Browse Topic: Ignition systems

Items (1,958)
A glow plug is generally used to assist the starting of diesel engines in cold weather condition. Low ambient temperature makes the starting of diesel engine difficult because the engine block acts as a heat sink by absorbing the heat of compression. Hence, the air-fuel mixture at the combustion chamber is not capable of self-ignition based on air compression only. Diesel engines do not need any starting aid in general but in such scenarios, glow plug ensures reliable starting in all weather conditions. Glow plug is actually a heating device with high electrical resistance, which heats up rapidly when electrified. The high surface temperature of glow plug generates a heat flux and helps in igniting the fuel even when the engine is insufficiently hot for normal operation. Durability concerns have been observed in ceramic glow plugs during testing phases because of crack formation. Root cause analysis is performed in this study to understand the probable reasons behind cracking of the
Karmakar, NilankanOrban, Hatem
A multi-dimensional model of the spark ignition process for SI engines was developed as a user-defined function (UDF) integrated into the commercial engine simulation software CONVERGE CFD. The model presented in this paper simulates energy deposition from the ignition circuit into the fuel-air mixture inside the cylinder. The model is based on interaction and collision between electrons in the plasma arc and the gas molecules inside the cylinder using parameters from the ignition circuit and gas inside the cylinder. Full engine simulations using CONVERGE CFD with the developed ignition model including the ignition circuit model, arc propagation model, and energy deposition model were performed to evaluate the validity and performance of the model and to compare with the ignition model provided by CONVERGE CFD. A low turbulent port fuel injected single-cylinder CFR engine was used for comparison. Continuous multi-cycle RANS simulations showed cycle-to-cycle variations. The range of the
Kim, KyeongminHall, MatthewJoshi, SachinMatthews, Ron
This paper explores the potential of leveraging methanol's knock-resistant properties to facilitate both dual fuel (DF) and spark ignition (SI) operation in retrofitted heavy-duty (HD), high-speed marine engines. The study involves retrofitting an original 6-cylinder 7.15L CI diesel engine with port fuel injection (PFI) of methanol to enable DF operation. Later, the diesel injectors were replaced with six spark plugs allowing SI operation. Notably, efforts were made to minimize adaptations to the existing diesel engine, maintaining the compression ratio (CR) at 17.6:1 and retaining the same turbocharging pressure. This research aims to assess the feasibility of retrofitting conventional HD diesel engines (high CR, large bore) for dual-fuel and SI operation on methanol, with a focus on optimizing engine performance, while preserving key characteristics for HD applications, e.g. high torque and high power density. The high CR required spark retarding to prevent knock at higher loads in
Dejaegere, QuintenBallerini, AlbertoDemiddeleer, SheldonVanderbeken, ThomasBracke, KwintenGyselinck, BenD'Errico, GianlucaVerhelst, Sebastian
Hydrogen is a viable option to power high-performance internal combustion engines while reducing pollutant emissions thanks to its high lower heating value (LHV) and fast combustion rate. Furthermore, if compared to gasoline, hydrogen is characterized by a higher ignition delay time, which makes it more knock-resistant under the same thermodynamic conditions. In this paper, hydrogen potential as a fuel in a high-performance PFI naturally aspirated engine under stoichiometric conditions and high load regimes is investigated through zero and three-dimensional simulations. The analyses show that a stoichiometric hydrogen mixture reaches higher pressure and temperature values during compression than iso-octane at the same operating conditions, hence limiting the maximum engine compression ratio to avoid undesired ignitions throughout the combustion process. Additionally, hydrogen low density causes a reduction in terms of trapped energy inside the cylinder. Thus, despite its LHV is almost
Madia, ManuelVaccari, MarcoDalseno, LucaCicalese, GiuseppeCorrigan, DaireVilla, DavideFontanesi, StefanoBreda, Sebastiano
Ammonia is a carbon-free fuel alternative for the internal combustion engine decarbonization. However, its toxicity and less advantageous combustion characteristics including higher nitrogen-based engine-out emissions have delayed its use in power generation applications. Therefore, the use of a secondary and also carbon-free fuel such as hydrogen was proposed in the literature as a solution to promote and improve ammonia combustion while minimizing any modifications in engine parameters and control strategy that may be required when compared to using conventional hydrocarbon-based fuels. In addition, the higher resistance to autoignition of ammonia can allow operation at higher compression ratios in spark ignition applications, therefore increasing the thermal efficiency. The study presented here used a single-cylinder heavy-duty research engine converted to spark ignition operation to investigate medium load engine operation with ammonia-hydrogen blends in which hydrogen represented
Alvarez, LuisSaenz Prado, StefanyTrujillo Grisales, JuanDumitrescu, Cosmin
Low-carbon alternatives to diesel are needed to reduce the carbon intensity of the transport, agriculture, and off-grid power generation sectors, where compression ignition (CI) engines are commonly used. Acid-catalysed alcoholysis produces a potentially tailorable low-carbon advanced biofuel blend comprised of mixtures of an alkyl levulinate, a dialkyl ether, and the starting alcohol. In this study, model mixtures based on products expected from the use of n-butanol (butyl-based blends) as a starting alcohol, were blended with diesel and tested in a Yanmar L100V single-cylinder CI engine. Blends were formulated to meet the flash point, density, and kinematic viscosity limits of fuel standards for diesel, the 2022 version of BS 2869 (off-road). No changes to the engine set-up were made, hence testing the biofuel blends for their potential as “drop-in” fuels. Changes in engine performance and emissions were determined for a range of diesel/biofuel blends and compared to a pure diesel
Wiseman, ScottLi, HuTomlin, Alison S.
