Browse Topic: Fluid power systems

Items (3,725)
This SAE Aerospace Recommended Practice (ARP) provides a procedure for obtaining filter patch test samples from the following types of aerospace non-rotating hydraulic equipment: Mechanical/Hydraulic Units Electro/Hydraulic Units Pneumatic/Hydraulic Units
A-6C1 Fluids and Contamination Control Committee
This standard provides the following: a The required surface finish criteria for the designed function of the parts b The definition of surface imperfections and defects that affect surface quality c The categories by location for each geometry for the permissible type, size and quantity of defects It also establishes the quantitative levels of acceptance by providing defined limits and inspection guidance for the acceptance or rejection of production parts This specification is applicable but not limited to, the surface quality of: T-Seals L-Rings Capped T Rings Capped L Rings Cammed Type Seals Cruciform Shaped Elastomers Pyramid (Dyna-Bak) Seals Square Ring Seals Quadruple Lobed Seals U-Cups Spring Energized U-Cups Molded in Place Metal Gasket Seals
A-6C2 Seals Committee
To develop a Test Method & Procedure for validating the Tractor clutch system performance & Wear simulation endurance test. Tractor clutch wear simulation test conducted along with transmission by operating clutch in different modes as per RWUP operation. In this test we can validate clutch field failures in short time with improved test accuracy at lab. In one of M&M technology project, Transmission Wet clutch system for higher HP tractors where we don’t have any dedicated test rig/methodology for validating Clutch wear & related failure simulation at lab
D, YashwanthRaja, RUdayakumar, SM, JeevaharanVijayakumar, Narayanan
Agricultural operations in hilly, uneven & slopy terrains demands high levels of operator focus, effort and skill. However, todays farming ecosystem across the globe is affected by 2 major scenarios: the aging workforce in the agricultural sector and the ever-growing problem of distraction due to mobile device and social media use. These issues compromise safety during operations such as start stop maneuvers, parking on slopes, and maneuvering in confined & narrow areas. Stringent emission norms are also being mandated across developed and developing countries as a measure to reduce Global Greenhouse house gas emissions. These measures are indeed necessary for sustainability but has increased overall tractor purchase and operating costs without improving safety & operator comfort. There has been a trend seen around the world in terms of poor sales post Emission implementation. Registration of Older tractors without these stringent emission norms were also witnessed in Developed
M, RojerT, GanesanP, VelusamyNatarajan, SaravananV, Mathankumartripathi, ShankarNarni, KiranHaldorai, RajanDevakumar, Kiran
The Container trailers are used worldwide to transport goods & materials especially e-commerce applications with valuable materials. These container trailers are presently locked with a mechanical locking system and often broken and unlocked by unauthorized people. During transportation time, the driver stops the vehicle for natural calls, food or any other breakdown, the attempt is made to steal the materials. Many cases were known only after damages are done. It has become a serious issue nowadays in the transportation industry. To avoid these problems, we have designed and developed a system that operates pneumatically with digital locking control. The system is designed to ensure proper safety by rigid mechanical locking. It is actuated by a pneumatic system consisting of Directional control valve & pneumatic cylinders. The lock and unlock inputs are given through digitally and the digital controller provides the appropriate input to solenoid operated direction control valve. Based
kumaran, Rajasekar
In driving, steering serves as the input mechanism to control the vehicle's direction. The driver adjusts the steering input to guide the vehicle along the desired path. During manoeuvres such as parking or U-turns, the steering wheel is often turned fully from lock to lock and then released. It is expected that the steering wheel quickly returns to its original position. Steering returnability is defined as the ratio of the difference between the steering wheel position at lock to lock and the steering wheel angle after 3 seconds of release, to the steering wheel angle at the lock position, under steady-state cornering conditions at 10 km/h. Industry standards dictate that the steering system should achieve 75% returnability under these conditions within 3 seconds. Achieving proper steering returnability characteristics is a critical aspect of vehicle design. Vehicles equipped with Electric Power-Assisted Steering (EPS) systems can more easily meet returnability targets since the
