Browse Topic: Drivetrains
Honda has long been at the cutting edge of mobility and tech, with everything from the Asimo robot of 20 years ago to plans for reusable rockets to launch lightweight satellites into orbit. During a Tech Day event in early October in Tochigi, Japan, the Japanese automaker announced further details of its upcoming Honda 0 architecture (Honda calls it “Honda Zero” but writes it with the number), its first in-house electric platform designed from the ground up. Honda also discussed some of the advanced manufacturing techniques it's pioneering to reach its core design and technology tenants
ABSTRACT Future Military ground vehicle power trains can benefit from a hybrid-electric drive approach, particularly in packaging flexibility where drive train components can be modular and conveniently distributed. Small component size and operation with high-temperature liquid coolant are essential factors in the flexible packaging concept. This paper describes the development of one component, a 220 kW traction motor drive for a hybrid-electric power train. Challenging requirements for the motor-drive include power densities of at least 25 kW/liter and 15 kW/kg at 105°C coolant temperature. To achieve these densities, power modules capable of high-temperature operation were developed using SiC normally-off JFETs. This paper will discuss the unique custom packaging of the SiC JFET devices, as well as the arrangement of key components/packaging and thermal management issues
During a recent Bosch tech showcase, we spoke with Joe Dear, engineering manager for electric propulsion systems at Linamar. The Guelph, Ontario-based parts manufacturer is no stranger to building unsung components for the auto industry, including gears, camshafts, connecting rods, and cylinder heads. The Linamar team was demonstrating a modified Ram 2500, a collaboration between Bosch and Linamar, that was outfitted with a prototype electric powertrain and new e-axles: a rigid axle on the rear (with a Bosch motor and inverter) and a steering axle up front
Eaton and BAE Systems have collaborated to create an electric powertrain featuring BAE electronics and an Eaton four-speed transmission. One of the advantages that OEMs have long touted for battery-electric vehicles (BEVs) has been the elimination of components like the transmission. The instant torque that an electric motor can supply often mitigates the need for any sort of torque multiplication beyond what the chosen axle ratio can provide. However, what the industry has found is that this concept has its limitations in certain use cases. When asked to haul heavy loads over sustained grades or at freeway speeds, a direct drive BEV powertrain rapidly begins losing efficiency and range. Of course, batteries and motors can be scaled up to handle heavier loads, but these methods add both cost and weight to vehicles for which these numbers are already major concerns
This recommended practice contains dimensions and tolerances for spindles in the interface area. Interfacing components include axle spindle, bearing cones, bearing spacer, and seal. This recommended practice is intended for axles commonly used on Class 7 and 8 commercial vehicles. Included are SAE axle configurations FF, FL, I80, L, N, P, R, U, and W
The axle system is a major contributor for road induced vehicle interior noise. However, it is challenging to characterize the NVH performance of the axle system because it is coupled with both the tire/wheel and the body structure. In this article, we introduce a global approach to control the NVH performance of the axle system. The force transmissibility based on the blocked force concept was defined as the indicator of NVH performance of the axle system. A hybrid method combining test and simulation was developed to assess the intrinsic NVH performance of the axle system. The force transmissibility of the axle system is the blocked force generated by the axle system at the body mounting points with a unit of input force on the wheel. It can be simulated easily by FEM with rigid boundary conditions. However, measuring the blocked forces of the axle system is much more complex because it requires very stiff boundary conditions, which are difficult to realize on a realistic test rig
Based on the particularity of the racing field of the Baja SAE China, the Baja Racing Team of our university has adopted rzeppa universal joint for vehicle design and field competition in the semi-axle parts of the race car in previous years. In view of the complex conditions of the Baja Competition, such as gravity test, climb test, handling test, endurance test, etc., it is necessary to optimize and develop a more convenient maintenance model. Installation and use of better performance, more suitable for off-road conditions of the shaft. In this paper, based on the development dynamics of automobile axles and the transverse comparison of various axles, a kind of telescopic cross-shaft universal joint axles is designed by using CATIA software to model and simulate kinematics and dynamics by using ANSYS software. At the same time, the stress and strain of the model are continuously optimized according to the change of axle wheel Angle and the torque matching of Baja Racing. The object
Axles are a prominent part of automotive design. Along with a power transmission and differential system, axles support a vehicle’s weight and road-load reactions. Axles carry different attachments such as brakes and suspensions using brackets. Welds play an important role in design and longevity of bracket assemblies. Welds can be susceptible to fractures caused by intrusions akin to cracks and/or discontinuities, compounded by stress concentration due to weld profile and welding processes. Additionally, the simultaneous optimization of both brackets and welds remains a challenge with limited available methods. While topography or shape optimization techniques can enhance bracket robustness by minimizing compliance as the objective, this approach might inadvertently elevate the likelihood of weld fracture if weld dimensions are not concurrently updated. In this endeavor, compliance is used to improve weld life without affecting bracket robustness by using the Vertex Morphing
This paper aims at analysing the effect of regeneration braking on the amount of energy harnessed during vehicle braking, coasting and its effect on the drive train components like gear, crown wheel pinion, spider gear & bearing etc. Regenerative braking systems (RBS) is an effective method of recovering the kinetic energy of the vehicle during braking condition and using this to recharge the batteries. In Battery Electric Vehicles (BEV), this harnessed energy is used for controlled charging of the high voltage batteries which will help in increasing the vehicle range eventually. Depending on the type of the powertrain architecture, components between motor output to the wheels will vary, i.e., in an e-axle, motor is coupled with a gear box which will be connected with differential and the wheels. Whereas in case of a central drive architecture, motor is coupled with gearbox which is connected with a propeller shaft and then the differential and to the wheels. All the components
Items per page:
50
1 – 50 of 1817