decision is especially important, because it must be made right in the beginning of the process and a wrong choice is only noticeable by chance in the very end of the process. Picking the wrong reference points could result in incomplete modal analysis outcomes, as it might make certain modes undetectable, compounded by the user's lack of awareness about these missing modes. In the paper an innovative approach will be presented to choose the minimal number of mandatory reference points and their placement. While other approaches use results of numerical simulations or rely on a visual evaluation of measurement
Kamper, TimBeljan, DenisBrücher, HaikoWegerhoff, Matthias
Traditional CACC systems utilize inter-vehicle wireless communication to maintain minimal yet safe inter-vehicle distances, thereby improving traffic efficiency. However, introducing communication delays generates system uncertainties that jeopardize string stability, a crucial requirement for robust CACC performance. To address these issues, we introduce a decentralized model predictive control (MPC) approach that incorporates Kalman filters and state predictors to counteract the uncertainties posed by noise and communication delays. We validate our approach through MATLAB/Simulink simulations, using stochastic and mathematical models to capture vehicular dynamics, Wi-Fi communication errors, and sensor noises. In addition, we explore the application of a reinforcement learning (RL)-based algorithm to compare its merits and limitations against our decentralized MPC controller, considering factors like feasibility and reliability
Seifoddini, ArashAzad, ArefehMusa, AlessiaMisul, Daniela
In commercial aerospace, the application areas for motors are wide and varied, each with their own unique requirements. From electric vehicle take-off and landing (eVTOL) air taxis to business jets to long-haul commercial transport aircraft, DC motors must endure various environmental conditions like extreme temperatures, shock and vibration, atmospheric pressures and signal interference, to name just a few. These applications may also demand motors that provide a fast response, high power or torque density. In addition to these requirements, the aerospace industry perpetually calls for lightweight materials and smaller installation spaces. Taken together, it can be very difficult to specify and buy a reliable motor for mission-critical equipment. This article will present common commercial aerospace applications that pose performance and environmental challenges for DC motors along with a summary of the stringent aerospace industry standards that the motors must satisfy. It will also
The study and application of Topology Optimization (TO) has experienced great maturity in recent years, presenting itself as a highly influential and sought-after design tool in both the automotive and aerospace industries. TO has experienced development from single material topology optimization (SMTO) to multi-material topology optimization (MMTO), where material selection is simultaneously optimized with material existence. Today, MMTO for standard structural optimization responses are well supported. An additional and vital response in the design of structures is that of stress. Stress-driven or stress-controlled optimization techniques for SMTO are well understood and have been well-documented, evidenced by both published works and its availability in multiple commercial solvers. However, its integration into MMTO frameworks has not yet achieved reliable levels of accuracy and flexibility. The principal limitation of existing stress-constrained MMTO methodologies is the inability
Shi, YifanHuang, YuhaoMorris, ZaneTeoli, MiraTameer, DanielKim, Il Yong
In recent years, the automotive industry has been making efforts to develop vehicles that satisfy customers’ emotions rather than malfunctions by improving the durability of vehicles. The durability and reliability of vehicles sold in the U.S. can be determined through the VDS (Vehicle Dependability Study) published by JD Power. The VDS is index which is the number of complaints per 100 units released by J.D. POWER in every year. It investigates customers who have used it for 3 years after purchasing a new car and consists of 177 specific problems grouped into 8 categories such as PT, ACEN, FCD, Exterior. The VDS-4 has been strengthened since the introduction of the new evaluation system VDS-5 in 2015. In order to improve the VDS index, it is important to gather various customer complaints such as internet data, warranty data, Enprecis data and clarify the problem and cause. Enprecis data is survey of customer complaints by on-line in terms of VDS. In the case of warranty and Enpreics
You, Hanmin
This paper presents deep learning-based prognostics and health management (PHM) for predicting fractures of an electric propulsion (eP) drivetrain system using real-time CAN signals. The deep learning algorithm, based on autoencoders, resamples time-series signals and converts them into 2D images using recurrence plots (RP). Subsequently, through unsupervised learning of DeepSVDD, it detects anomalies in the converted 2D images and predicts the failure of the system in real-time. Also, reliability analysis based on fracture mechanics was performed using the detected signals and big data. In particular, the severity of the eP drivetrain system is proportional to the maximum shear stress (τmax) in terms of linear elastic fracture mechanics (LEFM) and can be calculated by summarizing the relationship between cracks (a) and the stress intensity factor (KIII). During this process, the system status can be checked by comparing the stress intensity factor and fracture toughness (KIIIc), and
Moon, ByungwooLee, SangWonNam, DongJinKim, JeonghwanBae, JaeWoongShin, JeongMin