Singh, Ram Krishnanahire, ManojJAIN, PRIYAVellandi, VikramanSUNDARAM, RAGHUPATHIPaua, Ketan
The high-pressure steering hose in a hydraulic steering system carries pressurized hydraulic fluid from the power steering pump to the steering gear (or steering rack). Its main function is to transmit the force generated by the pump so that the hydraulic pressure assists the driver in turning the wheels more easily. The high-pressure hydraulic pipeline in the power steering system is a vital component for ensuring optimal performance. During warranty analysis, leakage incidents were observed at the customer end within the warranty period. The primary factors contributing to these failures include pipe material thickness, material composition, mechanical properties, and engine-induced vibrations. This study investigates fatigue-related failures through detailed material characterization and Computer-Aided Engineering (CAE) based on real world usage road load data collected. The objective is to identify the root causes by examining the influence of varying pipe thickness on fatigue life
Survade, LalitKoulage, Dasharath BaliramBiswas, Kaushik
The following list consists of hose data provided as of December 2025 and is for convenience in determining acceptability of nonmetallic flexible hose assemblies intended for usage under 46 CFR Part 56.60-25. Where the maximum allowable working pressure (MAWP) or type of fitting is not specified, use the manufacturer’s recommended MAWP or type of fitting. This list has been compiled by SAE staff from information provided by the manufacturers whose product listings appear in this document. Manufacturers wishing to list their products in this document shall: a Successfully test their hose to the requirements of SAE J1942, Table 1. b Submit a letter of certification to the SAE J1942 test requirements for each specific type of hose tested (see sample table, Table 1) along with the test results. All sizes should be included in the same letter, which must also include all of the information necessary to make an SAE J1942-1 listing. c SAE will review the letter and may, at their discretion
Hydraulic Hose and Hose Fittings Committee
Aiming at the common health performance influencing factors of the aircraft’s main landing gear retracting hydraulic system, based on its hydraulic structure, the landing gear retracting control AMESim hydraulic system model is established to carry out the study of the typical faults of the aircraft landing gear retracting hydraulic system, such as injection of the hydraulic pump internal leakage, hydraulic oil contamination, and leakage of the actuator cylinder. The curve diagrams of the simulation results are analyzed, and the conclusions of the influence of typical faults on the boundary conditions on the pressure and flow of the hydraulic system are drawn. The results of the simulation are analyzed, and the effect of typical fault boundary conditions on the pressure and flow of the hydraulic system is concluded, which provides a reference for the study of parameter optimization, fault analysis, and health management of the landing gear in engineering applications.
Yu, YahuiCui, Wenhao
Komatsu has launched a new excavator, the PC220LCi-12, that features its latest intelligent machine control technology. IMC 3.0 incorporates automation enhancements and a reported “construction-industry first” technology - factory-integrated 3D boundary control - designed to boost operator productivity. The intelligent machine, displayed previously at Bauma 2025 in Munich, Germany, has many of the same features as the new PC220LC-12 excavator, including a cab that is 28% larger, with 30% more legroom and 50% improved visibility compared to the PC210LC-11 model. Other advantages the new machines offer are up to a 20% increase in fuel efficiency thanks to a new electrohydraulic system and 129-kW (173-hp) next-generation engine, and up to a 20% reduction in maintenance costs due to longer replacement intervals for hydraulic oil and oil filters and longer cleaning intervals for the particulate filter.
Gehm, Ryan
Custom electrohydraulic solutions can address unique demands not satisfied by standard components. As mobile equipment is pushed to perform in increasingly demanding and challenging environments - ranging from frozen construction sites to harsh marine applications - some OEMs are discovering that customized solutions can provide significant advantages. Standard electronic controls and hydraulic components are carefully engineered to meet the requirements of a broad range of typical applications. For many OEMs, these components provide a dependable and cost-effective foundation, especially in environments and duties that don't push operational boundaries.
Cooper, Robin
This AIR provides information about the specific requirements for missile hydraulic pumps and their associated power sources.