Pre-chamber (PC) technology has demonstrated its capability to achieve clean and stable combustion in internal combustion engines (ICEs) under lean conditions. This study evaluates the effectiveness of PC in direct injection (DI) hydrogen (H2)-ICEs compared to conventional spark ignition (SI) operation using high-fidelity computational fluid dynamics simulations across a range of load conditions. Various loads were attained by systematically adjusting intake pressure and injected H2 mass. The primary hypothesis posits that highly turbulent PC jets facilitate rapid mixing and combustion of ultra-lean mixtures. The comparative analysis revealed that DI fueling in both PC and SI modes did not achieve perfectly homogeneous mixtures, particularly under high load conditions, although PC slightly enhanced mixture uniformity. Combustion behavior exhibited a non-monotonic trend, with SI outperforming PC at low and high loads, while PC demonstrated superior performance at medium loads despite
Menaca, RafaelLiu, XinleiMohan, BalajiCenker, EmreAlRamadan, AbdullahIm, Hong
During engine idling, the low engine speed, typically from 600 rpm to 800 rpm, together with the low throttle opening angle, makes it challenging for a proper fuel air mixing process. The uneven intake charge distribution and high portion of internal EGR because of the inefficient gas exchange process further make the air fuel ratio unstable, which is challenging for a robust ignition and combustion process. In this paper, the challenge of achieving proper combustion phasing while maintaining acceptable combustion stability is investigated, and a specially designed common-coil pack was utilized to improve engine idling performance by supplying prolonged ignition duration and elevated discharge current amplitude. The common-coil pack, which comprises three parallel connected ignition coils, was shared by all 4 cylinders of the engine. The ignition strategy shows the capability to advance the combustion phasing for higher IMEP output, while maintaining the combustion stability, and
Yu, XiaoChen, GuangyunQian, JinLeblanc, SimonWang, LinyanZheng, Ming
In our laboratory, the focusing compression principle has been proposed, which is based on pulsed multi-jets of gas colliding around the chamber center. This aims to reduce the cooling loss on the chamber wall and the exhaust loss and improve the thermal efficiency. Our past studies focused on gasoline combustion experiments using the engine with the principle and suggested that the engine had the potential to achieve high thermal efficiency and knock resistance. Considering these past results and the growing interest in carbon-free fuels for net zero, in this paper, fundamental experimental evaluations of hydrogen combustion were principally conducted using the same engine with the focusing compression principle. The air was injected toward the chamber center from seven intake nozzles, while hydrogen gas was supplied from one intake nozzle, respectively. Hydrogen was injected with a relatively low pressure of 50 kPaG. This means that an injector with high injection pressure was not
Yamada, SotaNaitoh, KenBaba, ShotaroUkegawa, HirakuNishizawa, TomohikoYatabe, Atsuhiro
The paper presents novel studies on the electrical-to-thermal energy deposition to gas at different phases of a spark. The experiments utilized a 10.9 milliliter custom-built spark calorimeter. The energy transfer efficiencies across spark phases—breakdown+arc, and glow are quantified, emphasizing their importances in ensuring robust ignition. An AC capacitive ignition system was considered in the experiments. The spark plugs used in the experiments were of dual-nickel standard J-gap design of a fixed electrode gap. Test results show the breakdown+arc phases are highly efficient in converting electrical to thermal energy, crucial for ignition. The glow phase, offering control flexibility, is found to be less effective in energy transfer from spark to gas. In addition, a maximum threshold for both glow current and duration is found. Exceeding the threshold reduces the net energy deposition to the gas, indicating an increase in thermal energy losses, primarily to the spark plug
Saha, AnupamTunestal, PerAengeby, JakobAndersson, Oivind
Achieving stable HCCI combustion requires specific in-cylinder boundary conditions. Trace residual species, such as nitric oxide (NO), can have an impact on the reactivity, and thus the combustion stability, of different fuels in HCCI. This study investigates the effects of nitric oxide (NO) on the reactivity and combustion stability of ethanol and gasoline in a single-cylinder HCCI engine. The promoting and inhibiting impact of NO on iso-octane’s ignition delay time are available in the literature; nevertheless, as a baseline study, these effects on the autoignition of gasoline were documented in this work. For ethanol, the NOx concentration seeded in the intake air varied from 0-1000 ppm while maintaining a constant combustion phasing (CA50 at 7.5 CAD) and a global equivalence ratio of 0.34. Ethanol exhibited a linear reduction in intake temperature, decreasing by 47 K with 927 ppm NO. For gasoline, a 225-ppm increase in NO reduced the intake temperature required for HCCI by 40 K
Bhatt, AnkurGandolfo, JohnVedpathak, KunalLawler, BenjaminGainey, Brian
This study investigates the ignitability of hydrogen in an optical heavy-duty SI engine. While the ignition energy of hydrogen is exceptionally low, the high load and lean mixtures used in heavy-duty hydrogen engines lead to a high gas density, resulting in a much higher breakdown voltage than in light-duty SI engines. Spark plug wear is a concern, so there is a need to minimise the spark energy while maintaining combustion stability, even at challenging conditions for ignition. This work consists of a two-stage experimental study performed in an optical engine. In the first part, we mapped the combustion stability and frequency of misfires with two different ignition systems: a DC inductive discharge ignition system, and a closed-loop controlled capacitive AC system. The equivalence ratio and dwell time were varied for the inductive system while the capacitive system instead varied spark duration and spark current in addition to equivalence ratio. A key finding was that spark energy
Hallstadius, PeterSaha, AnupamSridhara, AravindAndersson, Öivind