General Motors (GM) is working towards a future world of zero crashes, zero emissions and zero congestion. It’s “Ultium” platform has revolutionized electric vehicle drive units to provide versatile yet thrilling driving experience to the customers. Three variants of traction power inverter modules (TPIMs) including a dual channel inverter configuration are designed in collaboration with LG Magna e-Powertrain (LGM). These TPIMs are integrated with other power electronics components inside Integrated power electronics (IPE) to eliminate redundant high voltage connections and increase power density. The developed power module from LGM has used state-of-the art sintering technology and double-sided cooled structure to achieve industry leading performance and reliability. All the components are engineered with high level of integration skills to utilize across TPIM variants. Each component in the design is rigorously analyzed and tested from component to system levels to ensure high
Nassiri Bavili, ArashBasher, KorobiChung, SungAlam, KhorshedLee, Jung-GiChoi, Hong GooKo, Jin-youngAnwar, Mohammad
This paper reviews the current situation in the development of accelerated testing of automotive engineering, consisting of the four following areas: 1. Field testing of the natural product. 2. Additional technology of separate testing in the laboratory on the basis of physical simulation of separate field conditions using corresponding methods and equipment separately and conducting: safety testing, special programs of testing using digital simulation, special testing with changing certain parameters of environment, corrosion testing, etc. Both of the traditional testing developments above can be found in many magazines, journals, conferences, presentations, and proceedings. 3. Testing on the basis of digital (computer) simulation of product and/or field conditions. This area of testing has been developed in the last dozen years. Many articles and presentations were published during this time. 4. Accelerated reliability and durability testing for obtaining during service-life of the
Klyatis, Lev
The current automotive industry has a growing demand for real-time transmission to support reliable communication and for key technologies. The Time-Sensitive Networking (TSN) working group introduced standards for reliable communication in time-critical systems, including shaping mechanisms for bounded transmission latency. Among these shaping mechanisms, Cyclic Queuing and Forwarding (CQF) and frame preemption provide deterministic guarantees for frame transmission. However, despite some current studies on the performance analysis of CQF and frame preemption, they also need to consider the potential effects of their combined usage on frame transmission. Furthermore, there is a need for more research that addresses the impact of parameter configuration on frame transmission under different situations and shaping mechanisms, especially in the case of mechanism combination. Firstly, this paper comprehensively reviews the schedulability analysis of the combined usage of CQF and frame
Luo, FengWang, ZitongRen, YiWu, MingzhiZhang, Xiaoxian
Accurate and reliable localization in GNSS-denied environments is critical for autonomous driving. Nevertheless, LiDAR-based and camera-based methods are easily affected by adverse weather conditions such as rain, snow, and fog. The 4D Radar with all-weather performance and high resolution has attracted more interest. Currently, there are few localization algorithms based on 4D Radar, so there is an urgent need to develop reliable and accurate positioning solutions. This paper introduces RIO-Vehicle, a novel tightly coupled 4D Radar/IMU/vehicle dynamics within the factor graph framework. RIO-Vehicle aims to achieve reliable and accurate vehicle state estimation, encompassing position, velocity, and attitude. To enhance the accuracy of relative constraints, we introduce a new integrated IMU/Dynamics pre-integration model that combines a 2D vehicle dynamics model with a 3D kinematics model. Then, we employ a dynamic object removal process to filter out dynamic points from a single 4D
Zhu, JiaqiZhuo, GuirongXiong, Luzihang, heLeng, Bo
Global automobile manufacturers are increasingly adopting vehicle architecture development systems in the early stages of product development. This strategic move is aimed at rationalizing their product portfolios based on similar specifications and functions, with the overarching goal of simplifying design complexities and enabling the creation of scalable vehicles. Nevertheless, ensuring consistent performance in this dynamic context poses formidable challenges due to the wide range of design possibilities and potential variations at each development stage. This paper introduces an efficient reliability analysis process designed to identify and mitigate the distribution of Ride and Handling (R&H) performance. We employ a range of reliability analysis techniques, including Latin Hypercube Sampling and the enhanced Dimension Reduction (eDR) method, utilizing various types of models such as surrogate models and multi-body dynamics models. This approach is applied to predict R&H
Ji-In, Jung
Certain sports utility vehicles (SUVs) utilize dual latches and gas struts in their hood design. This is primarily driven by the larger size of the hood and specific architectural requirements. These hoods can be securely latched either by a dynamic single stroke closing method or by quasistatic two stroke closing method. In dynamic method, the hood is closed with a single, high-velocity motion for the final primary latching, whereas in quasistatic method, force is initially applied for the secondary latching and then for the final primary latching. In this study, both the dynamic and quasistatic closing methods are compared in terms of closing force and velocity and hood over travel distance. A load cell is used for measuring the closing force, velocity meter is used for velocity measurement and a rope sensor is used for measuring the hood over travel distance. It is evident from the study that the velocity required for hood closing is higher in the dynamic method, than the quasi