A-6C4 Power Sources Committee
The knuckle boom loader machine experiences a significant issue where rapidly retracting the joystick to the neutral (0) position causes the machine’s legs to lift momentarily. This unintended momentarily lifting occurs when the joystick is moved back quickly, while gradual movements do not trigger this effect. Addressing this problem is crucial for operational efficiency. The primary objective of this project is to develop a machine learning model to predict jerk based on joystick movements. This prediction will aid in creating a model predictive controller (MPC) that suggests optimal joystick positions, thereby reducing unintended lifting. To simulate the knuckle boom loader’s response to joystick inputs, a high-fidelity Simulink model developed using Simscape Multibody was utilized. Data were collected through a Design of Experiments (DOE), logging key parameters such as head side pressure, jerk, jerk rate, and lift levels across various joystick positions. The input features for
Kamaraj, Keerthi VallarasuBayyavarapu, ChanduGotmare, AkashPandey, Prashant
A futuristic vehicle chassis rendered in precise detail using state-of-the-art CAD software like Blender, Autodesk Alias. The chassis itself is sleek, low-slung, and aerodynamic, constructed from advanced materials such as high-strength alloys or carbon-fibre composites. Its polished, brushed-metal finish not only exudes performance but also emphasizes the refined form and engineered details. Underneath this visually captivating structure, a sophisticated system of self-hydraulic jacks is seamlessly integrated. These jacks are situated adjacent to the four shock absorber mounts. These jacks are designed to lift the chassis specifically at the tyre areas, and the total vehicle, ensuring that underbody maintenance is efficient and that, in critical situations, vital adjustments or emergency lifts can be performed quickly and safely. The design also incorporates an intuitive control system where the necessary buttons are strategically placed to optimize driver convenience. Whether
Gogula, Venkateswarlu
This paper presents an analysis methodology developed to comprehend the impact of pressure spikes in off-highway applications, particularly during PTO (Power Take-Off) clutch engagement. These pressure spikes can adversely affect hydraulic subsystem components such as seals, gaskets, and valve operations. Assessing hydraulic system performance through physical trials can be cumbersome, resulting in longer development times and increased costs. To address this, a methodology was developed in a virtual environment to evaluate hydraulic system performance. The virtual method outlined in this paper is created in a 1D environment using a simulation methodology to replicate the transient behavior of the dynamic system. The hydraulic system primarily includes a relief valve, solenoid valves, a pump, and a clutch. An analytical model was developed for the hydraulic system components with appropriate fidelity to accurately replicate the transient behavior and magnitudes of pressure spikes. This
Memane, NileshKumar, SuneelVeerkar, Vikrant
Agricultural tractors require self-cleaning and cooling technology, especially in hot and dusty environments. This study introduces a novel reversible fan system designed which is incorporating a manually operated lever-type connection mechanism as an alternative to conventional pneumatic systems. Traditional reversible fans often rely on pneumatic actuators for blade rotation control, which can introduce complexity, maintenance challenges, and energy inefficiency. The proposed design replaces pneumatic components with a mechanically optimized lever linkage system, enabling users to manually reverse the fan’s airflow direction with minimal effort. This innovation enhances operational simplicity, reduces dependency on compressed air systems, and low costs as compared to conventional type reversible fan. The lever mechanism, engineered for ergonomic usability, ensures rapid switching between sucker and pusher modes, optimizing the fan’s utility in applications such as dust removal
Debbarma, RespectParwal, MahendraBaghel, Anand
Internal combustion (IC) engines experience several parasitic losses at the vehicle level, including those from cooling fans, hydraulic pumps, air compressors, and alternators. These losses limit the available output power for various applications. By replacing a conventional mechanical or hydraulic fan—typically driven by the engine crankshaft or hydraulic motor—with an electrically operated fan, engine frictional losses (fan drag) can be reduced, resulting in a gain in power. The fuel conserved due to the absence of fan drag contributes to usable power for applications. Mechanical fans operate at a fixed drive ratio that is directly proportional to engine speed, while hydraulic fans rely on a hydraulic motor, drawing power from the engine's alternator. In contrast, electric fans can run at constant speeds, independent of engine RPM, providing higher airflow at maximum torque speeds, which mechanical fans cannot achieve. The cooling performance of the engine remains uncompromised, as
Dewangan, NitinKattula, NitinKamal, Ankit
This specification covers a fluorosilicone (FVMQ) rubber in the form of molded rings.
AMS CE Elastomers Committee
This specification covers an acrylonitrile-butadiene rubber in the form of molded rings, compression seals, O-ring cord, and molded-in-place gaskets for aeronautical and aerospace applications.
