Browse Topic: Ignition timing

Items (1,044)
The direct injection of hydrogen (H2) inside internal combustion engines (ICEs) is gaining large research interest over the port-fuel injection strategy, because of several advantages as higher volumetric efficiencies, increased power output and reduced risks of abnormal combustion. However, the required high pressure ratios across the injector nozzle produce moderate-to-high under-expanded jets, characterized by complex flow structures. This poses a challenge for the numerical modelling of the mixture preparation by means of 3D computational fluid dynamics (CFD) approaches. In this work, a validated 3D-CFD methodology has been employed to simulate the closed-valve cycle of a direct injection H2 engine equipped with a centrally mounted hollow-cone injector and a non-axisymmetric piston bowl. First, injection and mixture preparation have been studied considering an early injection at the beginning of the compression stroke, and a delayed injection in the second half of the compression
Capecci, MarcolucioSforza, LorenzoLucchini, TommasoD'Errico, GianlucaPezza, VincenzoTosi, Sergio
Internal combustion engines (ICEs) remain widely used in automotive transportation for their high energy storage system efficiency and economic benefits. The 4-stroke engine has dominated all other forms to date, because the Otto cycle is relatively simple to understand. However, the significant benefits such as less pumping work and friction, lighter construction of 2-stroke engine, are attractive for applications that prioritize the simplicity and power density as well as meet the emission regulations. The disadvantages of the 2-stroke engine are mainly caused by the lack of sufficient scavenging process. Also, the overlap of the intake and exhaust phases results in charge short-circuiting, more fuel consumption and high unburned hydrocarbon emissions. For these reasons, it is difficult for 2-stroke engines to achieve stoichiometric combustion, making them incompatible with three-way catalyst to control emissions. The residual exhaust gas in the cylinder makes the spark ignition
Liu, JinruYamazaki, YoshiakiOtaki, YusukeKato, HayatoYokota, TakumiIijima, Akira
This study aims to develop an engine torque prediction model using virtual engine simulation data. Accurate torque prediction is essential for minimizing shift shock and ensuring consistent driving performance, particularly in hybrid vehicles where smooth transitions between electric motors and internal combustion engines are necessary. The Engine Control Unit (ECU) uses a physics-based torque prediction model, requiring ignition timing swing data for precise calibration. The virtual engine model, based on 1D gas dynamics, was calibrated using real engine data obtained from a small number of main operating points. The simulation data obtained from the virtual engine model showed a good correlation with the experimental data. By combining large-scale simulation data with limited experimental data, we effectively calibrated the torque prediction model in ECU and confirmed that the calibration results met the development goals. This study demonstrates the potential for efficient engine
Hur, DonghanPaeng, JeonghwanKim, KyusupChang, JinseokPark, Jongil
Ammonia (NH3) is an emerging carbon-free fuel with the potential to decarbonize the energy sector. However, its widespread adoption is hindered by challenges like low flame speed, high ignition energy, elevated emissions of nitrogen oxides (NOx), and unburned NH3. These limitations necessitate innovative combustion strategies for efficient and stable engine operation. This study investigates the potential of turbulent jet ignition (TJI) to overcome these challenges through the implementation of a pre-chamber, a small auxiliary chamber equipped with a spark plug to create hot, reactive jets that propagate into the main chamber, promoting rapid combustion from distributed ignition sites. In this work, TJI operation is compared to conventional spark ignition (SI) in a diesel engine platform retrofitted for 100% ammonia operation. Experiments were conducted at 1200 and 1800 RPM across varying loads (25%, 50%, 75%, and 100%) with equivalence ratio and spark timing sweeps. Combustion
Dhotre, AkashVoris, AlexOkey, NathanKane, SeamusNorthrop, William
Replacing fossil fuels with renewable ammonia could provide a crucial step towards the decarbonisation of transport sectors. However, many challenges remain in utilising ammonia within combustion systems: the volumetric energy density of ammonia is significantly lower than that of gasoline, exposure to ammonia (including ammonia slip) can be detrimental to human health, and the production of emissions, including unregulated emissions (such as N2O), from ammonia combustion can be catastrophic for the environment if not treated appropriately. Therefore, there is a need to determine the efficacy of ammonia as a fuel for internal combustion engines and the impact on the efficiency of energy release and the resulting exhaust emissions. A modern spark ignition engine was modified such that ammonia was aspirated through the engine intake air to incrementally displace engine gasoline and maintain a constant work output. It was found that displacing the fuel energy supplied by direct injected