In cogeneration system, the pre-chamber natural gas engine adopts combustion technologies such as ultra-high supercharged lean burn and Miller cycle to increase the theoretical efficiency by increasing the specific heat ratio and the mechanical efficiency by improving the specific power. In recent years, the use of hydrogen fuel has been attracting attention in order to achieve carbon neutrality, and it is required to operate existing high-efficiency natural gas engines by appropriately mixing hydrogen. For this purpose, it is important to have natural gas and hydrogen co-combustion technology that allows combustion at any mixture ratio without major modifications. The authors mixed hydrogen into the fuel of an ultra-high supercharged lean burn pre-chamber natural gas engine (Bore size: 200mm) that has already achieved high efficiency and performed combustion experiments at BMEP (Brake mean effective pressure) of 2 MPa or more. The engine load and hydrogen mixture ratio were used as
Morikawa, KojiKimura, ShinSakai, ShunyaMoriyoshi, Yasuo
With the global shift towards sustainable and low-emission transportation, hydrogen-fueled engines stand out as a promising alternative to traditional fossil fuels, offering significant potential to reduce greenhouse gas emissions. This study provides a comprehensive evaluation of the performance and emissions characteristics of a hydrogen-powered heavy-duty compression ignition engine, which has been modified to operate as a Spark Ignition (SI) engine with a high compression ratio of 17:1. The evaluation was conducted across various speeds, loads, and spark timings under ultra-lean combustion conditions. The analysis utilized a modified 6-cylinder, 13-liter Volvo D13 diesel engine, configured to operate in single-cylinder mode with the addition of a spark plug for SI operation. The study examined key performance metrics, including brake thermal efficiency (BTE), power output, and specific fuel consumption, under the selected operating conditions. Emissions profiles for nitrogen oxides
Dyuisenakhmetov, AibolatPanithasan, Mebin SamuelCenker, EmreAlRamadan, AbdullahIm, HongTurner, James
Methanol can be produced renewably and used in compression ignition (CI) engines as a replacement for fossil diesel. However, methanol is a low cetane fuel, creating challenges in achieving stable operation, particularly at low load. One potential solution is through surface ignition via a glow plug. In this work, experiments were conducted on a methanol-fueled 2.1 L single cylinder engine instrumented with a glow plug. The engine was designed for alcohol combustion with an elevated compression ratio (26:1) and a narrow injector umbrella angle (120 degrees) compared to standard diesel compression ignition hardware. As such, no plume was directly intercepted by the glow plug. A representative low load case of two conventional mixing controlled compression ignition (MCCI) strategies (single injection and pilot-main) and three kinetically controlled advanced CI strategies (homogenous charge compression ignition, split injection, partially premixed combustion) were tested with and without
Gainey, BrianSvensson, MagnusVerhelst, SebastianTuner, Martin
In order to reduce the environmental impact of transportation, the adoption of low and zero carbon fuel is needed to reduce the greenhouse gas emissions from engines, both from tailpipe and well-to-wheel perspectives. However, for some of the promising fuels, such as renewable natural gas and ammonia, the relatively low chemical reactivity and laminar flame speed bring challenge to a rapid and efficient combustion process, especially under lean or diluted conditions to suppress NOx emissions, leading to reduced combustion and thermal efficiencies. To tackle the challenge, high in-cylinder flow speed is needed to shorten the combustion duration, together with strong ignition sources to support the initial flame kernel development. In this paper, an ignition energy modulation system is developed to enhance both discharge current and discharge energy of a spark event to secure the ignition process. Moreover, a rapid compression machine is employed to compress the fuel-air mixture to the
Jin, LongYu, XiaoZhou, QingReader, GrahamLi, LiguangZheng, Ming
Active fuel injection into a pre-chamber (PC) promotes high-temperature and highly turbulent jets, which ignite the cylinder gas with a very high exhaust gas recirculation (EGR) ratio, reducing emissions such as NOx. In the present study, two active PC injection strategies were designed to investigate the effect of injected hydrogen mass and PC mixture air-to-fuel equivalence ratio λ on PC combustion, jet formation, and main chamber (MC) combustion. Stoichiometric or rich hydrogen/oxygen mixtures are actively injected into the PC to enhance the combustion processes in the PC and the MC. A three-dimensional numerical engine model is developed using the commercial CFD code CONVERGE. The engine geometry and parameters adopt a modified GM 4-cylinder 2.0 L GDI gasoline engine. The local developments of gas temperature and velocity are resolved with the adaptive mesh refinement (AMR). The turbulence of the flow is computed with the k-epsilon model of the Reynolds-averaged Navier–Stokes (RANS
Yu, TianxiaoLee, Dong EunAlam, AfaqueGore, Jay P.Qiao, Li
In the context of low-carbon and zero-carbon development strategies, the transformation and upgrading of the energy structure is an inevitable trend. As a renewable fuel, ammonia has a high energy density. When ammonia is burned alone, the combustion speed is slow. The emissions of nitrogen oxides and unburned ammonia is high. Therefore, a suitable high-reactivity combustion aid fuel is required to improve the combustion characteristics of ammonia. Based on this background, this study converted a six-cylinder engine into a single-cylinder ammonia/diesel dual-fuel system, with diesel fuel as the base and a certain percentage of ammonia blended in. The impact of varying the injection pressure and equivalence ratio on engine combustion and emissions was examined. The results demonstrate that an appropriate increase in injection pressure can promote fuel-gas mixing and increase the indicated thermal efficiency (ITE). With regard to emissions, an increase in injection pressure has been
Wang, HuLv, ZhijieZhang, ShouzhenWang, MingdaYang, RuiYao, Mingfa