Selvan, VeeraSakthivel, GowthamR, BalajiAS, KevinA, SankaranarayananKamat, RohanUnadkat, SiddharthPandurangan, Venugopal
Evaluating real-world hazards associated with perception subsystems is critical in enhancing the performance of autonomous vehicles. The reliability of autonomous vehicles perception subsystems are paramount for safe and efficient operation. While current studies employ different metrics to evaluate perception subsystem failures in autonomous vehicles, there still exists a gap in the development and emphasis on engineering requirements. To address this gap, this study proposes the establishment of engineering requirements that specifically target real-world hazards and resilience factors important to AV operation, using High-Definition Maps, Global Navigation Satellite System, and weather sensors. The findings include the need for engineering requirements to establish clear criteria for a high-definition maps functionality in the presence of erroneous perception subsystem inputs which enhances the overall safety and reliability of the autonomous vehicles. In conjunction, global
Masterson, AlexandraPatil, PriteshBrown, NicolasAsher, ZacharyFanas Rojas, JohanSiems-Anderson, AmandaWalker, CurtisRabinowitz, Aaron
Bhutan is a small nation in the eastern Himalayas, between two of the world's largest neighbors and fastest-growing economies; China, and India. The GDP of the country is $2.707 Billion as of 2022. Bhutan’s largest renewable source is hydropower, which has a known potential of 30,000 MW. However, it has only been able to harvest only 1,480 MW (5% of the potential). The current overall electrification rate is 99% overall with 98.4% in rural areas. It exports 75.5% of total electricity generated in the country to India. However, the reliable supply of electricity remains a big challenge. The government is also pushing the use of renewable energy sources like solar and wind to diversify the energy mix and enhance the power security of the country. The share of renewable energy is very minimal at present amounting to 723 kW Solar PV and 600 kW Wind power. Bioenergy in the form of fuel wood, energy crops & crop residues, and cattle dung has great potential in the country as the country’s
Wangchuk, SingyeKumar, Naveen
With 40 years of experience to its name, Sunview Patio Doors Ltd. (acquired by Novatech Group in 2021), has solved one of the industry’s top challenges: meeting customers’ increased demands for faster and better services, while providing an option for product customization. Its ability to adopt digital technology allowed the company to satisfy its customers and compete globally in the marketplace
UC Santa Cruz Assistant Professor of Electrical and Computer Engineering Yu Zhang and his lab are leveraging tools to improve the efficiency, reliability, and resilience of power systems, and have developed an artificial intelligence (AI)-based approach for the smart control of microgrids for power restoration when outages occur
The process of manufacturing high-quality and reliable balloon catheters is critical to a number of advanced medical treatments for patients including balloon angioplasty, stent and drug delivery, transcatheter aortic valve implantation, atherectomy, renal denervation, and laser balloon angioplasty. These minimally invasive procedures have vastly improved quality of life, increased patient safety, decreased recovery times, and lowered treatment costs for patients around the globe
With the evolution of Advanced Driver Assistance Systems (ADAS), the gap towards Autonomous Driving (AD) is continuously narrowing. This progress is made possible using digital maps as one of the critical sources along with other ADAS sensors. Correct map data is crucial for the proper functioning of ADAS functions. This demands the need to evaluate the correctness of the map data regularly and efficiently. This work proposes a framework to quantify the map data correctness systematically. The framework algorithmically detects error locations in a map database and then derives KPIs from these error locations. The framework helps to identify issues in the map data related to the internal data consistency or heuristic rules. The framework consists of process automation in Python and map database checks in SQL. The proposed framework defines validation methodology that achieves goals like: (1) KPIs for map data reliability (2) systematic error identification. The framework was evaluated
Veber, ChristopheBai N, NihaBhat, GoutamKumar, VikasNair, PriyankaLi, Yu
This paper discusses automotive electrical harnesses, emphasizing their applicability and considering crucial aspects such as reliability, safety, innovation, simulation, and manufacturing. This text proposes to explore an introduction and addresses the importance of ensuring the reliability of harnesses. Highlighting the Electrified vehicle development importance and the harness applicability in both high-voltage and low-voltage systems, as well as the need for safe practices during design. Featuring innovation in the area, mentioning the evolution of materials and technologies used in modern wiring harnesses. Simulation is presented as an essential tool in the development process, allowing performance analysis prior to physical production. Finally, manufacturing is discussed, highlighting the importance of efficient processes and quality control
Reis, B.Cella, H. DellaFerreira, M.Vaz, S.Cossolino, G.Montes, R.Ferreira, F.F.V.M.