Sivaranjitham, Annaniya MitchellHellier, PaulLadommatos, NicosMillington, PaulAlcove Clave, Silvia
Hydrogen is a promising fuel for internal combustion engines, offering the potential for efficient, environmentally friendly, and reliable operation. With a large number of technical challenges, there is currently no mass production of hydrogen-powered engines despite great efforts. One of the key challenges is the complexity of optimizing hydrogen combustion and its control. Despite the variety of proposed operation strategies, questions regarding their comparative efficiency, interrelation, and mutual influence remain open, particularly in turbocharged engines with direct multi-injection. To explore various hydrogen operation strategies, a mathematical simulation of a turbocharged hydrogen-powered engine was performed over its full range of loads and speeds. This study employed a modified mathematical model based on Wiebe functions, which describes the combustion of a premixed mixture in the flame front, diffusion combustion, and relatively slow combustion occurring behind the flame
Osetrov, OleksandrHaas, Rainer
To deal with the emission regulations it is necessary to produce ECU control maps that maintain balance of emissions of HC, NOX, CO, engine power output and fuel consumption during the motorcycle development. We have recently introduced the Model-Based Calibration (hereafter as MBC) for calibration of ECU control maps for small motorcycles, which share a big chunk of the market. When introducing we aimed at such a method that can simulate stable temperature conditions necessary for the measurement in order to make it applicable to air-cooled engines predominantly used in small motorcycles. To decrease performance difference between the prototype and the mass-production, the newly developed method allows rewriting of control parameters such as the ignition timing using the mass-production ECU. The fully automated data acquisition along with the application of MBC permits continuous test operations even in nighttime and on holidays. Moreover, the MBC flow was made such a manner that
Fujiwara, HirofumiMaruyama, AtsushiKasai, Yoshiyuki
Flex fuel vehicles (FFV) can operate effectively from E5 (Gasoline 95%, ethanol 5%) fuel to E100 (Gasoline 0%, ethanol 100%) fuel. It is necessary to meet the performance, drivability, emission targets and regulatory requirements irrespective of fuel mixture combination. This research work focuses on optimizing the combustion efficiency and conversion efficiency of catalytic converter of a spark-ignited less than 200 cc engine for FFV using Taguchi methods robust optimization technique. The study employs an eight-step robust optimization approach to simultaneously minimize engine out emissions and maximize catalytic converter efficiency. Six control factors including type of fuel, catalyst heating rpm, lambda (excess-air ratio), injection end angle, lambda controller delay, and ignition timing are optimized. Four noise factors like compression ratio, clearance volume, catalyst noble metal loading, and catalyst aging are also considered. Through approximately 100 physical experiments on
Vaidyanathan, BalajiArunkumar, PraveenkumarShunmugasundaram, PalaniMurugesan, ManickamJayajothijohnson, Vedhanayagam
The use of small 2-stroke crankcase scavenged engines running on hydrogen is very attractive for low power rates, when low cost and compact dimensions are the fundamental design constraints. However, achieving optimal performance with hydrogen fuel presents challenges, including uneven air-fuel mixtures, fuel losses, and crankcase backfiring. This research focuses on a small 50cc 2-stroke loop-scavenged engine equipped with a patented Low-Pressure Direct Injection (LPDI) system, modified for hydrogen use. Experimental results demonstrate performance comparable to the gasoline counterpart, but further optimizations are needed. Consequently, CFD-3D simulations are employed to analyses the injection process and guide engine development. The numerical analysis focuses on a fixed operating condition: 6000 rpm, Wide Open Throttle (WOT), with a slightly lean mixture and injection pressure fixed at 5 bar. A numerical model of the entire engine is set up with the primary objective of improving
Caprioli, StefanoSchoegl, OliverOswald, RolandKirchberger, RolandMattarelli, EnricoRinaldini, Carlo Alberto