To advance the application of zero-carbon ammonia fuel, this paper presents an experimental investigation on the potential of ammonia substitution using a 2.0L ammonia-hydrogen engine, where ammonia is injected into the intake port and hydrogen is directly injected into the cylinder. The study examines the effects of ammonia substitution rate under various load conditions on engine combustion and emission performance. Results indicate that the maximum ammonia energy substitution rate reached 98%, and within the stable combustion boundary, the mass fraction of unburned ammonia was less than 3%. The ammonia energy substitution ratio increased with load, and ammonia addition significantly suppressed pre-ignition and knocking. As ammonia content increased, ignition timing advanced, combustion duration extended, ignition delay prolonged, COV increased, peak cylinder pressure, and pressure rise rate decreased, with a corresponding decrease in peak heat release rate. Compared to a pure
Wu, WeilongXie, FangxiChen, HongDu, JiakunLi, Yong
High and ultra-high pressure direct injection (UHPDI) can enhance efficiency gains with flex-fuel engines operating on ethanol, gasoline, or their mixtures. This application aims to increase the engine’s compression ratio (CR), which uses low CR for gasoline due to the knocking phenomenon. This type of technology, involving injection pressures above 1000 bar, permits late fuel injection during the compression phase, preventing auto-ignition and allowing for higher compression ratios. UHPDI generates a highly turbulent spray with significant momentum, improving air-fuel mix preparation, and combustion, resulting in even greater benefits while minimizing particulate matter emissions. This study aims to develop ultra-high-pressure injection systems using gasoline RON95 and hydrated ethanol in a single-cylinder engine with optical access. Experimental tests will be conducted in an optically accessible spark ignition research engine, employing thermodynamic, optical, and emission results
Malheiro de Oliveira, Enrico R.Mendoza, Alexander PenarandaMartelli, Andre LuizDias, Fábio J.Weissinger, Frederico F.dos Santos, Leila RibeiroLacava, Pedro Teixeira
In the global scenario marked by the increasing environmental awareness and the necessity on reducing pollutant emission to achieve the decarbonization goals, action plans are being proposed by policy makers to reduce the impact of the climate change, mainly affecting the sectors that most contribute to CO2 emissions such as transportation and power generation. In this sense, by virtue of the National Energy Plan 2050, the Brazilian market will undergo the decommissioning of thermal power plants fueled by diesel and heavy fuel oil (HFO) by 2030, compromising about 6.7 GW of power capacity according to the Brazilian Electricity Regulatory Agency (ANEEL) database. An alternative to the scrapping of these engine power plants is their conversion to operate with fuels with a lower carbon footprint, such as the natural gas. This work, therefore, aims to numerically assess the conversion feasibility of a HFO large bore four-stroke turbocharged engine to operate with natural gas by means of a
Gonçalves, Vinícius FernandezZabeu, Clayton BarcelosAntolini, JácsonSalvador, RobertoAlmeida, RogérioValiati, Allan SoaresFilho, Guenther Carlos Krieger
This study meticulously examines the ignition coil (IG), a pivotal component in engine operation, which transforms the low voltage from the battery into the high voltage necessary for spark plug electrode flashover, initiating the combustion cycle. Considering the importance of IG coils in engine operation which has a direct impact on the engine performance. Any failure in the IG coils is judged as a critical failure and encompasses severe repercussions. The paper details an investigation into the issue of ‘White Deposition’ on IG coils. White deposit was observed in IG Coils during new model development in bench level durability test. A comprehensive failure analysis was conducted, employing vibration analysis, thermal analysis, and chemical analysis of the white deposits to ascertain the root cause. Subsequent to identifying the root cause, the study elaborated on hardware design enhancements as a solution. These design changes were rigorously tested on engine benches, confirmed for
Patel, Hardik ManubhaiGupta, VineetChand, SubhashKumar, Nitish
The hybrid engines produced by most original equipment manufacturers (OEMs) have been modified to fit within the framework of conventional engine designs. Recently, Geely has introduced a new 1.5-liter (1.5L) inline four-cylinder (I4) TGDI engine, specifically designed to meet the requirements of its innovative, efficient, and intelligent hybrid powertrain architecture. This engine achieves an impressive brake thermal efficiency (BTE) of 44%, as well as high specific torque at 153 Nm/L and high specific power at 67 kW/L. To attain this superior performance, the following technical strategies were implemented: a high compression ratio, the robust Miller cycle, an extended piston stroke-to-bore ratio, an intake port optimized for high tumble, cooled exhaust gas recirculation (EGR), and an advanced high-energy ignition system. Among these, the middle four strategies, in conjunction with piston cooling jets and enhanced exhaust-side cooling, all contribute to improved in-cylinder
Li, QiangLiu, YangZhang, PeiyiYan, PingtaoLi, HongzhouZhu, YunfengJi, YanLi, MingguiCui, Boyue
This work numerically investigated the feasibility of methanol compression ignition combustion for light-duty diesel engine applications by using a glow plug (GP) to promote ignition. A comprehensive parametric study was conducted to assess the combustion characteristics depending on the GP position, the relative angle between the GP and injector, and other initial conditions. Optimal design parameters were identified. It was demonstrated that GP can enable successful ignition and combustion of methanol at the operating conditions under study. Among the many parameters considered, the relative angle between the GP and injector was found to be one of the most critical parameters in controlling the ignition and complete combustion. Increasing intake temperature promoted combustion speed and engine performance, but excessively high intake temperatures led to higher wall heat transfer loss and lower ITE. An appropriate level of the pilot injection mass was found to increase ITE, with the
Liu, XinleiSim, JaeheonRaman, VallinayagamViollet, YoannAlRamadan, Abdullah S.Cenker, EmreIm, Hong G.