Light fidelity (LiFi) technology holds immense potential to revolutionize wireless communication networks by utilizing light bulbs for reliable and cost-effective interconnections. Integration of LiFi technology with advanced solutions is proposed to significantly enhance the passenger experience in autonomous buses. The reliability and performance limitations inherent in traditional radio frequency (RF) technologies are addressed, resulting in a consistent and reliable wireless connection for self-driving cars. The proposed solution incorporates key features such as a LiFi-powered real-time tracking and notification system, on-board assistance for seat location, and precise bus seat occupancy information gathering. Additionally, the paper aims to improve punctuality through a LiFi-powered passenger boarding system, facilitating the widespread adoption of autonomous vehicles as a trusted and efficient mode of transportation. A thorough technical examination and a successful
Dawoud, Diana WasfiMukhtar, HusameldinCopiaco, AbigailMansoor, WathiqAtalla, Shadi
Sealed electronic components are the basic components of aerospace equipment, but the issue of internal loose particles greatly increases the risk of aerospace equipment. Traditional material recognition technology has a low recognition rate and is difficult to be applied in practice. To address this issue, this article proposes transforming the problem of acquiring material information into the multi-category recognition problem. First, constructing an experimental platform for material recognition. Features for material identification are selected and extracted from the signals, forming a feature vector, and ultimately establishing material datasets. Then, the problem of material data imbalance is addressed through a newly designed direct artificial sample generation method. Finally, various identification algorithms are compared, and the optimal material identification model is integrated into the system for practical testing. The results show that the proposed material
Gao, YajieWang, GuotaoJiang, AipingYan, Huizhen
While many consider electricity a basic human right, there are places where people have never had access to it. Among the United Nations’ Sustainable Development Goals is global access to affordable, reliable, and sustainable energy by 2030. Recently, the U.N. reported that progress in global electrification had slowed due to the challenge of reaching those hardest to reach
The introduction of autonomous vehicles has gained significant attention due to its potential to revolutionize mobility and safety. A critical aspect underpinning the functionality of these autonomous vehicles is their sensor perception system. Demonstrating the reliability of the environment perception sensors and sensor fusion algorithms is, therefore, a necessary step in the development of automated vehicles. Field tests offer testing conditions that come closest to the environment of an automated vehicle in the future. However, a significant challenge in field tests is to obtain a reference truth of the surrounding environment. Here, we propose a pipeline to assess the sensor reliabilities without the need for a reference truth. The pipeline uses a model to estimate the reliability of redundant sensors. To do this, it relies on a binary representation of the surrounding area, which indicates either the presence or absence of an object. Therefore, the pipeline includes another step
Kryda, MarcoQiu, MinhaoBerk, MarioBuschardt, BorisStraub, Daniel
Aerospace manufacturers know what it means to work with high stakes. Extremely tight tolerances, expensive materials and complicated processes define the industry. But few aerospace components are more critical - or more challenging - than the turbine discs that go into the hot side of jet engines. When machining these rotating components, everything must be correct, secure and reliable - not only to meet stringent surface integrity requirements, but also to avoid devastatingly expensive failures. A mistake that leads to a scrapped component can cost a manufacturer upward of $100,000, depending on when the mistake happened in the production process
This report presents several challenges that the U.S. Army will face in the transition to autonomous vehicles, challenges that are only magnified in the current acquisition environment with limited testing. Artificial intelligence algorithms introduce additional complexity, resulting in systems with a complex combination of human, machine, and autonomous controllers. Army DEVCOM Analysis Center, Aberdeen Proving Ground, MD Artificial intelligence (AI) has become prevalent in many fields in the modern world, ranging from vacuum cleaners to lawn mowers and commercial automobiles. These capabilities are continuing to evolve and become a part of more products and systems every day, with numerous potential benefits to humans. AI is of particular interest in autonomous vehicles (AVs), where the benefits include reduced cognitive workload, increased efficiency, and improved safety for human operators. Numerous investments from academia and industry have been made recently with the intent of