AMS CE Elastomers Committee
Automatic unloading vehicles are the most commonly used transportation tools in engineering, with characteristics such as high load capacity, strong adaptability and flexibility. However, the cargo hopper of the automatic unloading vehicle after unloading is prone to many safety hazards due to the driver’s negligence. This paper takes the lead in selecting the type of the dump truck system. On this basis, the mechanical model of the cargo hopper is established. Through the improvement of the hydraulic system and image recognition, combined with speed detection, a set of safety system is designed by using Matlab and Multisim software, and a series of simulations and tests are carried out. The test data are fitted to obtain the final system scheme. It is of great significance for reducing potential safety hazards in practical engineering.
Yu, YitingCong, ShihanLuo, ZheZheng, WenwuLiu, Mingrui
This SAE Aerospace Recommended Practice (ARP) covers procedures or methods to be used for fabricating, handling, testing, and installation of oxygen lines in an aircraft oxygen system.
A-10 Aircraft Oxygen Equipment Committee
This SAE Aerospace Standard (AS) defines the requirements for heavy-duty polytetrafluoroethylene (PTFE) lined, metallic reinforced, hose assemblies suitable for use in 400 °F, 3000 psi aircraft hydraulic systems. Assemblies are suitable where rapid rate pressure pulsing and torsional/ longitudinal flexing may occur, in addition to normal hydraulic system loads.
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
Pin-on-disk tribometers are used to determine the frictional behaviour and boundary layer dynamics of material pairings. Material pairings are examined under defined conditions in order to reason about the friction behaviour and wear. Pairings for real brake systems with larger pad sizes can be tested on flywheel mass test rigs in order to provide proof of suitability. This is mainly due to a lack of knowledge about the scaling behaviour of friction linings. The Department of Machinery System Design at TU Berlin has combined the classic approach of a pin-on-disk tribometer with a flywheel mass test rig (up to 12.78 kgm2) and thus set up a laboratory brake on which material pairings with different pad shapes and sizes (up to 48 cm2) can be examined. The flywheel mass test rig consists of an adjustable DC-motor that drives a shaft on which variable flywheel masses and brake disks can be installed. The variability allows for different kinetic energies at different friction speeds. The
Heuser, Robert MichaelRosenthal, Tobias RichardWiest, Daniel ChristianMeyer, Henning Jürgen
This ARP provides definitions and background information regarding the physical performance and testing of DDVs. This ARP also provides extensive guidance for the preparation of procurement specifications and functional testing.
A-6B1 Hydraulic Servo Actuation Committee
This SAE Standard specifies uniform methods for the testing of threadless connections for hydraulic fluid power applications. These connections are intended for general application and hydraulic systems on industrial equipment and commercial products. These connections shall be capable of providing leakproof connections in hydraulic systems operating from 95 kPa vacuum to working pressures specified by the manufacturer. Since many factors influence the pressure at which a hydraulic system will or will not perform satisfactorily, it is recommended that sufficient testing be conducted and reviewed by both the user and manufacturer to ensure that required performance levels are met.
Hydraulic Tube Fittings Committee
This SAE Aerospace Standard (AS) defines a series of standardized tube walls to be used for high pressure hydraulic tubing. These tube walls are applicable to all homogenous tube materials (i.e., aluminum, steel, titanium) throughout a rated pressure range of 1000 to 8000 psi and a maximum rated operating temperature range of 160 to 450 °F. All future aerospace applications for which a required tube outside diameter/tube wall combination is not presently available shall be selected from the table contained herein (see Figure 1).
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
Rolling bearings with optimized friction and performance characteristics can have a significant influence on reducing the power loss, design envelope and weight of hydraulic motors and pumps, gearboxes and axles in construction machinery. If correctly designed, rolling bearings can make a significant contribution to reducing carbon dioxide emissions. Most construction machinery is still operated conventionally, using diesel engines and hydraulic components. In the widely used adjustable axial piston pumps and motors, the input and output shaft are usually supported by two tapered roller bearings that are adjusted against each other. When designing the bearing support, it is advisable to reduce the preload to precisely the required minimum allowed by the load spectrum. The lower bearing preload leads to permanently lower axial forces between the tapered roller end face and inner ring rib and, therefore, to a corresponding reduction in frictional torque.
Scharting, Stefan
This Aerospace Standard (AS) defines the requirements for polytetrafluoroethylene (PTFE) heavy duty hose assemblies suitable for use in aircraft and missile hydraulic fluid systems service to 8000 psi and -65 to 400 °F. Gaseous service shall be limited to 150 °F.