High fuel stratification gasoline compression ignition (HFS-GCI) strategies allow for the use of ignition control methods similar to those used by diesel-fueled compression ignition (CI) engines while offering the emissions benefits of gasoline-like fuels. Despite this benefit, low load GCI operation requires ignition assistance viz. intake boosting, intake heating, cylinder deactivation, etc. for consistent autoignition. A novel ignition assistance methodology using an offset active prechamber (OAP) is proposed in this work to enable low load GCI operation. A 1.5cc OAP with a pressure-sensing spark plug and gaseous fuel injection system is designed and mounted in a medium-duty single-cylinder test engine based on the Cummins ISB engine. The prechamber is provided with two holes designed to ignite the fuel spray from the centrally mounted direct injection (DI) fuel injector. Gasoline was used as the main chamber fuel and methane was used as the prechamber fuel. A detailed parametric
Gupta, Saurabh KHanson, ReedDempsey, AdamKokjohn, Sage
Modern automotive powertrains are operated using many control devices under a wide range of environmental conditions. The exhaust temperature must be controlled within a specific range to ensure low exhaust-gas emissions and engine-component protection. In this regard, physics-based exhaust-temperature prediction models are advantageous compared with the conventional exhaust-temperature map-based model developed using engine dyno testing results. This is because physics-based models can predict exhaust-temperature behavior in conditions not measured for calibration. However, increasing the computational load to illustrate all physical phenomena in the engine air path, including combustion in the cylinder, may not fully leverage the advantages of physical models for the performance of electric control units (ECUs). This study proposes an onboard physics-based exhaust-temperature prediction model for a mass-produced engine to protect the engine exhaust system and reduce exhaust emissions
Yamaguchi, SeiyaTomita, MasayukiUrakawa, ShinjiOokubo, Seiichi
For realizing a super-leanburn SI engine with a very-high compression ratio, it is necessary to design a new fuel which could have low ignitability at a low temperature for antiknocking, but high ignitability at a high temperature for some contribution to stable combustion. C2H6 has a very-long ignition delay time at a low temperature, close to that of CH4, but a short ignition delay time at a high temperature, close to that of gasoline. C2H6 also has a laminar burning velocity about 1.2 times higher than that of gasoline. C2H6 addition to gasoline could be a good example of fuel design to improve both combustion stability and antiknocking property. In the present study, the antiknocking effect of adding CH4, C2H6, or C3H8 with the RON of 120, 115, or 112, respectively, to a regular-gasoline surrogate fuel with the RON of 90.8 has been investigated in an SI engine with a stoichiometric mixture. With the energy fraction of the gaseous fuel of less than 0.35, knocking limit CA50 is
Kuwahara, KazunariShimizu, TaiseiOkada, Atsuki
Engine knocking poses a significant challenge for downsizing and boosting strategies in spark-ignition (SI) engines. In the event of knock, the unburnt fuel-oxidizer mixture auto-ignites after being compressed by the flame front and piston of an SI engine. Conventional knock is influenced by combustion chemistry and physical properties of the fuel. In this work, we present auto-ignition characteristics of primary reference fuel (PRF75), ethanol, 2,5-dimethylfuran, and their blends in Advanced Fuel Ignition Delay Analyzer (AFIDA). Three different pressures, i.e. 10, 15, and 20 atm and four different temperatures, i.e. 450, 500, 550, and 600 0C have been used as initial conditions. A weak negative temperature coefficient (NTC) behavior has been observed for PRF75 ignition in AFIDA in this work. Moreover, for PRF75, the ignition delay times at low temperatures have been observed to show weaker dependence on pressure in comparison to the high temperature cases. For ethanol and 2,5
Bhattacharya, AtmadeepKaario, OssiEraqi, BasemSakleshpur Nagaraja, ShashankSarathy, Mani
Because it can be produced in a green form methanol is envisioned as a potential fuel replacing conventional Diesel fuel to directly reduce greenhouse gases (GHG) impact of maritime transportation. For these reasons, Original Equipment Manufacturers (OEMs) are working to make methanol easier to use in Compression Ignition (CI) engines. While it is an easy to use substance with manageable energy content, methanol has a few drawbacks, such as: high latent heat of vaporization, high auto-ignition temperature. These drawbacks have an impact on the quality of combustion and therefore solutions have to be found and are still being studied to give methanol a Diesel like behavior. One solution is to use a pilot fuel for ignition in quantities that remain high (> 20 %). A previous study carried out at the PRISME laboratory highlighted the possibility of using a Combustion Enhancer based on Nitrates (CEN) at additive levels. Here the CEN impact in methanol is studied through the use of a New One
Samson, RichardMorin, Anne-GaelleFoucher, Fabrice
A comprehensive experimental study of hydrogen–diesel dual-fuel and hydrogen-hydrotreated vegetable oil (HVO) dual-fuel operations was conducted in a single-cylinder diesel engine (bore 85.0 mm, stroke 96.9 mm, and compression ratio 14.3) equipped with a common rail fuel injection system and a supercharger. The hydrogen flow rate was manipulated by varying the hydrogen excess air ratio from 2.5 to 4.0 in 0.5 increments. Hydrogen was introduced into the intake pipe using a gas injector. Diesel fuel and HVO were injected as pilot fuels at a fixed injection pressure of 80 MPa. The quantity of pilot fuel was set to 3, 6, and 13 mm3/cycle. The intake and exhaust pressures were set in the range of 100–220 kPa in 20 kPa increments. The engine was operated at a constant speed of 1,800 rpm under all conditions. The pilot injection timing was varied such that the ignition timing was constant at the TDC under all conditions. The results demonstrated that smoke was lower when HVO was used as the
Mukhtar, Ghazian AminTange, KotaNakatani, SatoshiHoribe, NaotoKawanabe, HiroshiMorita, GinHiraoka, KenjiKoda, Kazuyuki
This SAE Aerospace Standard (AS) covers combustion heaters and accessories used in, but not limited to, the following applications: a Cabin heating (all occupied regions and windshield heating) b Wing and empennage anti-icing c Engine and accessory heating (when heater is installed as part of the aircraft) d Aircraft deicing
AC-9 Aircraft Environmental Systems Committee