Fast, secure, and reliable systems are crucial in industries where time is money and efficiency is highly valued. One American steel mill experienced frequent downtime because of steel split retention rings falling off during operations, often resulting in chocks falling into the mill during roll changes. The process of reattaching the retention rings was slow and required multiple sets of hands to ensure a more secure fit
Achieving human-level dexterity during manipulation and grasping has been a long-standing goal in robotics. To accomplish this, having a reliable sense of tactile information and force is essential for robots. A recent study, published in IEEE Robotics and Automation Letters, describes the L3 F-TOUCH sensor that enhances the force sensing capabilities of classic tactile sensors. The sensor is lightweight, low-cost, and wireless, making it an affordable option for retrofitting existing robot hands and graspers
Perkins announced an addition to its EU Stage V-compliant powertrain range with the 2806J-E18TAG1 ElectropaK. Perkins' new engine is an 18-liter unit intended for the electric power generation industry. The 2806J achieves ISO 8528-5 G2 status and reportedly provides excellent load acceptance in a wide range of electric power applications from a stationary prime source of power to a mobile unit serving the rental sector. “Reliable electric power is not an option, it's a fundamental need to keep operations running, whether that's for standby when the main power fails or to meet onsite prime power requirements,” said Jaz Gill, VP of global sales, marketing, service and parts. “Our engines are engineered and expertly crafted to provide reliable, stable and sustainable power for our customers, with the new 2806J being the latest in a long line of products that also deliver a low total cost of ownership
Wolfe, Matt
An EESM (Externally Excited Synchronous Motor) consists of a rotor with wound copper wires. One of its benefits is the ability to control the rotor electromagnetically with the rotor current, which is an advantage over an IPMSM (Internal Permanent Magnet Synchronous Motor). To practically use it and achieve optimal NVH quietness performance, the air- gap shape was redesigned to generate a sinusoidal curved magnetic flux density distribution. This differs from the standard design, in which the air gap has the same circumference as the rotor and stator. There was a significant reduction in the high-order magnetic flux density, which did not affect the torque. In addition, there was a reduction in the excitation force and minimal iron loss. Unlike an IPMSM, which only uses magnets and produces less heat, the copper wires of the EESM rotor generate heat as current flows through them. To maintain power density, it is important to ensure optimal cooling performance. A new cooling structure
Fan, XuWada, Hiroki
Partial discharge (PD) detection has been always a fundamental tool, potentially, for the design, quality control, commissioning, and reliability monitoring for the of insulation systems. The word “potentially” stems from the objective consideration of the intrinsic limitations suffered by the existing partial discharge, PD, measurement technologies, especially the need of experts to interpret results and the lack of clear correlation between PD-related quantities, and the condition-based maintenance approach. On the whole, a thorough revision of insulation systems design procedures and of the tools to evaluate aging and failure risk is needed, especially in components of electrical assets which are critical in terms of reliability, resilience, and safety. This paper focuses on critical asset components, such as ships, aircrafts, aerospace, and any type of vehicles, where the coming electrification is significantly increasing nominal voltage, power density and efficiency, and where
Montanari, Gian CarloShafiq, Muhammad
The reliable operation of power systems on the lunar surface is crucial for critical research activities and supporting life. These systems are standalone or interconnected grids that integrate intermittent power sources and distributed energy storage. Lunar microgrids must be highly reliable, reconfigurable, and efficient. To meet these requirements, we propose the flexible DC energy router (FeDER), a modular and scalable power management unit for interconnected lunar DC microgrids. The FeDER integrates local energy storage and addresses various microgrid power management needs such as fault management, stability enhancement, power flow regulation, and power quality improvement. The lunar DC microgrids' design, protection, and control are achieved using a three-layered approach: (1) graph theory, (2) energy management system, and (3) smart resistor control. The lunar power grid architecture is introduced and the FeDER stability enhancement is implemented in the OPAL-RT platform. The