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This standard establishes the dimensional and visual quality requirements, lot requirements, and packaging and labeling requirements for O-rings molded from AMS7274 rubber. It shall be used for procurement purposes.
A-6C2 Seals Committee
This SAE Aerospace Standard (AS) defines the requirements for loop-type clamps primarily intended for general clamping of tubing for aircraft hydraulic systems.
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
A DRL (deep reinforcement learning) algorithm, DDPG (deep deterministic policy gradient), is proposed to address the problems of slow response speed and nonlinear feature of electro-hydrostatic actuator (EHA), a new type of actuation method for active suspension. The model-free RL (reinforcement learning) and the flexibility of optimizing general reward functions are combined with the ability of neural networks to deal with complex temporal problems through the introduction of a new framework called “actor-critic”. A EHA active suspension model is developed and incorporated into a 7-degrees-of-freedom dynamics model of the vehicle, with a reward function consisting of the vehicle dynamics parameters and the EHA pump–valve control signals. The simulation results show that the strategy proposed in this article can be highly adapted to the nonlinear hydraulic system. Compared with iLQR (iterative linear quadratic regulator), DDPG controller exhibits better control performance, achieves
Wang, JiaweiGuo, HuiruDeng, Xiaohe
This SAE Aerospace Standard (AS) establishes the requirements for 24° cone flareless fluid connection fittings and nuts and bite type flareless sleeves (see Section 6) for use in aircraft fluid systems at an operating pressure of 5000 psi for the fittings and nuts and 3000 psi for the bite type sleeves.
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This SAE Standard covers normalized electric-resistance welded flash-controlled single-wall, low-carbon steel pressure tubing intended for use as pressure lines and in other applications requiring tubing of a quality suitable for bending, double flaring, beading, forming, and brazing. Material produced to this specification is not intended to be used for single flare applications, due to the potential leak path caused by the Inside Diameter (ID) weld bead or scarfed region. Assumption of risks when using this material for single flare applications shall be defined by agreement between the producer and purchaser. This specification also covers SAE J356 Type-A tubing. The mechanical properties and performance requirements of SAE J356 and SAE J356 Type-A are the same. The SAE J356 or SAE J356 Type-A designation define unique manufacturing differences between coiled and straight material. Nominal reference working pressures for this tubing are listed in ISO 10763 for metric tubing, and SAE
Metallic Tubing Committee
This aerospace test standard establishes the requirements and procedures for evaluating and comparing the impulse fatigue performance of high pressure hydraulic fittings and tubing. This test method may be used to test similar fluid system components, if desired.
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This SAE Aerospace Information Report (AIR) discusses the sources of copper in aviation jet fuels, the impact of copper on thermal stability of jet fuels and the resultant impact on aircraft turbine engine performance, and potential methods for measurement of copper contamination and reduction of the catalytic activity of copper contamination in jet fuels. This document is an information report and does not provide recommendations or stipulate limits for copper concentrations in jet fuels.
AE-5B Aircraft and Engine Fuel and Lubricant Sys Components
This SAE Recommended Practice establishes a uniform fluid specification for reference usage in specific documents, such as fluid power component test procedures, where a fluid designation is required.
CTTC C1, Hydraulic Systems
This SAE Recommended Practice establishes a uniform fluid specification for reference usage in specific documents, such as fluid power component test procedures, where a fluid designation is required.
CTTC C1, Hydraulic Systems
This SAE Aerospace Standard (AS) defines the requirements for a lightweight polytetrafluoroethylene (PTFE) lined, metallic reinforced, hose assembly suitable for use in high temperature, 400 °F, high pressure, 3000 psi, aircraft hydraulic systems, also for use in pneumatic systems which allow some gaseous diffusion through the PTFE wall.
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This Aerospace Standard (AS) defines the requirements for a heavy duty polytetrafluoroethylene (PTFE) lined, metallic reinforced, hose assembly suitable for use in 400 °F 5000 psi, aircraft and missile hydraulic fluid systems.