It is widely known that with decreasing oil reserves on a global scale there is a need for alternative energy sources. Therefore, the introduction of various alternative fuels is of utmost importance. One way of producing alternative fuels is the Thermo-catalytic Reforming (TCR) process which was developed by the Fraunhofer-Institute for Environmental, Safety and Energy Technology (UMSICHT). For an application in conventional diesel engines, however, it is important to investigate the spray behavior of such TCR Diesel fuels in comparison to conventional Diesel fuels under engine-like operating conditions. Two different batches of TCR Diesel were compared with conventional Diesel fuels. The results show batch-dependent significant differences in the penetration length of liquid and vapor as well as in the spray area, which gives clear indications of altered mixture formation quality. Furthermore, ignition timing and ignition location were evaluated for reactive conditions using OH
Seeger, JanTaschek, MarcoApfelbacher, AndreasStrauß, LukasRieß, SebastianWensing, Michael
This study offers an overview of the impact of lean burn technology in two-wheeler vehicles, specifically concentrating on enhancing the fuel economy and addressing the challenges associated with its adoption. Lean burn systems, characterized by a fuel-air mixture with a higher air content than stoichiometric ratio. The study focuses on technology which meets stringent emission standards while enabling the optimization of fuel efficiency. The lean burn system employs strategies to optimize air-fuel ratio using electronic fuel injection, ignition timing control, and advanced engine control algorithms like - updated torque modulation control algorithm for drivability, lambda control algorithm for rich and lean switch and NOx modelling algorithm for LNT catalyst efficiency tracking. The challenges related to lean burn systems, includes issues related to combustion stability, nitrogen oxide (NOx) emissions, and their impact on drivability, is summarized in the study. Mitigation strategies
Somasundaram, KarthikeyanSivaji, PurushothamanJohn Derin, CVishal, KarwaManoj Kumar, SMaynal, Rajesh
This study investigated the performance characteristics of a two-stroke opposed piston engine that is capable of constantly operating with high power output and high efficiency. An investigation was also made of the performance obtained by applying a pseudo uniflow condition as a measure against large hydrocarbon (HC) emissions owing to blow-by of unburned mixture, which is an issue of two-stroke engines. The test engine had a displacement of 127 cm3 and a bore and stroke of 48 x 70 mm. One-point and dual-point ignition systems were used, and regular gasoline was supplied as the test fuel using a carburetor-based fueling system. Experiments were conducted at engine speeds of 1500 and 3000 rpm at ignition timings of 45 deg. and 35 deg. before top dead center. The results showed that large quantities of HC emissions were emitted because stable combustion was not achieved. This revealed that a stronger uniflow condition must be applied as a countermeasure rather than a simple pseudo
Fukushima, ShumpeiUehara, RyotaHayashi, YoshiakiIgarashi, RyoTokita, KazuhoIijima, Akira
In cogeneration system, the pre-chamber natural gas engine adopts combustion technologies such as ultra-high supercharged lean burn and Miller cycle to increase the theoretical efficiency by increasing the specific heat ratio and the mechanical efficiency by improving the specific power. In recent years, the use of hydrogen fuel has been attracting attention in order to achieve carbon neutrality, and it is required to operate existing high-efficiency natural gas engines by appropriately mixing hydrogen. For this purpose, it is important to have natural gas and hydrogen co-combustion technology that allows combustion at any mixture ratio without major modifications. The authors mixed hydrogen into the fuel of an ultra-high supercharged lean burn pre-chamber natural gas engine (Bore size: 200mm) that has already achieved high efficiency and performed combustion experiments at BMEP (Brake mean effective pressure) of 2 MPa or more. The engine load and hydrogen mixture ratio were used as
Morikawa, KojiKimura, ShinSakai, ShunyaMoriyoshi, Yasuo
In order to reduce the environmental impact of transportation, the adoption of low and zero carbon fuel is needed to reduce the greenhouse gas emissions from engines, both from tailpipe and well-to-wheel perspectives. However, for some of the promising fuels, such as renewable natural gas and ammonia, the relatively low chemical reactivity and laminar flame speed bring challenge to a rapid and efficient combustion process, especially under lean or diluted conditions to suppress NOx emissions, leading to reduced combustion and thermal efficiencies. To tackle the challenge, high in-cylinder flow speed is needed to shorten the combustion duration, together with strong ignition sources to support the initial flame kernel development. In this paper, an ignition energy modulation system is developed to enhance both discharge current and discharge energy of a spark event to secure the ignition process. Moreover, a rapid compression machine is employed to compress the fuel-air mixture to the
Jin, LongYu, XiaoZhou, QingReader, GrahamLi, LiguangZheng, Ming