Adina, NihanthZhang, ZhiningYao, YuzhouIslam, Md. HaduilShi, YifanFu PhD, PengyuWang, Jin
In the aeronautical field, aircraft reliability is strictly dependent on propulsion systems. Indeed, a reliable propulsion system ensures the safety of pilots and passengers and the possibility of making comfortable flights. Typically, on aircraft equipped with spark ignition (SI) engines, one of the principal requirements to make them reliable is the correct balancing between the intake air mass and fuel flows. Advances in the implementation of sophisticated control and estimation strategies on SI engines allow realizing engines with improved features in terms of performance, reducing pollution emissions, and fuel consumption. Approaches based on sensor redundancy are applied to improve the reliability in measurements of the manifold air pressure (MAP) and flow (MAF) to avoid issues related to possible faults of sensors vital for the correct functioning of SI engines. Model-based estimation techniques, based on the speed–density and alpha-speed methods for determining the MAF in
Fornaro, EnricoCardone, MassimoTerzo, MarioStrano, SalvatoreTordela, Ciro
Porous wall permeability is one of the most critical factors for the estimation of backpressure, a key performance indicator in automotive particulate filters. Current experimental and analytical filter models could be calibrated to predict the permeability of a specific filter. However, they fail to provide a reliable estimation for the dependence of the permeability on key parameters such as wall porosity and pore size. This study presents a novel methodology for experimentally determining the permeability of filter walls. The results from four substrates with different porosities and pore sizes are compared with several popular permeability estimation methods (experimental and analytical), and their validity for this application is assessed. It is shown that none of the assessed methods predict all permeability trends for all substrates, for cold or hot flow, indicating that other wall properties besides porosity and pore size are important. The hot flow test results show an
Samuels, CallumHoltzman, RanBenjamin, StephenAleksandrova, SvetlanaWatling, Timothy C.Medina, Humberto
A novel method which has the potential for improving the U.S. Navy's ability to perform continuous assurance on autonomous and other cyberphysical systems. Naval Postgraduate School, Monterey, CA Autonomous systems are poised to provide transformative benefits to society. Autonomous vehicles (AVs) have the potential to reduce the frequency and severity of collisions, enhance mobility for blind, disabled, and underage drivers, lower energy consumption and environmentally harmful emissions, and reduce population density in metropolitan regions. In civilian aviation, increasingly autonomous systems could mitigate two of the most costly features of human pilots: the cost associated with training and paying highly skilled operators, and the reduced efficiency incurred by flight time limitations and crew rest requirements. Additionally, autonomous air traffic management systems could reduce the cognitive burden on air traffic controllers by automating the monitoring and analysis of high
Sometimes an innovation comes along that changes the manufacturing landscape. Pro Spot International has created a unique Cobot Spot Welding solution. By bringing this new tool to the sheet metal fabrication market, the company aims to bring game-changing gains in productivity, reliability, traceability, and ergonomic safety to the manufacturing world
Researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have introduced a method for robust flight navigation agents to master vision-based fly-to-target tasks in intricate, unfamiliar environments. The liquid neural networks, which can continuously adapt to new data inputs, showed prowess in making reliable decisions in unknown domains like forests, urban landscapes, and environments with added noise and occlusion
Linear motors have redefined what’s possible in motion control with faster, more precise, and more reliable performance compared to traditional, rotary motor-driven linear actuators. A linear motor’s unique property is that the load is moved without mechanical power transmission components. Instead, the linear force generated by the magnetic field of the motor coil is directly coupled to the load. This eliminates mechanical devices that convert rotary motion to linear, thus enhancing the system’s life, precision, speed, and overall performance
Direct drive motors have a long-standing history as a technology that has continually evolved and improved over several decades. Despite the perception that it has reached its limits, innovators such as ETEL continuously evolve and improve the performance and efficiency of their direct drive products
Items per page:
1 – 50 of 3376