Ammonia, with its significant hydrogen content, offers a practical alternative to pure hydrogen in marine applications and is easier to store due to its higher volumetric energy density. While Ammonia's resistance to auto-ignition makes it suitable for high-compression ratio engines using pre-mixed charge, its low flame speed poses challenges. Innovative combustion strategies, such as dual-fuel and reactivity-controlled compression ignition (RCCI), leverage secondary high-reactivity fuels like diesel to enhance Ammonia combustion. To address the challenges posed by Ammonia's low flame speed, blending with hydrogen or natural gas (NG) in the low reactivity portion of the fuel mixture is an effective approach. For combustion simulation in engines, it is crucial to develop a chemical kinetics mechanism that accommodates all participating fuels: diesel, Ammonia, hydrogen, and NG. This study aims to propose a kinetics mechanism applicable for the combustion of these fuels together. The
Salahi, Mohammad MahdiMahmoudzadeh Andwari, AminKakoee, AlirezaHyvonen, JariGharehghani, AyatMikulski, MaciejLendormy, Éric
Increasing ignition energy by replacing standard spark igniters with pre-chambers is an established combustion accelerator. With rapid combustion on the one hand, mixture dilution can be extended while maintaining the combustion stability at adequate levels. On the other hand, accelerated combustion reduces the need for knock-induced spark retarding, thus facilitating emission reduction and increases in efficiency simultaneously. A newly developed pre-chamber ignition system is introduced in this work. The influence of the system on combustion is investigated in a single-cylinder research engine. The findings can support the development of future ignition technology for passenger-vehicle-sized engines. There are two basic configurations of pre-chamber igniters: the first is known as passive pre-chamber, the second as scavenged pre-chamber. The first configuration can be realized as a simple replacement for standard spark plugs. While additional costs are minimized, the air-fuel ratio
Fellner, FelixFitz, PatrickHärtl, MartinJaensch, Malte
In this study, dual fuel combustion process has been investigated numerically and experimentally in a single cylinder research engine. Two engine speeds have been investigated (1500 and 2000 rpm) at fixed BMEP of 5 bar for both engine speeds. For each engine speed two operating points have tested with and without EGR (Exhaust Gas Recirculation). The hydrogen has been injected in the intake manifold in front of the tumble intake port inlet and a small amount of diesel fuel has been introduced directly in the cylinder through two injections strategy: one pilot injection occurring Before Top Dead Center (BTDC) and one main occurring around the Top Dead Center (TDC). The dual-fuel combustion model in GT-SUITE has been used first to calibrate the combustion model by using the Three Pressure Analysis (TPA) model. This step allows the calibration of the combustion model to predict in-cylinder combustion processes. Simulations have been performed at varying mass distribution of injected diesel
Maroteaux, FadilaSEBAI, SalimMancaruso, EzioRossetti, SalvatoreSchembri, PatrickRadja, KatiaBarichella, Arnault
In this study, a bipolar nanosecond pulse all-solid-state power supply was developed including Lenz capacitance (LC) resonant circuit and full-bridge inverter circuit to provide plasma ignition mode for internal combustion engines. The power supply converts the direct current (DC) voltage into voltage pulses using the inverter circuit with insulated gate bipolar transistor (IGBT), and subsequently amplifies the voltage through a pulse transformer. In the magnetic compression circuit, two capacitors were utilized to store energy simultaneously and approximately double the voltage. By exploiting the hysteresis characteristics of the magnetic switch, a nanosecond pulse output was achieved. An enhanced full-bridge inverter snubber circuit was proposed, which can effectively absorb surge voltage, with a voltage impact reduction on the primary winding of the pulse transformer to less than 1%. The newly developed bipolar nanosecond pulse power supply achieved a good performance with bipolar
Sun, AoHu, YongRong, WeixinYu, WenbinZhao, Feiyang
Low-temperature heat release (LTHR) is of interest for its potential to help control autoignition in advanced compression ignition (ACI) engines and mitigate knock in spark ignition (SI) engines. Previous studies have identified and investigated LTHR in both ACI and SI engines before the main high-temperature heat release (HTHR) event and, more recently, LTHR in isolation has been demonstrated in SI engines by appropriately curating the in-cylinder thermal state during compression and disabling the spark discharge. Ethanol is an increasingly common component of market fuel blends, owing to its renewable sources. In this work, the effect of adding ethanol to iso-octane (2,2,4-trimethylpentane) blends on their LTHR behavior is demonstrated. Tests were run on a motored single-cylinder engine elevated inlet air temperatures and pressures were adjusted to realize LTHR from blends of iso-octane and ethanol without entering the HTHR regime. The blends were tested with inlet temperatures of 40
White, Samuel PhilipBajwa, Abdullah UmairLeach, Felix
In this article, the effects of mixture dilution using EGR or excessive air on adiabatic flame temperature, laminar flame speed, and minimum ignition energy are studied to illustrate the fundamental benefits of lean combustion. An ignition system developing a new active pre-chamber (APC) design was assessed, aimed at improving the indicated thermal efficiency (ITE) of a 1.5 L four-cylinder gasoline direct injection (GDI) engine. The engine combustion process was simulated with the SAGE detailed chemistry model within the CONVERGE CFD tool, assuming the primary reference fuel (PRF) to be a volumetric mixture of 93% iso-octane and 7% n-heptane. The effects of design parameters, such as APC volume, nozzle diameter, and nozzle orientations, on ITE were studied. It was found that the ignition jet velocity from the pre-chamber to the main chamber had a significant impact on the boundary heat losses and combustion phasing. The simulation showed that, under 16.46 compression ratio (CR) and
Peethambaram, Mohan RajZhou, QuanbaoWaters, BenjaminPendlebury, KenFu, HuiyuHaines, AndrewHale, DavidHu, TiegangZhang, JiaxiangWu, XuesongZhang, Xiaoyu