Hydrogen is a viable option to power high-performance internal combustion engines while reducing pollutant emissions thanks to its high lower heating value (LHV) and fast combustion rate. Furthermore, if compared to gasoline, hydrogen is characterized by a higher ignition delay time, which makes it more knock-resistant under the same thermodynamic conditions. In this paper, hydrogen potential as a fuel in a high-performance PFI naturally aspirated engine under stoichiometric conditions and high load regimes is investigated through zero and three-dimensional simulations. The analyses show that a stoichiometric hydrogen mixture reaches higher pressure and temperature values during compression than iso-octane at the same operating conditions, hence limiting the maximum engine compression ratio to avoid undesired ignitions throughout the combustion process. Additionally, hydrogen low density causes a reduction in terms of trapped energy inside the cylinder. Thus, despite its LHV is almost
Madia, ManuelVaccari, MarcoDalseno, LucaCicalese, GiuseppeCorrigan, DaireVilla, DavideFontanesi, StefanoBreda, Sebastiano
In our laboratory, the focusing compression principle has been proposed, which is based on pulsed multi-jets of gas colliding around the chamber center. This aims to reduce the cooling loss on the chamber wall and the exhaust loss and improve the thermal efficiency. Our past studies focused on gasoline combustion experiments using the engine with the principle and suggested that the engine had the potential to achieve high thermal efficiency and knock resistance. Considering these past results and the growing interest in carbon-free fuels for net zero, in this paper, fundamental experimental evaluations of hydrogen combustion were principally conducted using the same engine with the focusing compression principle. The air was injected toward the chamber center from seven intake nozzles, while hydrogen gas was supplied from one intake nozzle, respectively. Hydrogen was injected with a relatively low pressure of 50 kPaG. This means that an injector with high injection pressure was not
Yamada, SotaNaitoh, KenBaba, ShotaroUkegawa, HirakuNishizawa, TomohikoYatabe, Atsuhiro
It is common practice in the automotive industry to explore the knock limits of fuels on an engine by a comparison of the knock limited spark advance (KLSA) at threshold knock intensity. However, the knock propensity of gasolines can be rated by changing one of three metrics on a variable compression ratio Cooperative Fuels Research (CFR) octane rating engine while holding the other two variables constant: knock intensity, spark timing, and critical compression ratio. The operational differences between the standard research octane number (RON) rating and modern engine operation have been explored in three parts. The first part focused on the effects of lambda and knock characterization. The second part studied the effects of spark timing. This third part explores the knock ratings of several gasolines by comparing the critical compression ratios at constant combustion phasing and knock intensity. The threshold knock intensity was based on the standard octane rating D1 pickup or by
Kolodziej, ChristopherHoth, Alexander
Achieving stable HCCI combustion requires specific in-cylinder boundary conditions. Trace residual species, such as nitric oxide (NO), can have an impact on the reactivity, and thus the combustion stability, of different fuels in HCCI. This study investigates the effects of nitric oxide (NO) on the reactivity and combustion stability of ethanol and gasoline in a single-cylinder HCCI engine. The promoting and inhibiting impact of NO on iso-octane’s ignition delay time are available in the literature; nevertheless, as a baseline study, these effects on the autoignition of gasoline were documented in this work. For ethanol, the NOx concentration seeded in the intake air varied from 0-1000 ppm while maintaining a constant combustion phasing (CA50 at 7.5 CAD) and a global equivalence ratio of 0.34. Ethanol exhibited a linear reduction in intake temperature, decreasing by 47 K with 927 ppm NO. For gasoline, a 225-ppm increase in NO reduced the intake temperature required for HCCI by 40 K
Bhatt, AnkurGandolfo, JohnVedpathak, KunalLawler, BenjaminGainey, Brian
Low-carbon alternatives to diesel are needed to reduce the carbon intensity of the transport, agriculture, and off-grid power generation sectors, where compression ignition (CI) engines are commonly used. Acid-catalysed alcoholysis produces a potentially tailorable low-carbon advanced biofuel blend comprised of mixtures of an alkyl levulinate, a dialkyl ether, and the starting alcohol. In this study, model mixtures based on products expected from the use of n-butanol (butyl-based blends) as a starting alcohol, were blended with diesel and tested in a Yanmar L100V single-cylinder CI engine. Blends were formulated to meet the flash point, density, and kinematic viscosity limits of fuel standards for diesel, the 2022 version of BS 2869 (off-road). No changes to the engine set-up were made, hence testing the biofuel blends for their potential as “drop-in” fuels. Changes in engine performance and emissions were determined for a range of diesel/biofuel blends and compared to a pure diesel
Wiseman, ScottLi, HuTomlin, Alison S.
