Browse Topic: Ignition timing
This SAE Aerospace Standard (AS) covers combustion heaters and accessories used in, but not limited to, the following applications: a Cabin heating (all occupied regions and windshield heating) b Wing and empennage anti-icing c Engine and accessory heating (when heater is installed as part of the aircraft) d Aircraft deicing
Argon power cycle hydrogen engine is an internal combustion engine that employs argon instead of nitrogen of air as the working fluid, oxygen as the oxidizer, and hydrogen as the fuel. Since argon has a higher specific heat ratio than air, argon power cycle hydrogen engines have theoretically higher indicated thermal efficiencies according to the Otto cycle efficiency formula. However, argon makes the end mixture more susceptible to spontaneous combustion and thus is accompanied by a stronger knock at a lower compression ratio, thus limiting the improvement of thermal efficiency in engine operation. In order to suppress the limitation of knock on the thermal efficiency, this paper adopts a combination of experimental and simulation methods to investigate the effects of port water injection on the knock suppression and combustion characteristics of an argon power cycle hydrogen engine. The results show that the port water injection can effectively reduce the knock intensity of the argon
A high-accuracy knocking or end-gas autoignition prediction model with low computational loads is necessary to develop thermal-efficiency improvement technologies for SI engines efficiently using computational techniques. Livengood-Wu integral has been applied widely as a simple and practical model to predict in-cylinder autoignition timing. In the present study, a high-accuracy model based on Livengood-Wu integral, has been investigated. First, a small set of ignition delay time equations for a premium-gasoline surrogate fuel has been developed, which can reproduce the temperature-, pressure-, equivalence ratio-, and EGR-dependences of ignition delay time under constant-volume condition, produced using a detailed reaction mechanism. Then, Livengood-Wu integral using the ignition delay time equations has been applied to predict in-cylinder autoignition timing produced using the detailed reaction mechanism. Numerical analyses have found X of Livengood-Wu integral and error factors in
Engine cold start is characterized by sub-optimal combustion efficiency due to the low temperature of the combustion chamber; this heavily increases engine raw emissions at start. One driving phenomenon is a limited fuel evaporation rate. Consequently, a liquid fuel film remains on the piston top at ignition. Liquid fuel deposited on the piston top is a well-known cause of “pool-fire”, leading to high levels of particle emissions; a problem particularly noticeable with bio-based renewable fuels. Engine piston pre-heating can be deployed to prevent or limit the formation of such fuel film and associated pollutants. In this work a practical technique is proposed to effectively pre-heat the pistons immediately before engine cold start. The device consists of a pressurized-heated oil buffer which pre-heats the pistons via the existing piston cooling nozzles. The device provides further benefits in emissions and fuel consumption in two ways: 1) the warm oil pre-lubricates the engine working
Items per page:
50
1 – 50 of 993