In-cylinder fluid dynamics enhance performance and emission characteristics in internal combustion (IC) engines. Techniques such as helical ports, valve shrouding, masking, and modifications to piston profiles or vanes in ports are employed to achieve the desired in-cylinder flows in these engines. However, due to space constraints, modifications to the cylinder head are typically minimal. The literature suggests that introducing baffles into the combustion chamber of an IC engine can enhance in-cylinder flows, air-fuel mixing, and, subsequently, stratification. Studies have indicated that the height of the baffles plays a significant role in determining the level of improvement in in-cylinder flow and air-fuel mixing. Therefore, this study employs Computational fluid dynamics (CFD) analysis to investigate the impact of baffle height on in-cylinder flow and air-fuel mixing in a four-stroke, four-valve, spray-guided gasoline direct injection (GDI) engine. The maximum allowable baffle
V, VishalMallikarjuna, J M
The hydrogen (H2) internal combustion engine (ICE) is emerging as an attractive low life-cycle carbon powertrain configuration for applications that require high power, high duty cycle operation. Owing to the relative ease of conversion of heavy duty (HD) diesel ICEs to H2 and the potential for low exhaust emissions, H2 ICEs are expected to play a strong role in rapidly decarbonizing hard-to-electrify markets such as off-road, rail, and marine. The conversion of HD diesel ICEs to spark ignited H2 with port fuel injection is typically accompanied by a de-rating of engine power and torque. This is due to several fuel- and system-related challenges, including the high risk of abnormal combustion resulting from the low auto-ignition energy threshold of H2, and boost system requirements for highly dilute operation that is used to partially mitigate this abnormal combustion risk. However, HD ICEs must be adapted to a diverse range of vehicle applications, and so increasing ICE displacement
Bunce, MichaelSeba, BouzidAndreutti, RobertoYan, ZimingPeters, Nathan
The need for carbon-neutral transportation solutions has never been more pronounced. With the continually expanding volume of goods in transit, innovative and dependable powertrain concepts for freight transport are imperative. The green hydrogen-powered internal combustion engine presents an appealing option for integrating a reliable, non-fossil fuel powertrain into commercial vehicles. This study focuses on the adaptation of a single-cylinder diesel engine with a displacement of 2116 cm3 to facilitate hydrogen combustion. The engine, characterized by low levels of swirl and tumble, underwent modifications, including the integration of a conventional central spark plug, a custom-designed piston featuring a reduced compression ratio of 9.5, and a low-pressure hydrogen direct injection system. Operating the injection system at 25 bar hydrogen pressure, the resulting jet profiles were varied by employing jet forming caps affixed directly to the injector nozzle. Specifically, two cap
Bucherer, ManuelReinbold, MarcelBui, Thai AnKubach, HeikoKoch, Thomas
Ammonia (NH3), a zero-carbon fuel, has great potential for internal combustion engine development. However, its high ignition energy, low laminar burning velocity, narrow range of flammability limits, and high latent heat of vaporization are not conducive for engine application. This paper numerically investigates the feasibility of utilizing ammonia in a heavy-duty diesel engine, specifically through low-pressure direct injection (LP-DI) of hydrogen to ignite ammonia combustion. Due to the lack of a well-corresponding mechanism for the operating conditions of ammonia-hydrogen engines, this study serves only as a trend-oriented prediction. The paper compares the engine's combustion and emission performance by optimizing four critical parameters: excess air ratio, hydrogen energy ratio, ignition timing, and hydrogen injection timing. The results reveal that excessively high hydrogen energy ratios lead to an advanced combustion phase, reducing indicated thermal efficiency. Additionally
Xu, XiaotingWang, WeiQi, YunliangWang, ZhiMin, HaijiaoLi, FangweiYin, YongLi, Zhi
As global regulations on automotive tailpipe emissions become increasingly stringent, developing precise tailpipe emissions models has garnered significant attention to fulfill onboard monitoring requirements without some drawbacks associated with traditional sensor-based systems. Within the European Union, there is consideration of mandating real-time measurement of emission constituents to enable driver warnings in cases where constituent standards are exceeded. Presently, available technology renders this approach cost-prohibitive and technologically challenging, with most sensor suppliers either unable to meet the demand or unwilling to justify the development costs associated with sensor commercialization. Efforts to circumvent the sensor-based approach through first principle models, incorporating thermokinetics, have proven to be both computationally expensive and lacking in accuracy during transient operations. We propose a data-driven solution based on DL (deep learning) to
Hashemi, AshtonSchlingmann, Dean
Numerical analyses of the liquid fuel injection and subsequent fuel-air mixing for a high-tumble direct injection engine with an active pre-chamber ignition system at operation conditions of 2000 RPM are presented. The Navier-Stokes equations for compressible in-cylinder flow are solved numerically using a hierarchical Cartesian mesh based finite-volume method. To determine the fuel vapor before ignition large-eddy flow simulations are two-way coupled with the spray droplets in a Lagrangian Particle Tracking (LPT) formulation. The combined hierarchical Cartesian mesh ensures efficient usage of high performance computing systems through solution adaptive refinement and dynamic load balancing. Computational meshes with approximately 170 million cells and 1.0 million spray parcels are used for the simulations. The influence of a lateral ethanol injection on the tumble flow motion and the entrainment into the pre-chamber is analyzed for stoichiometric and lean fuel conditions for an early
Wegmann, TimMeinke, MatthiasFleischmann, MaximilianPischinger, StefanSchröder, Wolfgang
A multi-dimensional cathode spot generation model is proposed to study the interaction between the plasma arc and cathode surface of a spark plug during the ignition process. The model is focused on the instationary (high current) arc phase immediately following breakdown, and includes detailed physics for the phenomena during spot formation such as ion collision, thermal-field emission, and metal vaporization, to simulate the surface heat source, current density and surface pressure. The spot formation for a platinum cathode is simulated using the VOF (volume of fluid) model within FLUENT, where the local metal is melted and deformed by pressure differences on the surface. A random walk model has been integrated to consider the movement of the arc center, resulting in the formation of different types of spots. The simulation results show: it takes approximately 100 ns for the arc to discharge the electric charge of the spark plug side capacitance and form the spot in the instationary