Ammonia is a carbon-free fuel alternative for the internal combustion engine decarbonization. However, its toxicity and less advantageous combustion characteristics including higher nitrogen-based engine-out emissions have delayed its use in power generation applications. Therefore, the use of a secondary and also carbon-free fuel such as hydrogen was proposed in the literature as a solution to promote and improve ammonia combustion while minimizing any modifications in engine parameters and control strategy that may be required when compared to using conventional hydrocarbon-based fuels. In addition, the higher resistance to autoignition of ammonia can allow operation at higher compression ratios in spark ignition applications, therefore increasing the thermal efficiency. The study presented here used a single-cylinder heavy-duty research engine converted to spark ignition operation to investigate medium load engine operation with ammonia-hydrogen blends in which hydrogen represented
Alvarez, LuisSaenz Prado, StefanyTrujillo Grisales, JuanDumitrescu, Cosmin
To advance the application of zero-carbon ammonia fuel, this paper presents an experimental investigation on the potential of ammonia substitution using a 2.0L ammonia-hydrogen engine, where ammonia is injected into the intake port and hydrogen is directly injected into the cylinder. The study examines the effects of ammonia substitution rate under various load conditions on engine combustion and emission performance. Results indicate that the maximum ammonia energy substitution rate reached 98%, and within the stable combustion boundary, the mass fraction of unburned ammonia was less than 3%. The ammonia energy substitution ratio increased with load, and ammonia addition significantly suppressed pre-ignition and knocking. As ammonia content increased, ignition timing advanced, combustion duration extended, ignition delay prolonged, COV increased, peak cylinder pressure, and pressure rise rate decreased, with a corresponding decrease in peak heat release rate. Compared to a pure
Wu, WeilongXie, FangxiChen, HongDu, JiakunLi, Yong
In the context of low-carbon and zero-carbon development strategies, the transformation and upgrading of the energy structure is an inevitable trend. As a renewable fuel, ammonia has a high energy density. When ammonia is burned alone, the combustion speed is slow. The emissions of nitrogen oxides and unburned ammonia is high. Therefore, a suitable high-reactivity combustion aid fuel is required to improve the combustion characteristics of ammonia. Based on this background, this study converted a six-cylinder engine into a single-cylinder ammonia/diesel dual-fuel system, with diesel fuel as the base and a certain percentage of ammonia blended in. The impact of varying the injection pressure and equivalence ratio on engine combustion and emissions was examined. The results demonstrate that an appropriate increase in injection pressure can promote fuel-gas mixing and increase the indicated thermal efficiency (ITE). With regard to emissions, an increase in injection pressure has been
Wang, HuLv, ZhijieZhang, ShouzhenWang, MingdaYang, RuiYao, Mingfa
A comprehensive experimental study of hydrogen–diesel dual-fuel and hydrogen-hydrotreated vegetable oil (HVO) dual-fuel operations was conducted in a single-cylinder diesel engine (bore 85.0 mm, stroke 96.9 mm, and compression ratio 14.3) equipped with a common rail fuel injection system and a supercharger. The hydrogen flow rate was manipulated by varying the hydrogen excess air ratio from 2.5 to 4.0 in 0.5 increments. Hydrogen was introduced into the intake pipe using a gas injector. Diesel fuel and HVO were injected as pilot fuels at a fixed injection pressure of 80 MPa. The quantity of pilot fuel was set to 3, 6, and 13 mm3/cycle. The intake and exhaust pressures were set in the range of 100–220 kPa in 20 kPa increments. The engine was operated at a constant speed of 1,800 rpm under all conditions. The pilot injection timing was varied such that the ignition timing was constant at the TDC under all conditions. The results demonstrated that smoke was lower when HVO was used as the
Mukhtar, Ghazian AminTange, KotaNakatani, SatoshiHoribe, NaotoKawanabe, HiroshiMorita, GinHiraoka, KenjiKoda, Kazuyuki