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
This SAE Aerospace Standard (AS) defines the requirements for a convoluted polytetrafluoroethylene (PTFE) lined, metallic reinforced, hose assembly suitable for use in aerospace fluid systems at temperatures between -65 °F and 400 °F for Class 1 assembly, -65 °F and 275 °F for Class 2 assembly, and at operating pressures per Table 1. The use of these hose assemblies in pneumatic storage systems is not recommended. In addition, installations in which the limits specified herein are exceeded, or in which the application is not covered specifically by this standard, shall be subject to the approval of the procuring activity.
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
A reconfigurable experimental seat is useful for seating comfort research and allows researchers to investigate the effects of seat parameters and to propose quantitative guidelines for improving seat comfort. Since 2017, Gustave Eiffel University has such an experimental seat which allows us to carry out parametric studies on the geometric dimensions of a seat and to understand the role of the contact force, particularly that in shear force. Equipped with force and positioning sensors, all contact forces and seat position can be measured. More specifically, it is equipped on the seat with a matrix of 52 cylinders, each adjustable in height and each equipped with a three-axis force sensor. These cylinders make it possible to vary the contact surface of seat pan and measure the distribution of contact forces. More recently, a new system with a matrix of 263 hydraulic cylinders was designed and manufactured to better study the comfort of the backrest in replacement of the three-support
Wang, XuguangBeurier, Georges
This study presents a control co-design method that utilizes a bi-level optimization framework for parallel electric-hydraulic hybrid powertrains, specifically targeting heavy-duty vehicles like class 8 semi-trailer trucks. The primary objective is to minimize battery energy consumption, particularly under high torque demand at low speed, thereby extending both battery lifespan and vehicle driving range. The proposed method formulates a bi-level optimization problem to ensure global optimality in hydraulic energy storage sizing and the development of a high-level energy management strategy. Two nested loops are used: the outer loop applies a Genetic Algorithm (GA) to optimize key design parameters such as accumulator volume and pre-charged pressure, while the inner loop leverages Dynamic Programming (DP) to optimize the energy control strategy in an open-loop format without predefined structural constraints. Both loops use a single objective function, i.e. battery energy consumption
Taaghi, AmirhosseinYoon, Yongsoon
This SAE Aerospace Recommended Practice (ARP) provides recommendations on cavity design, the installation of elastomer type spare seals in these cavities, and information surrounding elastomer material properties after contact with typical shock absorber hydraulic fluid(s) or grease. This ARP is primarily concerned with the use of spare seals on shock absorbers where only a single dynamic seal is fitted and in contact with the slider/shock absorber piston at any one time. These shock absorbers typically have a spare (dynamic) seal gland located on the outer diameter of the lower seal carrier. This spare seal gland is intended to house a spare elastomer contact seal. Split Polytetrafluoroethylene (PTFE) backup rings can also be installed in the spare seal cavity. During operation, if the fitted dynamic shock absorber standard seal begins to fail/leak, then the aircraft can be jacked up, allowing the lower gland nut of the shock absorber to be dropped down. The current used dynamic seal
A-5B Gears, Struts and Couplings Committee
This SAE Aerospace Standard (AS) establishes the minimum performance standards for equipment used as secondary alternating current (AC) electrical power sources in aerospace electric power systems.
AE-7B Power Management, Distribution and Storage
G-3, Aerospace Couplings, Fittings, Hose, Tubing Assemblies
With current and future regulations continuing to drive reductions in carbon dioxide equivalent (CO2e) emissions in the on-road industry, the off-road industry is also likely to be regulated for fuel and CO2e savings. This work focuses on converting a heavy-duty off-road material handler from a conventional diesel powertrain to a plug-in series hybrid, achieving a 49% fuel reduction and 29% CO2e reduction via simulation. Control strategies were refined for energy savings, including a regenerative braking strategy to increase regenerative braking and a load-following hydraulic strategy to decrease electrical energy consumption. The load-following hydraulic control shuts off the hydraulic electric machine when it is not needed—an approach not previously seen in a load-sensing, pressure-compensated system. These strategies achieved a 24.1% fuel savings, resulting in total savings of 61% in fuel and 41% in CO2e in the plug-in series compared to the conventional machine. Beyond control
Goodenough, BryantCzarnecki, AlexanderRobinette, DarrellWorm, JeremySubert, DavidKiefer, DylanHeath, MatthewBrunet, BobKisul, RobertLatendresse, PhilWestman, JohnBlack, Andrew
Items per page:
1 – 50 of 3725