Browse Topic: Drivetrains
Tippers transporting loose bulk cargo during prolonged descents are subject to two critical operational challenges: cargo displacement and rear axle lifting. Uncontrolled cargo movement, often involving loose aggregates or soil, arises due to gravitational forces and insufficient restraint systems. This phenomenon can lead to cabin damage, loss of control, and hazardous discharge of materials onto roadways. Simultaneously, load imbalances during descent can cause rear axle lift, increasing stress on the front steering axle, resulting in tire slippage and compromised maneuverability. This study proposes a dynamic control strategy that adjusts the tipper lift angle in real time to align with the descent angle of the road. By synchronizing the trailer bed angle with the slope of the terrain, the system minimizes cargo instability, maintains rear axle contact, and enhances braking performance, including engine and exhaust braking systems. Computational modelling is employed to assess the
This SAE Recommended Practice covers the most common applications of electronically controlled on-demand clutch systems used in passenger (car and light truck) vehicle applications. This practice is applicable for torque modulation devices used in transfer cases, electronic limited slip differential (eLSD) cross-axle devices, rear drive module (RDM) integrated torque transfer devices with or without disconnect capability, and other related torque transfer devices.
This paper presents a comprehensive methodology for replicating and quantifying the clicking-noise phenomenon occurring between Generation 3-wheel hub bearings and Constant Velocity Joints (CVJ), particularly in electric vehicles (EVs) where quiet operation makes this noise more noticeable. The study focuses on characterizing the system through contact pressure and distribution measurements, alternating torque tests, and advanced NVH (Noise, Vibration, and Harshness) data processing. The methodology includes detailed descriptions of the physical phenomena, driving conditions generating the noise, and the specific test setup used to simulate real-world conditions. The NVH analysis make use of high-pass filtering techniques to isolate clicking-noise events from background noise, ensuring accurate identification and quantification. Candidate solutions are assessed based on their ability to mitigate clicking noise through the utilization of inherent system components. The results
Rolling bearings with optimized friction and performance characteristics can have a significant influence on reducing the power loss, design envelope and weight of hydraulic motors and pumps, gearboxes and axles in construction machinery. If correctly designed, rolling bearings can make a significant contribution to reducing carbon dioxide emissions. Most construction machinery is still operated conventionally, using diesel engines and hydraulic components. In the widely used adjustable axial piston pumps and motors, the input and output shaft are usually supported by two tapered roller bearings that are adjusted against each other. When designing the bearing support, it is advisable to reduce the preload to precisely the required minimum allowed by the load spectrum. The lower bearing preload leads to permanently lower axial forces between the tapered roller end face and inner ring rib and, therefore, to a corresponding reduction in frictional torque.
The following definitions and illustrations are intended to establish common nomenclature and terminology for driveshafts and their articulating joints used in various drivetrain applications. In addition, useful guidelines are included for the application of driveshafts and their joints. For more specific details, refer to AE-07.
This SAE Recommended Practice was developed by SAE and the section “Standard Classification and Specification for Service Greases” cooperatively with ASTM and NLGI. It is intended to assist those concerned with the design of heavy-duty vehicle components and with the selection and marketing of greases for the lubrication of certain components on heavy-duty vehicles like trucks and buses. The information contained herein will be helpful in understanding the terms related to properties, designations, and service applications of heavy-duty vehicle greases.
This SAE Recommended Practice covers power transfer units (PTUs) used in passenger car and sport utility vehicles to support all wheel drive (AWD) operation. PTUs are typically full-time use geared devices (see 3.1). Some PTUs have additional features such as part-time on-demand capability via electronically actuated disconnect features, and other configurations are possible.
This study presents a novel methodology for optimizing the acoustic performance of rotating machinery by combining scattered 3D sound intensity data with numerical simulations. The method is demonstrated on the rear axle of a truck. Using Scan&Paint 3D, sound intensity data is rapidly acquired over a large spatial area with the assistance of a 3D sound intensity probe and infrared stereo camera. The experimental data is then integrated into far-field radiation simulations, enabling detailed analysis of the acoustic behavior and accurate predictions of far-field sound radiation. This hybrid approach offers a significant advantage for assessing complex acoustic sources, allowing for quick and reliable evaluation of noise mitigation solutions.
The recent addition of fully electric powertrains to propulsion system options has increased the relevance of sound and vibration from electric motors and gearboxes. Electrified beam axles require different metrics from conventional beam axles for noise and vibration because they have multiple sources of vibration energy, including an electric motor and a reduction gearbox. Improved metrics are also driven by the stiff suspension connections and lack of significant isolation compared to electric drive units. Blocked force is a good candidate because it can completely characterize the vibration energy transmitted into a receiver and is especially useful because it is theoretically independent of the vehicle-side structure. While the blocked force methodology is not new, its application to beam axles is relatively unexplored in the literature. This paper demonstrates a case study of blocked force measurement of an electrified beam axle with a leaf spring suspension. The axle was tested
As the automotive industry moves toward electrification, new challenges emerge in keeping pleasant acoustics inside vehicles and their surroundings. This paper proposes a method for anticipating the main sound sources at driver’s ear for custom driving scenarios. Different categories of Road and Wind noise were created from a dataset of multiple vehicles. Using innovative sound synthesis techniques, it enables Valeo to make early predictions of the emergence of an electric axle powertrain (ePWT) once it is combined with this masking noise. Realistic signals could be generated and compared with actual acoustic measurements to validate the method.
The half vehicle spindle-coupled multi-axial input durability test has been broadly used in the laboratory to evaluate the fatigue performance of the vehicle chassis systems by automotive suppliers and OEMs. In the lab, the front or rear axle assembly is usually held by fixtures at the interfaces where it originally connects to the vehicle body. The fixture stiffness is vital for the laboratory test to best replicate the durability test in the field at a full vehicle level especially when the subframe of the front or rear axle is hard mounted to the vehicle body. In this work, a multi-flexible body dynamics (MFBD) model in Adams/Car was utilized to simulate a full vehicle field test over various road events (rough road, braking, steering). The wheel center loads were then used as inputs for the spindle coupled simulations of the front axle with a non-isolated subframe. Three types of fixtures including trimmed vehicle body, a rigid fixture with softer connections and a rigid fixture
This SAE Recommended Practice covers passive torque biasing axle and center differentials used in passenger car and light truck applications. Differentials are of the bevel gear, helical gear, and planetary types, although other configurations are possible.
This SAE Recommended Practice covers transfer cases used in passenger car and light truck applications. Transfer cases are of the chain, geared, manually and electronically shifted types although other configurations are possible. The operating points (speeds, temperatures, etc.) were chosen to mirror those of the United States Environmental Protection Agency Vehicle Chassis Dynamometer Driving Schedules (DDS).
Items per page:
50
1 – 50 of 1836