Li, DelongTambasco, CoreyHall, MatthewMatthews, Ron
The phenomenon of drop-wall interaction plays a crucial role in a wide range of industrial applications. When liquid droplets come into contact with a high-temperature surface, it can lead to thermal shock due to rapid temperature fluctuations. This abrupt temperature change can generate thermal stress within the solid wall material. If the thermal stress exceeds the material's strength in that specific stress mode, it can result in material failure. Therefore, it is imperative to delve into the evolving temperature patterns on high-temperature surfaces to optimize material durability. This study focuses on investigating drop-wall interactions within the context of engine environments. To achieve this, the Smoothed Particle Hydrodynamics (SPH) method is employed to simulate the impact of fuel droplets on a silicon nitride wall. The goal is to understand the heat transfer mechanisms, thermal penetration depths, and temperature distributions within the heated wall. Furthermore, this
Ahamed, SheikhKong, Song-Charng
In order to scrutinize the timing variables impacting the combustion performance and emissions of the Port Fuel Injection hydrogen engine (PFI-H2ICE), a model of a four-cylinder hydrogen engine is meticulously built utilizing the 1D software GT-POWER. The effect of excess air coefficients and timing strategies (including the intake valve opening timing (IVO), the start of injection timing (SOI), and ignition timing) is analyzed in this study. The main conclusions are as follows: The hydrogen engine remold from the Isuzu JE4N28 nature gas engine manifests a lean combustion threshold ranging between 2.0 and 2.5. Notably, advancing intake valve opening timing by 20°CA has proven beneficial to the brake thermal efficiency (BTE) of the hydrogen engine while reducing the NOx emissions by a substantial margin, and advancing intake valve opening timing bears the virtue of strengthen the positive influence of the start of injection timing upon the engine's combustion performance. The longer the
Hu, ZhiyuanYin, LiZhang, YunhuaLou, DimingTan, PiqiangLiu, Dengcheng
Argon power cycle hydrogen engine is an internal combustion engine that employs argon instead of nitrogen of air as the working fluid, oxygen as the oxidizer, and hydrogen as the fuel. Since argon has a higher specific heat ratio than air, argon power cycle hydrogen engines have theoretically higher indicated thermal efficiencies according to the Otto cycle efficiency formula. However, argon makes the end mixture more susceptible to spontaneous combustion and thus is accompanied by a stronger knock at a lower compression ratio, thus limiting the improvement of thermal efficiency in engine operation. In order to suppress the limitation of knock on the thermal efficiency, this paper adopts a combination of experimental and simulation methods to investigate the effects of port water injection on the knock suppression and combustion characteristics of an argon power cycle hydrogen engine. The results show that the port water injection can effectively reduce the knock intensity of the argon
Tang, YongjianDeng, JunXie, KaienJin, ShaoyeLi, Liguang
In order to improve the fuel economy for future high-efficiency spark ignition engines, the applications of advanced combustion strategies are considered to be beneficial with an overall lean and/or exhaust gas recirculation diluted cylinder charge. Stronger and more reliable ignition sources become more favorable under extreme lean/EGR conditions. Existing research indicates that the frequency of plasma restrikes increases with increased flow velocity and decreased discharge current level, and a higher discharge current can reduce the gap resistance and maintain the stretched plasma for a longer duration under flow conditions. An in-house developed current boost control system provides flexible control of the discharge current level and discharge duration. The current boost ignition system is based on a multi-coil system with a discharge current level of 180mA. In this study, a comparative study has been conducted to investigate the efficacy of multi-coil and multi-core ignition
Yu, XiaoLeblanc, SimonWang, LinyanZheng, MingTjong, Jimi
This work represents an advanced engineering research project partially funded by the U.S. Department of Energy (DOE). Ford Motor Company, FEV North America, and Oak Ridge National Laboratory collaborated to develop a next generation boosted spark ignited engine concept. The project goals, specified by the DOE, were 23% improved fuel economy and 15% reduced weight relative to a 2015 or newer light-duty vehicle. The fuel economy goal was achieved by designing an engine incorporating high geometric compression ratio, high dilution tolerance, low pumping work, and low friction. The increased tendency for knock with high compression ratio was addressed using early intake valve closing (EIVC), cooled exhaust gas recirculation (EGR), an active pre-chamber ignition system, and careful management of the fresh charge temperature. Engine weight reduction measures were implemented throughout the engine system making use of composite materials, advanced manufacturing techniques, and architectural
Shelby, Michael H.Case, Mark E.Chesney, Lynn A.
Due to increasingly strict emission regulations, the demand for internal combustion engine performance has enhanced. Combustion stability is one of the main research focuses due to its impacts on the emission level. Moreover, the combustion instability becomes more significant under the lean combustion concept, which is an essential direction of internal combustion engine development. The combustion instability is represented as the cycle-to-cycle variation. This paper presents a quasi-dimensional model system for predicting the cycle-to-cycle variation in 0D/1D simulation. The modeling is based on the cause-and-effect chain of cycle-to-cycle variation of spark ignition engines, which is established through the flow field analysis of large eddy simulation results [1]. In the model system, varying parameters are turbulent kinetic energy, the distribution of air-to-fuel equivalence ratio, and the in-cylinder velocity field. The model system considers both the global and the local
Feng, YeMirsch, NiklasMir, Daniel IsmailKulzer, André CasalGrill, MichaelSteeger, FabianBlomberg, MichaelPischinger, Stefan
Items per page:
1 – 50 of 1958