Browse Topic: Axles
Honda has long been at the cutting edge of mobility and tech, with everything from the Asimo robot of 20 years ago to plans for reusable rockets to launch lightweight satellites into orbit. During a Tech Day event in early October in Tochigi, Japan, the Japanese automaker announced further details of its upcoming Honda 0 architecture (Honda calls it “Honda Zero” but writes it with the number), its first in-house electric platform designed from the ground up. Honda also discussed some of the advanced manufacturing techniques it's pioneering to reach its core design and technology tenants
During a recent Bosch tech showcase, we spoke with Joe Dear, engineering manager for electric propulsion systems at Linamar. The Guelph, Ontario-based parts manufacturer is no stranger to building unsung components for the auto industry, including gears, camshafts, connecting rods, and cylinder heads. The Linamar team was demonstrating a modified Ram 2500, a collaboration between Bosch and Linamar, that was outfitted with a prototype electric powertrain and new e-axles: a rigid axle on the rear (with a Bosch motor and inverter) and a steering axle up front
Eaton and BAE Systems have collaborated to create an electric powertrain featuring BAE electronics and an Eaton four-speed transmission. One of the advantages that OEMs have long touted for battery-electric vehicles (BEVs) has been the elimination of components like the transmission. The instant torque that an electric motor can supply often mitigates the need for any sort of torque multiplication beyond what the chosen axle ratio can provide. However, what the industry has found is that this concept has its limitations in certain use cases. When asked to haul heavy loads over sustained grades or at freeway speeds, a direct drive BEV powertrain rapidly begins losing efficiency and range. Of course, batteries and motors can be scaled up to handle heavier loads, but these methods add both cost and weight to vehicles for which these numbers are already major concerns
This recommended practice contains dimensions and tolerances for spindles in the interface area. Interfacing components include axle spindle, bearing cones, bearing spacer, and seal. This recommended practice is intended for axles commonly used on Class 7 and 8 commercial vehicles. Included are SAE axle configurations FF, FL, I80, L, N, P, R, U, and W
The axle system is a major contributor for road induced vehicle interior noise. However, it is challenging to characterize the NVH performance of the axle system because it is coupled with both the tire/wheel and the body structure. In this article, we introduce a global approach to control the NVH performance of the axle system. The force transmissibility based on the blocked force concept was defined as the indicator of NVH performance of the axle system. A hybrid method combining test and simulation was developed to assess the intrinsic NVH performance of the axle system. The force transmissibility of the axle system is the blocked force generated by the axle system at the body mounting points with a unit of input force on the wheel. It can be simulated easily by FEM with rigid boundary conditions. However, measuring the blocked forces of the axle system is much more complex because it requires very stiff boundary conditions, which are difficult to realize on a realistic test rig
Based on the particularity of the racing field of the Baja SAE China, the Baja Racing Team of our university has adopted rzeppa universal joint for vehicle design and field competition in the semi-axle parts of the race car in previous years. In view of the complex conditions of the Baja Competition, such as gravity test, climb test, handling test, endurance test, etc., it is necessary to optimize and develop a more convenient maintenance model. Installation and use of better performance, more suitable for off-road conditions of the shaft. In this paper, based on the development dynamics of automobile axles and the transverse comparison of various axles, a kind of telescopic cross-shaft universal joint axles is designed by using CATIA software to model and simulate kinematics and dynamics by using ANSYS software. At the same time, the stress and strain of the model are continuously optimized according to the change of axle wheel Angle and the torque matching of Baja Racing. The object
Axles are a prominent part of automotive design. Along with a power transmission and differential system, axles support a vehicle’s weight and road-load reactions. Axles carry different attachments such as brakes and suspensions using brackets. Welds play an important role in design and longevity of bracket assemblies. Welds can be susceptible to fractures caused by intrusions akin to cracks and/or discontinuities, compounded by stress concentration due to weld profile and welding processes. Additionally, the simultaneous optimization of both brackets and welds remains a challenge with limited available methods. While topography or shape optimization techniques can enhance bracket robustness by minimizing compliance as the objective, this approach might inadvertently elevate the likelihood of weld fracture if weld dimensions are not concurrently updated. In this endeavor, compliance is used to improve weld life without affecting bracket robustness by using the Vertex Morphing
After three years away from the U.S. market with its range-topping SUV, the Land Cruiser, Toyota unveiled the redesigned 2024 Land Cruiser in Salt Lake City on Aug. 1. The model, long known around the world for its durability and offroad credentials, arrives with the SUV competition hotter than ever. The company said the new model will start at around $55,000. The new Land Cruiser has just one engine option, the i-Force Max turbo 2.4-L four-cylinder hybrid that generates 326 hp and 465 lb-ft (630 Nm) that is routed through an 8-speed automatic transmission. All models are equipped with what Toyota classifies as a “full-time four-wheel-drive system” with a lockable center differential and an electronically controlled 2-speed transfer case to impart high- and low-range capability. Also standard is a lockable rear differential to apportion power in a 50/50 ratio across the rear axle
If a mid-20th century engineer could time travel and see Magna's electric off-road powertrains, they might ask “why is the rear differential so gigantic?” But that's no differential. It's a powerful electric motor fully integrated into each front and rear axle for full 4x4 traction. And Magna said the system will “very likely” be seen on a production vehicle within a few years. At its 2023 tech day presentation, held at a Michigan offroad park and Magna International HQ in Troy, Mich., SAE Media had the opportunity to drive prototype vehicles offroad and sample Magna's in-cabin safety features
Mazda, the automaker with the longest and richest history of using the Wankel rotary engine announced that it resumed mass production of rotary engines for a new variant of the MX-30 compact crossover. Mazda provided little detail about the engine itself, which serves as a generator for the MX-30 e-SKYACTIV R-EV, a plug-in hybrid (PHEV) variant of the MX-30 crossover. Mazda hasn't used the unique powerplant for a production vehicle for more than a decade. The MX-30 e-SKYACTIV R-EV employs the rotary engine in a series-hybrid layout to generate electricity to replenish the vehicle's 17.8-kWh lithium-ion battery, which when fully charged, can provide up to 85 km (31 miles) of driving range on Europe's Worldwide Light Vehicle Test Procedure (WLTP) cycle. Gasoline from a 50-L (13.2-gal.) fuel tank supplies the rotary when its operation is required to provide electricity for extended-range driving. In a release, Mazda explained it “positioned it [the rotary engine] on the same axle as a
As more and more electric vehicles on dedicated platforms are being developed and launched, motor mounting systems evolve to focus on the specific requirements of the electric drive units (EDUs) – especially the partially opposing targets of controlling powertrain motion under torque and enhancing high frequency isolation. The initial layout of the EDU mounting system, such as the number, position and orientation of the motor mounts as well as their linear and non-linear stiffness properties, during the quotation phase as well as its continuous optimization after business nomination are the foundation for an optimal NVH performance. To support early-stage model validation, Vibracoustic analyzes the modal properties of the EDU or the EDU / subframe assembly to ground. For more comprehensive investigations, Vibracoustic has devised unique axle test rigs to analyze and optimize the NVH of entire axles without the surrounding vehicle. Load cells at all interface points, acceleration
This paper describes the characteristics and advantages of a coaxial eBeam axle and its NVH performance under various noise excitations including both motor and gearing system. The NVH CAE model of the eBeam axle is established to assess the NVH performance and conduct optimization upfront. The physical test data of the eBeam axle that is incorporated with the proposed optimization solutions is presented, showing that the eBeam axle vibration and noise levels are well below the internal stringent targets
Items per page:
50
1 – 50 of 1190