Modern automotive powertrains are operated using many control devices under a wide range of environmental conditions. The exhaust temperature must be controlled within a specific range to ensure low exhaust-gas emissions and engine-component protection. In this regard, physics-based exhaust-temperature prediction models are advantageous compared with the conventional exhaust-temperature map-based model developed using engine dyno testing results. This is because physics-based models can predict exhaust-temperature behavior in conditions not measured for calibration. However, increasing the computational load to illustrate all physical phenomena in the engine air path, including combustion in the cylinder, may not fully leverage the advantages of physical models for the performance of electric control units (ECUs). This study proposes an onboard physics-based exhaust-temperature prediction model for a mass-produced engine to protect the engine exhaust system and reduce exhaust emissions
Yamaguchi, SeiyaTomita, MasayukiUrakawa, ShinjiOokubo, Seiichi
For realizing a super-leanburn SI engine with a very-high compression ratio, it is necessary to design a new fuel which could have low ignitability at a low temperature for antiknocking, but high ignitability at a high temperature for some contribution to stable combustion. C2H6 has a very-long ignition delay time at a low temperature, close to that of CH4, but a short ignition delay time at a high temperature, close to that of gasoline. C2H6 also has a laminar burning velocity about 1.2 times higher than that of gasoline. C2H6 addition to gasoline could be a good example of fuel design to improve both combustion stability and antiknocking property. In the present study, the antiknocking effect of adding CH4, C2H6, or C3H8 with the RON of 120, 115, or 112, respectively, to a regular-gasoline surrogate fuel with the RON of 90.8 has been investigated in an SI engine with a stoichiometric mixture. With the energy fraction of the gaseous fuel of less than 0.35, knocking limit CA50 is
Kuwahara, KazunariShimizu, TaiseiOkada, Atsuki
Engine knocking poses a significant challenge for downsizing and boosting strategies in spark-ignition (SI) engines. In the event of knock, the unburnt fuel-oxidizer mixture auto-ignites after being compressed by the flame front and piston of an SI engine. Conventional knock is influenced by combustion chemistry and physical properties of the fuel. In this work, we present auto-ignition characteristics of primary reference fuel (PRF75), ethanol, 2,5-dimethylfuran, and their blends in Advanced Fuel Ignition Delay Analyzer (AFIDA). Three different pressures, i.e. 10, 15, and 20 atm and four different temperatures, i.e. 450, 500, 550, and 600 0C have been used as initial conditions. A weak negative temperature coefficient (NTC) behavior has been observed for PRF75 ignition in AFIDA in this work. Moreover, for PRF75, the ignition delay times at low temperatures have been observed to show weaker dependence on pressure in comparison to the high temperature cases. For ethanol and 2,5
Bhattacharya, AtmadeepKaario, OssiEraqi, BasemSakleshpur Nagaraja, ShashankSarathy, Mani
Because it can be produced in a green form methanol is envisioned as a potential fuel replacing conventional Diesel fuel to directly reduce greenhouse gases (GHG) impact of maritime transportation. For these reasons, Original Equipment Manufacturers (OEMs) are working to make methanol easier to use in Compression Ignition (CI) engines. While it is an easy to use substance with manageable energy content, methanol has a few drawbacks, such as: high latent heat of vaporization, high auto-ignition temperature. These drawbacks have an impact on the quality of combustion and therefore solutions have to be found and are still being studied to give methanol a Diesel like behavior. One solution is to use a pilot fuel for ignition in quantities that remain high (> 20 %). A previous study carried out at the PRISME laboratory highlighted the possibility of using a Combustion Enhancer based on Nitrates (CEN) at additive levels. Here the CEN impact in methanol is studied through the use of a New One
Samson, RichardMorin, Anne-GaelleFoucher, Fabrice
This SAE Aerospace Standard (AS) covers combustion heaters and accessories used in, but not limited to, the following applications: a Cabin heating (all occupied regions and windshield heating) b Wing and empennage anti-icing c Engine and accessory heating (when heater is installed as part of the aircraft) d Aircraft deicing
AC-9 Aircraft Environmental Systems Committee
In this study, dual fuel combustion process has been investigated numerically and experimentally in a single cylinder research engine. Two engine speeds have been investigated (1500 and 2000 rpm) at fixed BMEP of 5 bar for both engine speeds. For each engine speed two operating points have tested with and without EGR (Exhaust Gas Recirculation). The hydrogen has been injected in the intake manifold in front of the tumble intake port inlet and a small amount of diesel fuel has been introduced directly in the cylinder through two injections strategy: one pilot injection occurring Before Top Dead Center (BTDC) and one main occurring around the Top Dead Center (TDC). The dual-fuel combustion model in GT-SUITE has been used first to calibrate the combustion model by using the Three Pressure Analysis (TPA) model. This step allows the calibration of the combustion model to predict in-cylinder combustion processes. Simulations have been performed at varying mass distribution of injected diesel
Maroteaux, FadilaSEBAI, SalimMancaruso, EzioRossetti, SalvatoreSchembri, PatrickRadja, KatiaBarichella, Arnault
Ammonia, with its significant hydrogen content, offers a practical alternative to pure hydrogen in marine applications and is easier to store due to its higher volumetric energy density. While Ammonia's resistance to auto-ignition makes it suitable for high-compression ratio engines using pre-mixed charge, its low flame speed poses challenges. Innovative combustion strategies, such as dual-fuel and reactivity-controlled compression ignition (RCCI), leverage secondary high-reactivity fuels like diesel to enhance Ammonia combustion. To address the challenges posed by Ammonia's low flame speed, blending with hydrogen or natural gas (NG) in the low reactivity portion of the fuel mixture is an effective approach. For combustion simulation in engines, it is crucial to develop a chemical kinetics mechanism that accommodates all participating fuels: diesel, Ammonia, hydrogen, and NG. This study aims to propose a kinetics mechanism applicable for the combustion of these fuels together. The
Salahi, Mohammad MahdiMahmoudzadeh Andwari, AminKakoee, AlirezaHyvonen, JariGharehghani, AyatMikulski, MaciejLendormy, Éric
Low-temperature heat release (LTHR) is of interest for its potential to help control autoignition in advanced compression ignition (ACI) engines and mitigate knock in spark ignition (SI) engines. Previous studies have identified and investigated LTHR in both ACI and SI engines before the main high-temperature heat release (HTHR) event and, more recently, LTHR in isolation has been demonstrated in SI engines by appropriately curating the in-cylinder thermal state during compression and disabling the spark discharge. Ethanol is an increasingly common component of market fuel blends, owing to its renewable sources. In this work, the effect of adding ethanol to iso-octane (2,2,4-trimethylpentane) blends on their LTHR behavior is demonstrated. Tests were run on a motored single-cylinder engine elevated inlet air temperatures and pressures were adjusted to realize LTHR from blends of iso-octane and ethanol without entering the HTHR regime. The blends were tested with inlet temperatures of 40
White, Samuel PhilipBajwa, Abdullah UmairLeach, Felix
Methanol emerges as a compelling renewable fuel for decarbonizing engine applications due to a mature industry with high production capacity, existing distribution infrastructure, low carbon intensity and favorable cost. Methanol’s high flame speed and high autoignition resistance render it particularly well-suited for spark-ignition (SI) engines. Previous research showed a distinct phenomenon, known deflagration-based knock in methanol combustion, whereby knocking combustion was observed albeit without end-gas autoignition. This work studies the implications of deflagration-based knock on noise emissions by investigating the knock intensity and combustion noise at knock-limited operation of methanol in a single-cylinder direct-injection SI engine operated at both stoichiometric and lean (λ = 2.0) conditions. Results are compared against observations from a premium-grade gasoline. Experiments show that methanol’s end-gas autoignition occurs at lean conditions, leading to the typical
Singh, EshanStrickland, TylerAbboud, RamiMacDonald, JamesLee, SangukLopez Pintor, Dario
Present work investigates the relationship between the combustion parameters of a well-known ECN heavy-duty nozzle called Spray D and marine-size nozzles. The study is carried out in OpenFOAM software within the framework of RANS turbulence modelling, using a flamelet based tabulation technique known as FGM to model the combustion. The large nozzles are tested in a constant volume chamber representative of marine engines, for which a CFD setup is validated against inert data in literature. The reacting results have been validated first with experimental data, initializing the domain with a highly reactive environment (23% oxygen) and engine-like swirl. Then, a less reactive initial condition was set up in the domain (15% oxygen) without swirl, to achieve a Spray D-like environment. The main goal is to study the variation of the combustion parameters Ignition Delay Time (IDT) and Lift-Off Length (LOL) as function of nozzle diameter, leading to a mathematical correlation to estimate the
Di Matteo, AndreaSomers, Bart
Substantial effort has been devoted to utilizing homogeneous charge compression ignition (HCCI) to improve thermal efficiency and reduce emission pollutants in internal combustion engines. However, the uncertainty of ignition timing and limited operational range restrict further adoption for the industry. Using the spark-assisted compression ignition (SACI) technique has the advantage of using a spark event to control the combustion process. This study employs a rapid compression machine to characterize the ignition and combustion process of Dimethyl ether (DME) under engine-like background temperature and pressures and combustion regimes, including HCCI, SACI, and knocking onsite. The spark ignition timing was swept to ignite the mixture under various thermodynamic conditions. This investigation demonstrates the presence of four distinct combustion regimes, including detonation, strong end-gas autoignition, mild end-gas autoignition, and HCCI. The observation indicates that HCCI
Jin, LongYu, XiaoWang, MeipingReader, GrahamZheng, Ming
Alternative fuels, such as natural and bio-gas, are attractive options for reducing greenhouse gas emissions from combustion engines. However, the naturally occurring variation in gas composition poses a challenge and may significantly impact engine performance. The gas composition affects fundamental fuel properties such as flame propagation speed and heat release rate. Deviations from the gas composition for which the engine was calibrated result in changes in the combustion phase, reducing engine efficiency and increasing fuel consumption and emissions. However, the efficiency loss can be limited by estimating the combustion phase and adapting the spark timing, which could be implemented favorably using a closed-loop control approach. In this paper, we evaluate the efficiency loss resulting from varying gas compositions and the benefits of using a closed-loop controller to adapt the spark timing to retain the nominal combustion phase. We use a 13-liter natural gas-fueled heavy-duty
Björnsson, OlaTunestal, Per
As global regulations on automotive tailpipe emissions become increasingly stringent, developing precise tailpipe emissions models has garnered significant attention to fulfill onboard monitoring requirements without some drawbacks associated with traditional sensor-based systems. Within the European Union, there is consideration of mandating real-time measurement of emission constituents to enable driver warnings in cases where constituent standards are exceeded. Presently, available technology renders this approach cost-prohibitive and technologically challenging, with most sensor suppliers either unable to meet the demand or unwilling to justify the development costs associated with sensor commercialization. Efforts to circumvent the sensor-based approach through first principle models, incorporating thermokinetics, have proven to be both computationally expensive and lacking in accuracy during transient operations. We propose a data-driven solution based on DL (deep learning) to
Hashemi, AshtonSchlingmann, Dean
Ammonia shows promise as an alternative fuel for internal combustion engines (ICEs) in reducing CO2 emissions due to its carbon-free nature and well-established infrastructure. However, certain drawbacks, such as the high ignition energy, the narrow flammability range, and the extremely low laminar flame speed, limit its widespread application. The dual fuel (DF) mode is an appealing approach to enhance ammonia combustion. The combustion characteristics of ammonia-diesel dual fuel mode and ammonia-PODE3 dual fuel mode were experimentally studied using a full-view optical engine and the high-speed photography method. The ammonia energy ratio (ERa) was varied from 40% to 60%, and the main injection energy ratio (ERInj1) and the main injection time (SOI1) were also varied in ammonia-PODE3 mode. The findings demonstrate that ammonia-PODE3 mode exhibits better ignition characteristics than ammonia-diesel mode, resulting in an earlier ignition start, a larger flame area, a larger flame
Mao, JianshuZhang, YixiaoMa, YueMa, XiaoWang, ZhiWang, ZhenqianShuai, Shijin
Items per page:
1 – 50 of 1044